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Abstract: In this paper, we proposed a mathematical model of the population density of Indo-Pacific
mackerel (Rastrelliger brachysoma) and the population density of small fishes based on the impulsive
fishery. The model also considers the effects of the toxic environment that is the major problem in the
water. The developed impulsive mathematical model was analyzed theoretically in terms of existence
and uniqueness, positivity, and upper bound of the solution. The obtained solution has a periodic
behavior that is suitable for the fishery. Moreover, the stability, permanence, and positive of the periodic
solution are investigated. Then, we obtain the parameter conditions of the model for which Indo-Pacific
mackerel conservation might be expected. Numerical results were also investigated to confirm our
theoretical results. The results represent the periodic behavior of the population density of the Indo-
Pacific mackerel and small fishes. The outcomes showed that the duration and quantity of fisheries
were the keys to prevent the extinction of Indo-Pacific mackerel.
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1. Introduction

One of the most important foods for human is fish. It is about 35% of protein humans consumed.
The South Pacific jack mackerel (JM) (Trachurus murphyi) is one of the most important fish for
consumption in the world [6]. The Atlantic Mackerel (Scomber scombrus) is one of the most fish
species in the North Atlantic which is widely spawned to produce human’s food [10]. The India
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mackerel (Rastrilliger kangurta) [4] and Spanish mackerel (Scomberomorus commerson) [17] are also
the fish production using for human consumption. In the Asia-Pacific region, Indo-Pacific mackerel
(Rastrelliger brachysoma) or short mackerel is a fish indigenous in this region. This species spread
almost in coasts and islands in the Gulf of Thailand and the Andaman sea [5]. It is about 14–20
centimeters long. It can spawn about 20, 000 eggs at one time. Short mackerel is a pelagic fish that is
highly economically important in the region because it is cheap and tasty [12]. It is therefore widely
consumed in this region. So, there is high demand in South East Asia, resulting in numerous fisheries.

In 1995, the Department of Fisheries, Ministry of Agriculture and Cooperatives, Thailand reported
that short mackerels spawn two periods which are January to March and June to August each year.
Moreover, they spawn more than 20 meters below sea level. Recently, the Department of Fisheries
reports that the number of catching short mackerel drastically decreased every year. In 2014, on average
145,000 tons were caught per year 70,000 tons were caught in 2015, then 31,000 tons, 25,000 tons and
17,700 tons in 2016–2018, respectively [18]. The major problem is catching fish in the spawning
season. The economic value loss caused by catching one ton of Indo-Pacific mackerel fry is about
seven to eight million baht. The government proposed a law to protect fry from fisheries in 2015.

The mathematical model is used for preparing to predict future phenomena in real-world problems.
The model allows simulating any possibility. Many mathematical models have been used to describe
the dynamic of the fish population. Bueno et al. reviewed the mathematical model for managing the
carrying capacity of aquaculture activities in lakes [3]. The model of fish population dynamic was
proposed by Hallam et al. by using the ordinary differential equations [7]. The model studied the
changes in lipid and structure components which considered the energy demand and available energy.
Khatun et al. proposed the mathematical model to studied renewable fishery management [11]. The
two new second-order characteristic scheme was proposed to solve an age-structured population model
with nonlinear diffusion and reaction [15] which used to consider the environmental and spatial region
effect. Raymond et al. proposed the model to describe the dynamics of a two-prey one predator system
in fishery [21].

In addition, the toxicity in the sea is one of the problems which affect the population of short
mackerels and their food. Bergami et al. studied the effect of plastic pollution in the marine ecosystem
especially nanoplastics [2] to the plankton species which is the food of many fishes in the marine.
Hashiguchi et al. identified and evaluated the toxicity of palm oil mill which affected the plankton
species [8]. The antifouling compound zinc pyrithione (ZPT) was studied the effect on the natural
planktonic communities by Hjorth et al. [9]. They found evidence of the diverse effect of ZPT on
marine plankton. Kaur et al. proposed the dynamical model to study the effect of toxicity to the
plankton system [19]. Randall and Tsui studied the effect of ammonia in the aquatic environment on
the central nervous system of fish [20].

To prevent the extinction of Indo-Pacific mackerels, we propose a mathematical model to find a
way to control the catching of the Indo-Pacific mackerels by using the impulsive model. The novelty
of this work is the prey-predator model of Indo-Pacific mackerels (short mackerels) and their foods
which composes the toxic environment and impulsive fisheries. The impulsive model is a suitable
model for fisheries because the fishermen are allowed to harvest fish on some periods for preventing
the extinction of fish. The proposed model can be forecast the population of short mackerel and short
mackerel food (plankton and small fishes). We analyze the model to consider the behavior of the model
solution. The numerical simulations are used to verify the theoretical results.

AIMS Mathematics Volume 7, Issue 1, 1–24.



3

The rest of this paper is organized as follows: The modification model is proposed in Section 2, and
model analysis is presented in Section 3. In Section 4, numerical simulations are showed, followed by
conclusions in Section 5.

2. Model modification

Now, an impulsive mathematical model was proposed in which the control of the extinction of the
short mackerel by considering biological control, toxic environment, and impulsive fisheries are as
follows:

For t , nT ,

dx1

dt
= a1x1

(
1 −

x1

k1

)
−

bx1x2

k2 + x1
− d1x1 − u1x2

1, (2.1)

dx2

dt
= a2x2

(
1 −

x2

k3

)
+

rbx1x2

k2 + x1
− d2x2 − u2x2

2. (2.2)

For t = nT ,

x1(t+) = (1 − γ)x1(t), (2.3)
x2(t+) = (1 − ω)x2(t), (2.4)

where x1(t) is the density of small fishes (short mackerel food) population at time t, x2(t) is the density
of the short mackerel population at time t, T is the period of impulsive fisheries, γ is the negative effect
of fisheries on the density of small fishes population, and ω is the negative effect of fisheries on the
density of short mackerel population with n ∈ Z+, Z+ = {1, 2, 3, ...}, 0 < γ < 1, and 0 < ω < 1. All
parameters in the model are non-negative.

