
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(9): 10327–10342.
DOI:10.3934/math.2021598
Received: 17 February 2021
Accepted: 05 July 2021
Published: 14 July 2021

Research article

Landweber iterative regularization method for reconstructing the unknown
source of the modified Helmholtz equation

Dun-Gang Li, Fan Yang∗, Ping Fan, Xiao-Xiao Li and Can-Yun Huang

School of Science, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People’s Republic
of China

* Correspondence: Email: fanyang@lut.edu.cn, yfggd114@163.com.

Abstract: This paper considers the inverse problem of determining an unknown source which depends
only one spatial variable on modified Helmholtz equation. This problem is well known to be severely
ill-posed, the solution (if it exists) does not depend continuously on the data. Landweber iterative
regularization method is used to solve this inverse source problem. The Hölder type error estimates are
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1. Introduction

In recent years, the Helmholtz equation usually appears in a lot of branches of science and
engineering. It is used for describing electromagnetic field, wave propagation, vibration of a structure,
scattering and so on [1,2]. The modified Helmholtz equation or the Yukawa equation which is
refered to [3] appears in implicit marching schemes for Debye-Hückel theory, in the heat equation
and in the linearization of the Poisson-Boltzmann equation. For the inverse problem of the modified
Helmholtz equation, there are much different numerical methods to solve the Cauchy problems of the
modified Helmholtz equation, such as the method of fundamental solutions(MFS) [4], Tikhonov type
regulation [5], the iteration regularization method [6], Quasi-boundary regularization [7,8], Quasi-
reversibility and truncation methods [9–11], and so on. For reconstructing the unknown source of
the modified Helmholtz equation, in [12], the authors used the simplified Tikhonov regularization
method to reconstruct an unknown source which depended only on one variable. In [13], the authors
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used the quasi-reversibility regularization method to reconstruct the unknown source in an unbound
domain. However, in [12,13], the choice of regularization parameters is given by the a priori rule. A
priori choice of the regularization parameter relies on the a priori bound E of the unknown solution.
Meanwhile, the a priori bound E cannot be known exactly in reality, it will lead to the bad regularized
solution by using a wrong constant E.

In this paper, two choices of the regularization parameter is given, i.e., the priori choice and the
posterior choice. In addition, we compare the effectiveness between the the posterior choice rule and
the priori choice rule. To the authors’ knowledge, there were few papers to identify the unknown
source on the modified Helmholtz equation by posteriori regularization parameter choice rules on half
unbounded domain.

In this work, we consider the following inverse problem: to find a pair of functions (u(x, y), f (x))
which satisfy 

∆u(x, y) − k2u(x, y) = f (x), −∞ < x < ∞, 0 < y < +∞,

u(x, 0) = 0, −∞ < x < ∞,

u(x, y) |y−→∞ bounded, −∞ < x < ∞,

u(x, 1) = g(x), −∞ < x < ∞,

(1.1)

where f (x) is the unknown source, the constant k is the large wave number, u(x, 1) = g(x) is given
function in L2(R). We use u(x, 1) = g(x) to get f (x). However, in practice, data is affected by
measurement errors meaning that we have to consider a function gδ(x) which is merely in L2(R) satisfies

‖gδ − g‖L2(R) ≤ δ, (1.2)

where ‖ · ‖ denotes L2(R) norm and δ > 0 is a noise level.
This paper is organized as follows. In Section 2, we present the Landweber iterative regularization

method. The convergence estimates under an a priori and an a posteriori choice rules will be given in
Section 3. In Section 4, numerical examples are given to show the effectiveness of our method. We
will have a brief conclusion in Section 5.

2. Landweber iterative regularization method

Before giving the main results of this paper, we first give some useful lemmas.

Lemma 2.1. For 0 ≤ i ≤ 1 and n ≥ 1, there holds

(1 − i)ni ≤
1

n + 1
,

1 − (1 − i)n

i
≤ n. (2.1)

Proof. Denote φ(i) = (1 − i)ni and ϕ(i) = 1 − (1 − i)n − ni,
then

φ′(i) = −n(1 − i)n−1i + (1 − i)n,

ϕ′(i) = n(1 − i)n−1 − n.
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Setting φ′(i) = 0, we have

i =
1

n + 1
.

Note φ(0) = φ(1) = 0, φ(i) has an unique maximal value at i = 1
n+1 . Therefore,

φ(i) = (1 − i)ni ≤
1

n + 1
.

Because of ϕ′(i) ≤ 0 and ϕ(0) = 0, we can get ϕ(i) ≤ 0. �

Lemma 2.2. For 0 ≤ i ≤ 1, 0 < α ≤ 1 and n ≥ 1, we can obtain:

(1 − i)niα ≤ (n + 1)−α,

1 − (1 − i)n

iα
≤ nα.