Equation (2.1) expresses the rate of change of the population density of short mackerel food (small
fishes). The small fishes increase by the logistic function with the growth rate a1 and the carrying
capacity k1. On the other hand, the density of them decreases due to being hunted by short mackerel
with rate b, natural death with the rate d1, and toxic death with the rate u1.

Equation (2.2) expresses the rate of change of the population density of the short mackerel
(Rastrelliger brachysoma). The short mackerels increase by the logistic function with the growth rate
a2 and the carrying capacity k3. On the other hand, the density of them increases due to hunting small
fishes with the rate r, natural death with the rate d2, and toxic death with the rate u2.

3. Model analysis

Let
V : R+ × R

2
+ → R+, (3.1)

where R+ = [0,∞),R2
+ = {X ∈ R2 : X = (x1, x2), x1 ≥ 0, x2 ≥ 0}. The map defined by the right hand

side of system (2.1)–(2.4) is denoted by F = (F1, F2).

Definition 3.1 ( [1]). The function V defined in (3.1) is said to belong to class V0 if
(a) V is continuous in (nT, (n+1)T ]×R2

+ → R+ and for each X ∈ R2
+, n ∈ Z+, lim(t,Y)→(nT +,X) V(t,Y) =

V(nT +, X) exists.
(b) V is locally Lipschitzian in X.
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Definition 3.2 ( [1]). Suppose V ∈ V0. For (t, X) ∈ (nT, (n + 1)T ] × R2
+, the upper right derivative of

V(t, X) with respect to system (2.1)–(2.4) is defined by

D+V(t, X) = lim sup
h→0+

1
h

[V(t + h, X + hF(t, X)) − V(t, X)]

where F = (F1, F2).

The solution of system (2.1)–(2.4), X(t) = (x1(t), x2(t)), is assumed to be a piecewise continuous
function. It means that, X(t) is continuous on (nT, (n + 1)T ], n ∈ Z+ and limt→nT + X(t) = X(nT +) exists.
By the smoothness properties of F, the system (2.1)–(2.4) has a unique solution.

Lemma 3.3. Suppose X(t) = (x1(t), x2(t)) is a solution of the system (2.1)–(2.4) with the initial value
X(0+) ≥ 0. Then the solution X(t) ≥ 0 for all t ≥ 0.

Proof. The solution x1(t) with non-negative initial value can be negative when the slope of x1(t) at 0 is
negative. So, the proof of this Lemma can be expressed as follows:

Case t , nT .
Consider the Eq (2.1)

dx1

dt
= a1x1

(
1 −

x1

k1

)
−

bx1x2

k2 + x1
− d1x1 − u1x2

1.

Whenever x1(t) = 0, the slope of x1(t) can be described by
dx1

dt
= 0. This means that x1(t) cannot be

negative. So, x1(t) is a non-negative solution.
Consider the Eq (2.2)

dx2

dt
= a2x2

(
1 −

x2

k3

)
+

rbx1x2

k2 + x1
− d2x2 − u2x2

2.

Whenever x2(t) = 0, the slope of x2(t) can be described by
dx2

dt
= 0. This means that x2(t), cannot be

negative. So, x2(t) is a non-negative solution.
Case t = nT .
Consider the Eq (2.3)

x1(t+) = (1 − γ)x1(t).

Since x1 ≥ 0 and condition 0 < γ < 1, we have that x1(t+) ≥ 0.
Consider the Eq (2.4)

x2(t+) = (1 − ω)x2(t).

Since x2 ≥ 0 and condition 0 < ω < 1, we have that x2(t+) ≥ 0. �

Lemma 3.4. The solution X(t) = (x1(t), x2(t)) has upper bound i.e. x1(t) ≤ M and x2(t) ≤ M, for
sufficiently large t, provided that

d2 >
br
k2
. (3.2)
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Proof. We let V(t) = x1(t) + x2(t),

M1 = max
(
a1x1

(
1 −

x1

k1

)
− u1x2

1

)
=

a2
1k1

4(a1 + u1k1)
,

M2 = max
(
a2x2

(
1 −

x2

k3

)
− u2x2

2

)
=

a2
2k3

4(a2 + u2k3)
,

and

M3 = sup
(

rbx1

1 + k2x1

)
=

rb
k2
.

Consider t , nT , we choose ĉ > 0 and

ĉ = min{d1, d2 − M3}.

Then,

D+V + ĉV =
dx1

dt
+

dx2

dt
+ ĉx1 + ĉx2

=a1x1

(
1 −

x1

k1

)
−

bx1x2

1 + k2x1
− d1x1 − u1x2

1 + a2x2

(
1 −

x2

k3

)
+

rbx1x2

1 + k2x1
− d2x2 − u2x2

2 + ĉx1 + ĉx2

≤(ĉ − d1)x1 + (ĉ + M3 − d2)x2 + M1 + M2

≤M1 + M2

≡M0.

Hence D+V + ĉV ≤ M0.

Consider t = nT,

V(nT +) = x1(nT +) + x2(nT +)
= (1 − γ)x1(nT ) + (1 − ω)x2(nT )
= x1(nT ) + x2(nT ) − γx1(nT ) − ωx2(nT )
≤ V(nT ).

By Lemma 2.2 of Liu et al. [16] we obtain that, for t ∈ (nT, (n + 1)T ],

V(t) ≤ V(0)e−ĉt +

t∫
0

M0e−ĉ(t−s)ds

≤ V(0)e−ĉt + M0

(
1
ĉ
−

e−ĉt

ĉ

)
<

M0

ĉ
≡ M as t → ∞.

Since there exists M > 0 such that x1(t) ≤ M and x2(t) ≤ M for sufficiently large t thus V(t) is
uniformly ultimately bounded. �
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3.1. The reduced impulsive system

The reduced impulsive system of system (2.1)–(2.4) when the population density of small fishes is
zero (x1 = 0) is:

dx2

dt
= Bx2 − Ax2

2, t , nT (3.3)

x2(nT +) = (1 − ω)x2(nT ), t = nT (3.4)
x2(0+) = x20 (3.5)

where A ≡
a2

k3
+ u2 > 0 and B ≡ a2 − d2.

We obtain B > 0 if
a2 > d2. (3.6)

The solution of Eq (3.3) is
1

x2(t)
=

A
B

+ ce−Bt (3.7)

where c is arbitrary constant.
By the conditions (3.4), (3.6) and x2 is increasing function, a periodic solution of system (3.3)–

(3.5) is
1

x̃2(t)
=

A
B

+
ωAe−B(t−nT )

B(1 − ω − e−BT )
, t ∈ (nT, (n + 1)T ] (3.8)

with x̃2(0+) =
B(1 − ω − e−BT )

A(1 − e−BT )
> 0.

Therefore, the system (3.3)–(3.5) has the positive solution

1
x2(t)

=

(
1

x20
−

A
B
−

ωA
B(1 − ω − e−BT )

)
e−Bt +

1
x̃2(t)

, t ∈ (nT, (n + 1)T ]. (3.9)

Lemma 3.5. The periodic solution x̃2(t) of system (3.3)–(3.5) exists and x2(t)→ x̃2(t) as t → ∞ for all
solution x2(t) of system (3.3)–(3.5). Hence,

(0, x̃2(t)) =

(
0,

B(1 − ω − e−BT )
ωAe−B(t−nT ) + A(1 − ω − e−BT )

)
, t ∈ (nT, (n + 1)T ]

is a periodic solution of the original system (2.1)–(2.4) at the zero density of small fishes for t ∈
(nT, (n + 1)T ] and

x̃2(nT +) = x̃2(0+) =
B(1 − ω − e−BT )

A(1 − e−BT )
, n ∈ Z+.

Theorem 3.6. Suppose

Tmin < T < Tmax, (3.10)

a1 > d1 +
bB
k2A

, (3.11)

and

ln
(

1
1 − γ

)
>

b
k2A

ln
(

1
1 − ω

)
, (3.12)
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where

Tmin ≡
1
B

ln
(

1
1 − ω

)
,

and

Tmax ≡
1

a1 − d1 −
bB
k2A

[
ln

(
1

1 − γ

)
−

b
k2A

ln
(

1
1 − ω

)]
.

Then the solution (0, x̃2(t)) of the system (2.1)–(2.4) is locally asymptotically stable.

Proof. Here, we focus on a small perturbation (v1(t), v2(t)) from the point (0, x̃2(t)):

x1(t) = v1(t),
x2(t) = x̃2(t) + v2(t).

Then, (
v1(t)
v2(t)

)
= Φ(t)

(
v1(0)
v2(0)

)
, 0 < t < T

where Φ(t) satisfies

dΦ(t)
dt

=

a1 − d1 −
bx̃2(t)

k2
0

∗ B − 2Ax̃2(t)

 Φ(t)

with the identity matrix Φ(0) = I.
Therefore, the matrix of fundamental solution is

Φ(t) =

exp
∫ t

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds 0

∗∗ exp
∫ t

0
(B − 2Ax̃2(s)) ds

 .
Note that the terms (*) and (**) are not necessary to be calculated because the further analysis does
not require these terms.

Linearization of Eqs (2.3)–(2.4) yields(
v1(nT +)
v2(nT +)

)
=

(
1 − γ 0

0 1 − ω

) (
v1(nT )
v2(nT )

)
.

The eigenvalues of the following matrix W,

W =

(
1 − γ 0

0 1 − ω

)
Φ(T ),

are

λ1 = (1 − γ) exp
(
(a1 − d1)T −

b
k2A

[ln(1 − ω) + BT ]
)
,

λ2 = (1 − ω) exp (−BT − 2 ln(1 − ω)) .
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Since 0 < γ < 1, 0 < ω < 1, and the conditions (3.6), (3.10)–(3.12) hold, it implies that

1
B

ln
(

1
1 − ω

)
< T <

1

a1 − d1 −
bB
k2A

[
ln

(
1

1 − γ

)
−

b
k2A

ln
(

1
1 − ω

)]
.

Therefore, |λ1| < 1 and |λ2| < 1. We can conclude that the solution (0, x̃2(t)) of the system (2.1)–(2.4)
is locally asymptotically stable by Floquet theory. The proof is completed. �

3.2. Permanence of system

Definition 3.7 ( [1]). The system (2.1)–(2.4) is permanent if the solution is bounded. That is, there are
positive constants ā and b̄ and a finite time t0 such that for all solution with the positive initial values
x1(0+) > 0 and x2(0+) > 0

ā ≤ x1(t) ≤ b̄,

ā ≤ x2(t) ≤ b̄,

for all t > t0.

Theorem 3.8. The system (2.1)–(2.4) is permanent if inequalities (3.2), (3.6), (3.11), (3.12) hold and
the following conditions:

T > Tmax (3.13)

and
A > B + M3 (3.14)

are satisfied.

Proof. By Lemma 3.4, there is a constant M > 0 such that the solution x1(t) ≤ M and x2(t) ≤ M for
sufficiently large t.

Since
rbx1x2

1 + k2x1
≥ 0, Eq (2.2) implies that

dx2

dt
= a2x2

(
1 −

x2

k3

)
+

rbx1x2

k2 + x1
− d2x2 − u2x2

2 ≥ Bx2 − Ax2
2, t , nT

x2(nT +) = (1 − ω)x2(nT ), t = nT

then we obtain
x2(t) > x̃2(t) − ε

for some positive ε and large enough t.
Hence,

x2(t) >
B(1 − ω − e−BT )

A(1 − e−BT )
− ε ≡ m1

for large enough t.
Hence, the remaining proof is the system has a lower bound. That is, there exists a positive
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constant m2 such that x(t) > m2. To obtain the result, we let

M̂1 = a1

(
1 −

m3

k1

)
− d1 − u1m3,

for some m3 > 0.
Next, there are two steps as follows:
Step 1. Prove by contradiction that there is t1 such that x1(t1) ≥ m3. Suppose that x1(t) < m3 for all

t > 0. From Eqs (2.2) and (2.4), we get

dx2

dt
= a2x2

(
1 −

x2

k3

)
+

rbx1x2

k2 + x1
− d2x2 − u2x2

2, t , nT

≤ a2x2

(
1 −

x2

k3

)
+ M3x2 − d2x2 − u2x2

2

= (B + M3)x2 − Ax2
2,

x2(t+) = (1 − ω)x2(t), t = nT.

Let us consider the comparison system

dY
dt

= (B + M3)Y − AY2, t , nT (3.15)

Y(t+) = (1 − ω)Y(t), t = nT (3.16)

and
Y(0+) = x2(0+). (3.17)

Hence,
1

Ỹ(t)
=

A
(B + M3)

+
ωAe−(B+M3)(t−nT )

(B + M3)(1 − ω − e−(B+M3)T )
, t ∈ (nT, (n + 1)T ] (3.18)

is a positive periodic solution of system (3.15)–(3.17) with

1
Y(0+)

=
A

(B + M3)
+

ωA
(B + M3)(1 − ω − e−(B+M3)T )

> 0.

The system (3.15)–(3.17) has a positive solution

1
Y(t)

=

(
−

ωA
(B + M3)(1 − ω − e−(B+M3)T )

+
1

Y(0+)
−

A
(B + M3)

)
e−(B+M3)t +

1
Ỹ(t)

, (3.19)

with t ∈ (nT, (n + 1)T ] and
1

Y(t)
→

1
Ỹ(t)

as t → ∞, where

1
Ỹ(t)

=
ωAe−(B+M3)(t−nT )

(B + M3)(1 − ω − e−(B+M3)T )
+

A
(B + M3)

.

By the comparison theorem in [14], we obtain that

x2(t) ≤ Y(t).

AIMS Mathematics Volume 7, Issue 1, 1–24.
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Now, we consider (2.1)

dx1

dt
= a1x1

(
1 −

x1

k1

)
−

bx1x2

k2 + x1
− d1x1 − u1x2

1

≥

(
a1

(
1 −

m3

k1

)
−

bx2

k2
− d1 − u1m3

)
x1

=

(
M̂1 −

bx2

k2

)
x1.

Since x2(t) ≤ Y(t), there is a T ∗ > 0 such that,

x2(t) ≤ Y(t) < Ỹ(t) + ε1, t , nT, t ≥ T ∗

for a sufficiently small ε1 > 0.
Therefore,

dx1

dt
>

(
M̂1 −

b
k2

(
Ỹ(t) + ε1

))
x1, (3.20)

for t , nT, t ≥ T ∗ and
x1(t+) = (1 − γ)x1(t), (3.21)

for t = nT, t ≥ T ∗.
Letting N ∈ Z+ and NT ≥ T ∗, and integrating over (nT, (n + 1)T ], n ≥ N, we get

x1((n + 1)T ) ≥ x1(nT )(1 − γ) exp


(n+1)T∫
nT

(
M̂1 −

b
k2

(
Ỹ(t) + ε1

))
dt


= x1(nT )(1 − γ) exp

((
M̂1 −

b
k2
ε1 −

b(B + M3)
k2A

)
T +

b
k2A

ln
(

1
1 − ω

))
= x1(nT )η,

where

η ≡ (1 − γ) exp
((

M̂1 −
b
k2
ε1 −

b(B + M3)
k2A

)
T +

b
k2A

ln
(

1
1 − ω

))
.

Consider

ln η = ln(1 − γ) +

(
M̂1 −

b
k2
ε1 −

b(B + M3)
k2A

)
T +

b
k2A

ln
(

1
1 − ω

)
.

For sufficiently small ε1 > 0,

ln η ≈ − ln
(

1
1 − γ

)
+

(
M̂1 −

b(B + M3)
k2A

)
T +

b
k2A

ln
(

1
1 − ω

)
.

Since M̂1 < a1 − d1 and (3.11) is satisfied, a small positive m3 is chosen so that ln η > 0.
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We get

η ≡(1 − γ) exp
((

M̂1 −
b
k2
ε1 −

b(B + M3)
k2A

)
T +

b
k2A

ln
(

1
1 − ω

))
> 1. (3.22)

We observe that x1((n + k)T ) ≥ x1(nT )ηk → ∞ as k → ∞ which contradicts the boundedness of x1(t).
Therefore, there exists t1 > 0 such that x1(t1) ≥ m3.

Step 2. The proof is completed if x1(t) ≥ m3 for all t > t1. Otherwise, x1(t) < m3 for some t > t1.
Setting t∗ = inft>t1{x1(t) < m3}. There are two cases as follows:

Case 1: t∗ = n1T for some n1 ∈ Z+. That is x1(t) ≥ m3 for t ∈ (t1, t∗] and x1(t∗) = m3 by continuity
of the solution x1(t).

Since x1(t) < M and m1 < x2(t) < M for some positive M and m1 with sufficiently large t, we can
choose M̄ > 0 and m̄1 > 0 so that

x1(t) < M̄ and m̄1 < x2(t) < M̄

and

M̂1 <
b
k2

M̄, (3.23)

such that
1

m̄1
>

∣∣∣∣∣ 1
x2(t∗+)

−
A

(B + M3)
−

ωA
(B + M3)(1 − ω − e−(B+M3)T )

∣∣∣∣∣ − ω. (3.24)

Then, we choose n2, n3 ∈ Z+ such that

n2T >
1

(B + M3)
ln


1

m̄1
+ ω

ε1

 (3.25)

and
(1 − γ)n2 exp((n2 + 1)η1T )ηn3 > 1, (3.26)

where

η1 ≡ M̂1 −
b
k2

M̄ < 0.

Define T ′ = n2T + n3T . There exists t2 ∈ (t∗, t∗ + T ′] so that x1(t2) > m3.
Otherwise, considering Eq (3.19) with

1
Y(t∗+)

=
1

x2(t∗+)
,

we obtain

1
Y(t)

=

(
−

ωA
(B + M3)(1 − ω − e−(B+M3)T )

+
1

Y(t∗+)
−

A
(B + M3)

)
e−(B+M3)(t−t∗) +

1
Ỹ(t)

for t ∈ (nT, (n + 1)T ] where n1 ≤ n ≤ n1 + n2 + n3.
For n2T ≤ t − t∗ ≤ T ′, we have
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∣∣∣∣∣∣ 1
Y(t)
−

1
Ỹ(t)

∣∣∣∣∣∣ =

∣∣∣∣∣− ωA
(B + M3)(1 − ω − e−(B+M3)T )

+
1

Y(t∗+)
−

A
(B + M3)

∣∣∣∣∣ e−(B+M3)(t−t∗)

=

∣∣∣∣∣− ωA
(B + M3)(1 − ω − e−(B+M3)T )

+
1

x2(t∗+)
−

A
(B + M3)

∣∣∣∣∣ e−(B+M3)(t−t∗)

<

(
1

m̄1
+ ω

)
e−(B+M3)(t−t∗)

<

(
1

m̄1
+ ω

)
e−(B+M3)n2T

< ε1.

Since the condition (3.14), we get

|Y(t) − Ỹ(t)| <
|Y(t) − Ỹ(t)|
|Y(t)Ỹ(t)|

=

∣∣∣∣∣∣ 1
Y(t)
−

1
Ỹ(t)

∣∣∣∣∣∣ < ε1.

Then,
x2(t) ≤ Y(t) < Ỹ(t) + ε1.

According to Step 1, we obtain

x1(t∗ + T ′) = x1(n1T + n2T + n3T )
≥ x1(t∗ + n2T )ηn3 .

From Eq (2.1), we have

dx1

dt
= a1x1

(
1 −

x1

k1

)
−

bx1x2

k2 + x1
− d1x1 − u1x2

1

≥

(
a1

(
1 −

m3

k1

)
−

bx2

k2
− d1 − u1m3

)
x1

=

(
M̂1 −

bx2

k2

)
x1

≥

(
M̂1 −

b
k2

M̄
)

x1 (3.27)

= η1x1, t , nT

x1(t+) = (1 − γ)x1(t), t = nT.

Integrating inequality (3.27) over [t∗, t∗ + n2T ], we have

x1(t∗ + n2T ) ≥ x1(t∗)(1 − γ)n2 exp


n1T+n2T∫
n1T

η1dt


≥ m3(1 − γ)n2 exp(n2η1T )
≥ m3(1 − γ)n2 exp((n2 + 1)η1T ),
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hence,

x1(t∗ + T ′) ≥ x1(t∗ + n2T )ηn3

≥ m3(1 − γ)n2 exp((n2 + 1)η1T )ηn3

> m3.

It is in contradiction to the definition of m3. Therefore, there exists t2 ∈ (t∗, t∗ + T ′] so that x1(t2) > m3.
Now, we define t̃ = inft>t∗{x1(t) > m3}. This means that, x1(t) < m3 for t ∈ (t∗, t̃) and x1(t̃) = m3

by the continuity of x1(t). Then, we choose p ∈ Z+ so that p ≤ n2 + n3 and t∗ + pT ≥ t̃, and suppose
t ∈ (t∗ + (p − 1)T, t∗ + pT ]. By inequality (3.27), we get

x1(t) ≥ x1(t∗+)(1 − γ)p−1 exp((p − 1)η1T ) exp(η1(t − (t∗ + (p − 1)T )))
= x1(t∗)(1 − γ)p exp((p − 1)η1T ) exp(η1(t − (t∗ + (p − 1)T )))
= m3(1 − γ)p exp(η1(t − t∗))
≥ m3(1 − γ)n2+n3 exp(η1 pT )
≥ m3(1 − γ)n2+n3 exp((n2 + n3)η1T ).

Since η1 < 0 and p ≤ n2 + n3.
Let

m̄2 = m3(1 − γ)n2+n3 exp((n2 + n3)η1T ).

Thus, x1(t) ≥ m̄2 for t ∈ (t∗, t̃). Similarly, we use t̃ instead of t∗. Then, we will obtain x1(t) ≥ m̄2 for
all sufficiently large t.

Case 2: t∗ , nT for all n ∈ Z+. That is x1(t) ≥ m3 for t ∈ [t1, t∗) and x1(t∗) = m3. We assume that
t∗ ∈ (n̄1T, (n̄1 + 1)T ), for some n̄1 ∈ Z+. We can consider this into two subcases.

Case 2.1: x1(t) ≤ m3 for all t ∈ (t∗, (n̄1 + 1)T ]. Suppose that there is t′2 ∈ [(n̄1 + 1)T, (n̄1 + 1)T + T ′]
so that x1(t′2) > m3. Otherwise, considering Eq (3.19) with

1
Y((n̄1 + 1)T +)

=
1

x2((n̄1 + 1)T +)
.

For t ∈ (nT, (n + 1)T ], n̄1 + 1 ≤ n ≤ n̄1 + 1 + n2 + n3, we obtain

1
Y(t)

=

(
1

Y((n̄1 + 1)T +)
−

A
(B + M3)

−
ωA

(B + M3)(1 − ω − e−(B+M3)T )

)
e−(B+M3)(t−(n̄1+1)T ) +

1
Ỹ(t)

.

In a similar way to Case 1, for n2T ≤ t − t∗, we get∣∣∣Y(t) − Ỹ(t)
∣∣∣ < ε1.

Thus,
x2(t) ≤ Y(t) < Ỹ(t) + ε1.

Since n2T ≤ (n̄1 + 1 + n2)T − t∗, we get

x1((n̄1 + 1 + n2)T ) ≥ x1(t∗)(1 − γ)n2 exp(η1((n̄1 + 1 + n2)T − t∗))
≥ m3(1 − γ)n2 exp(η1((n̄1 + 1 + n2)T − n̄1T ))
≥ m3(1 − γ)n2 exp((n2 + 1)η1T ).
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Then,

x1((n̄1 + 1 + n2 + n3)T ) ≥ x1((n̄1 + 1 + n2)T )ηn3

≥ m3(1 − γ)n2 exp((n2 + 1)η1T )ηn3

> m3.

It is in contradiction to the definition of m3. Thus, there exists t′2 ∈ [(n̄1 + 1)T, (n̄1 + 1)T + T ′] so that
x1(t′2) > m3.

Now, we define t̄ = inft>t∗{x1(t) > m3}. Thus, x1(t) ≤ m3 for t ∈ [t∗, t̄), and x1(t̄) = m3. We choose
p′ ∈ Z+ such that p′ ≤ n2 + n3 + 1 and suppose t ∈ (n̄1T + (p′−1)T, n̄1T + p′T ]. From inequality (3.27),
we get

x1(t) ≥ x1((n̄1T + (p′ − 1)T )+) exp(η1(t − (n̄1T + (p′ − 1)T )))
= x1(n̄1T + (p′ − 1)T )(1 − γ) exp(η1(t − (n̄1T + (p′ − 1)T )))

≥ x1(t∗)(1 − γ)p′−1 exp(η1(t − t∗))

≥ m3(1 − γ)p′−1 exp(η1(t − t∗)).

Since η1 < 0 and t − t∗ ≤ p′T . Then,

x1(t) ≥ m3(1 − γ)n2+n3 exp((n2 + n3 + 1)η1T ).

Let
m2 = m3(1 − γ)n2+n3 exp((n2 + n3 + 1)η1T ).

Therefore, x1(t) ≥ m2 for t ∈ (t∗, t̄). We do the same way by using t̄ instead of t∗. Then, we will
obtain x1(t) ≥ m2 for all sufficiently large t.

Case 2.2: There exists t′′ ∈ (t∗, (n̄1 + 1)T ] so that x1(t′′) > m3. Define t = inft>t∗{x1(t) > m3}. Hence,
x1(t) < m3 for t ∈ [t∗, t), and x1(t) = m3. For t ∈ [t∗, t), inequality (3.27) holds, we get

x1(t) ≥ x1(t∗) exp


t∫

t∗

η1dt


= m3 exp(η1(t − t∗))
≥ m3 exp(η1T )
> m2,

since t < n̄1T + T < t∗ + T . For t > t, we can do the same way since x1(t) ≥ m3. Since m2 < m̄2 < m3,
we can conclude that x1(t) ≥ m2 for t ≥ t1. The proof is completed. �

3.3. The positive periodic solution

Now, we carry out the conditions to guarantee the positive periodic solution of the system (2.1)–
(2.4) near the periodic solution (0, x̃2). For more convenience, we change the variables, and then the
new system is shown as follows:

dx1

dt
= a2x1

(
1 −

x1

k3

)
+

rbx1x2

k2 + x2
− d2x1 − u2x2

1, (3.28)
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dx2

dt
= a1x2

(
1 −

x2

k1

)
−

bx1x2

k2 + x2
− d1x2 − u1x2

2, (3.29)

for t , nT with

x1(nt+) = (1 − ω)x1(t), t = nT, (3.30)
x2(nt+) = (1 − γ)x2(t), t = nT. (3.31)

Let

F1(x1, x2) = a2x1

(
1 −

x1

k3

)
+

rbx1x2

k2 + x2
− d2x1 − u2x2

1,

F2(x1, x2) = a1x2

(
1 −

x2

k1

)
−

bx1x2

k2 + x2
− d1x2 − u1x2

2.

According to Lakmeche and Arini [13],

Θ1(x1, x2) = (1 − ω)x1,Θ2(x1, x2) = (1 − γ)x2, ζ(t) = (x̃2(t), 0)T , X0 = (x̃2(τ0), 0)T , τ0 = Tmax,

and

∂Φ1(τ0, X0)
∂τ

=
∂x̃2(τ0, X0)

∂t

=
ωA exp(−Bτ0)x̃2

2(τ0, X0)
1 − ω − exp(−Bτ0)

> 0,

∂Φ1(τ0, X0)
∂x1

= exp


τ0∫

0

∂F1(ζ(s))
∂x1

ds

 > 1
1 − ω

> 0,

∂Φ1(τ0, X0)
∂x2

=

τ0∫
0

exp


τ0∫
υ

∂F1ζ(s)
∂x1

ds

 ∂F1(ζ(υ))
∂x2

exp


υ∫

0

∂F2(ζ(s))
∂x2

ds


 dυ

=

τ0∫
0

exp


τ0∫
υ

(B − 2Ax̃2(s))ds

 rbx̃2(υ)
k2

exp


υ∫

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds


 dυ,

∂Φ2(τ0, X0)
∂x2

= exp


τ0∫

0

∂F2(ζ(s))
∂x2

ds


= exp


τ0∫

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds

 ,
∂2Φ2(τ0, X0)
∂x1∂x2

=

τ0∫
0

exp


τ0∫
υ

∂F2(ζ(s))
∂x2

ds

 ∂2F2(ζ(υ))
∂x1∂x2

exp


υ∫

0

∂F2(ζ(s))
∂x2

ds


 dυ

=
−bτ0

k2(1 − γ)
< 0,
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∂2Φ2(τ0, X0)
∂x2

2

=

τ0∫
0

exp


τ0∫
υ

∂F2(ζ(s))
∂x2

ds

 ∂2F2(ζ(υ))
∂x2

2

exp


υ∫

0

∂F2(ζ(s))
∂x2

ds

 dυ

+

τ0∫
0

exp


τ0∫
υ

∂F2(ζ(s))
∂x2

ds

 ∂2F2(ζ(υ))
∂x1∂x2


×


υ∫

0

exp


υ∫

θ

∂F1(ζ(s))
∂x1

ds

 ∂F1(ζ(θ))
∂x2

exp


θ∫

0

∂F2(ζ(s))
∂x2

ds

 dθ

 dυ

=

τ0∫
0

(
2bx̃2(υ)

k2
2

−
2a1

k1
− 2u1

)
exp


τ0∫

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds

 dυ

−
b
k2

τ0∫
0

exp


τ0∫
υ

(
a1 − d1 −

bx̃2(s)
k2

)
ds




×


υ∫

0

exp


υ∫

θ

(B − 2Ax̃2(s))ds

 rbx̃2(θ)
k2

exp


θ∫

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds

 dθ

 dυ,

∂2Φ2(τ0, X0)
∂x2∂τ

=
∂F2(ζ(τ0))

∂x2
exp


τ0∫

0

∂F2(ζ(s))
∂x2

ds


=

(
a1 − d1 −

bx̃2(τ0)
k2

)
exp


τ0∫

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds


=

1
1 − γ

(
a1 − d1 −

bB(1 − ω − exp(−Bτ0))
β5

)
,

where
β5 = k2ωA exp(−Bτ0) + k2A(1 − ω − exp(−Bτ0)).

Now, we can compute

d′0 = 1 −
(
∂Θ2

∂x2

∂Φ2

∂x2

)
(τ0,X0)

= 1 − (1 − γ) exp


τ0∫

0

(
a1 − d1 −

bx̃2(s)
k2

)
ds

 ,
where τ0 is the root of d′0 = 0. Note that d′0 > 0 if T < Tmax and d′0 < 0 if T > Tmax.

a′0 = 1 −
(
∂Θ1

∂x1

∂Φ1

∂x1

)
(τ0,X0)
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= 1 − (1 − ω) exp


τ0∫

0

(B − 2Ax̃2(s))ds

 .
Note that a′0 > 0 if T > Tmin.

b′0 = −
∂Θ1

∂x1

∂Φ1(τ0, X0)
∂x2

= −(1 − ω)

τ0∫
0

exp


τ0∫
υ

(B − 2Ax̃2(s))ds

 rbx̃2(υ)
k2

exp


υ∫

0

(a1 − d1 −
rbx̃2(s)

k2
)ds

 dυ

< 0,

G∗ = − (a1 − d1) + bB
(
1 − ω − exp(−Bτ0)

β5

)
+

bτ0(1 − ω)ω exp(−Bτ0)

k2

(
1 −

(
(1 − ω) exp(−Bτ0) +

1
1 − ω

))
×

B2(1 − ω − exp(−Bτ0))
A[ω exp(−Bτ0) + (1 − ω − exp(−Bτ0))]2 ,

H∗ = 2(1 − γ)
b′0
a′0

∂2Φ2

∂x1∂x2
− (1 − γ)

∂2Φ2

∂x2
2

.

Note that G∗ < 0 if

a1k2

(
a2

k3
+ u2

)
> b(a2 − d2), (3.32)

and H∗ > 0 if

k2
2

(
a1

k1
+ u1

) (
a2

k3
+ u2

)
> b(a2 − d2). (3.33)

Thus, G∗H∗ < 0, and by Lakmeche and Arini [13], we obtain the following theorem.

Theorem 3.9. If all conditions (3.2), (3.6), (3.11), (3.12), (3.14), (3.32), (3.33) and T > Tmax > Tmin

hold, then the system (3.28)–(3.31) has a positive periodic solution which is supercritical.

4. Numerical results and interpretation

In this section, the numerical results of the system (2.1)–(2.4) are carried out by using ode15
package in MATLAB to confirm the analysis of solutions.

The numerical simulations of the (2.1)–(2.4) are computed by using the parameters and initial
conditions given in Table 1.

The remaining parameters γ = 0.9, ω = 0.1,T = 0.1 are used to simulate the solutions as shown in
Figures 1. All parameters are satisfied the conditions in Theorem 3.6. The trend of solution is close to
a limit cycle (0, x̃2) as proved.

The initial situation starts with 10 units in both of population density of small fishes x1(0) and short
mackerel x2(0). After that, the population of small fishes continues to decrease and tends to zero due
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to the short period and high quantity of fisheries. However, the population of shot mackerel decreases
in the beginning then it tends to a closed orbit between 0.2593–0.2881 because of the low rate of toxic
death and high capacity of hunting with the same period of fisheries.

The computer simulations of the system (2.1)–(2.4) with setting parameters in Table 1 and γ =

0.5, ω = 0.2,T = 0.5 are shown in Figure 2. For this case, we have that all parameters are satisfied the
conditions in Theorem 3.8. The solution is permanent as proved.

The initial situation starts with 10 units in both of population density of small fishes x1(0) and
short mackerel x2(0). After that, both small fishes and shot mackerel decrease until tending to a range
of 0.0987–0.1974 and 0.2347–0.2934, respectively. The fisherman catches enough of them for the
economy and they remain alive in the system. The long period of fisheries, low-frequency fisheries,
and the appropriate number of fishing are the most of factors in persistence.

The computer simulations of the system (2.1)–(2.4) with the parametric values γ = 0.7, ω = 0.3,T =

1.5 and the remaining parameters as in Table 1 are shown in Figure 3. All parameters in this case are
satisfied the conditions in Theorem 3.9. The system has a positive periodic solution as proved.

The initial situation start with 10 units both of population density of small fishes x1(0) and short
mackerel x2(0). Then both small fishes and shot mackerel decrease until tending to oscillatory in a
narrow range of 0.0592−0.1974 and 0.2054−0.2934, respectively. The decreased population of small
fishes and shot mackerel occurs when the period of fisheries starts while the population of them back
hits the peak when fisherman do not allow to fishing like a periodic behavior. The suitable amount
and period of fisheries like this case to prevent the extinction of small fishes and short mackerel and to
prevent the damage of economic are expected situation.

The computer simulations of the system (2.1)–(2.4) with the parametric values in Table 1 and γ =

0.5, ω = 0.2 which focused on changes in the period of impulsive fisheries (T ) and the negative effect
of fisheries on the density of short mackerel population (ω) with γ = 0.1,T = 0.2 are shown in Figure 4
and Figure 5 respectively. The results indicated that the densities of the short mackerel were in periodic
fashions. Moreover, the different values of T and ω provided the different highest densities of x2(t).

Table 1. Parameter values.

parameter value
a1 20
a2 20 [18]
b 0.1
d1 0.2
d2 0.4
k1 0.2
k2 0.6
k3 0.3
r 0.5
u1 0.1
u2 0.1
x1(0) 10
x2(0) 10
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Figure 1. Simulation results of system (2.1)–(2.4). The parametric values are chosen to
satisfy the conditions in Theorem 3.6. (1a) The phase-portrait of (x1, x2). (1b) The population
time series of small fishes (x1) tending to zero. (1c) The population time series of short
mackerel (x2) exhibiting positive pulsation. The solution goes toward the periodic solution
(0, x̃2) as time passed.
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Figure 2. Simulation results of system (2.1)–(2.4). The parametric values are chosen to
satisfy the conditions in Theorem 3.8. (2a) The phase-portrait of (x1, x2). (2b), (2c) The
population time series of small fishes (x1) and short mackerel (x2) showing boundedness.
The solution of the system is permanent.
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Figure 3. Simulation results of system (2.1)–(2.4). The parametric values are chosen
to satisfy the conditions in Theorem 3.9. (3a) The phase-portrait of (x1, x2). (3b), (3c)
The population time series of small fishes (x1) and short mackerel (x2) exhibiting positive
oscillation. The system has a positive periodic solution.
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Figure 4. Simulation results of short mackerel density focused on changes in the period of
impulsive fisheries (T ).
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Figure 5. Simulation results of short mackerel density focused on changes in the negative
effect of fisheries on the density of short mackerel population (ω).

5. Discussion and conclusions

We propose the modification mathematical model to forecast the population density dynamic of
Indo-Pacific mackerel (Rastrelliger brachysoma) or short mackerel. The proposed model is utilized to
control the population of short mackerel by considering the decrease population affected by catching,
toxic, and natural death. The suitable period T and the quantity affecting the decreasing rate of small
fishes population γ and the decreasing rate of short mackerel population ω are essential things to
maintain short mackerel population and small fish population without extinction. The numerical results
show the periodic behavior of the density population. Moreover, there are enough short mackerel for
fishermen and humans for a long time.
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