Proof. Due to (2.1), we can obtain

(1 − i)niα ≤ [(1 − i)ni]α ≤ (n + 1)−α,

1 − (1 − i)n

iα
≤ [

1 − (1 − i)n

i
]α ≤ nα.

�

Lemma 2.3. For t ≥ 1, there holds:
1

1 − e−
√

t
≤ 2 (2.2)

and
1
2t
≤

1 − e−
√

t

t
≤

1
t
. (2.3)

Using the Fourier transform, we obtain the solution of problem (1.1) as follows:

f̂ (ξ) = −
ξ2 + k2

1 − e−
√
ξ2+k2

ĝ(ξ). (2.4)

Then

f (x) = −
1
√

2π

∫ ∞

−∞

eiξx ξ2 + k2

1 − e−
√
ξ2+k2

ĝ(ξ)dξ. (2.5)

Due to (2.4), we define operator Â : f̂ → ĝ and obtain

Â f̂ (ξ) = −
1 − e−

√
ξ2+k2

ξ2 + k2 f̂ (ξ). (2.6)

The operator Â is a linear self adjoint compact operator, so Â = Â∗. Due to (2.6), we know

Â = Â∗ = −
1 − e−

√
ξ2+k2

ξ2 + k2 . (2.7)
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When ξ → ∞, (ξ2 + k2)/(1 − e−
√
ξ2+k2) in (2.4) or (2.5) can be seen as an amplification factor of ĝ(ξ).

Thus the exact data function ĝ(ξ) must decay rapidly. However, g(x) can be measured with error. When
we use the data function g(x) with error to reconstruct the unknown source f (x), this error can destroy
the solution. So we will use the regularization method to deal with the ill-posed problem. Assume a
priori bound of the unknown source f (x) as follows:

‖ f (·)‖p ≤ E, p > 0, (2.8)

where E > 0 is a constant and ‖ f (·)‖p is defined as follows:

‖ f (·)‖p = (
∫ ∞

−∞

(k2 + ξ2)p | f̂ (ξ) |2 dξ)
1
2 . (2.9)

Theorem 2.1. If ‖ f (·)‖p ≤ E, p > 0, then

‖ f (·)‖ ≤ C1E
2

p+2 ‖g(·)‖
p

p+2 ,

where C1 := 2
p

p+2 .
Proof. Using the Hölder inequality, we obtain

‖ f (·)‖2 = ‖ f̂ (·)‖2 =

∫ ∞

−∞

(
ξ2 + k2

1 − e−
√
ξ2+k2

ĝ(ξ))2dξ

=

∫ ∞

−∞

(̂g(ξ))
4

p+2 (
ξ2 + k2

1 − e−
√
ξ2+k2

)2(̂g(ξ))
2p
p+2 dξ

≤
( ∫ ∞

−∞

(̂
g(ξ))

4
p+2 (

ξ2 + k2

1 − e−
√
ξ2+k2

)2) p+2
2 dξ

) 2
p+2

( ∫ ∞

−∞

((̂
g(ξ)

) 2p
p+2

) p+2
p dξ

) p
p+2

=
( ∫ ∞

−∞

(̂
g(ξ))2(

ξ2 + k2

1 − e−
√
ξ2+k2

)p+2dξ
) 2

p+2
( ∫ ∞

−∞

((̂
g(ξ)

)2dξ
) p

p+2

=
( ∫ ∞

−∞

(
f̂ (ξ))2(

ξ2 + k2

1 − e−
√
ξ2+k2

)pdξ
) 2

p+2
‖̂g(·)‖

2p
p+2

≤ sup
ξ∈R

( 1

1 − e−
√
ξ2+k2

) 2p
p+2

( ∫ ∞

−∞

(
f̂ (ξ))2(ξ2 + k2)pdξ

) 2
p+2
‖g(·)‖

2p
p+2

≤ 2
2p
p+2 E

4
p+2 ‖g(·)‖

2p
p+2 .

So we obtain
‖ f (·)‖ ≤ C1E

2
p+2 ‖g(·)‖

p
p+2 ,

where C1 := 2
p

p+2 . We finish the proof of the Theorem 2.1.
We can get the regularization solution of (1.1) by using Landweber iterative method. The

Landweber iterative method is as follows: the equation Â f̂ = ĝ can be written in the form f̂ =

(I − aÂ∗Â) f̂ + aÂ∗ĝ for some a > 0. Then iterate this equation, i.e.,

f̂ 0,δ(ξ) := 0, f̂ m,δ(ξ) = (I − aÂ∗Â) f̂ m−1,δ(ξ) + aÂ∗ĝδ(ξ), m = 1, 2, 3, · · · , (2.10)
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where m is iterative step number, and it is selected as regularization parameter. a is relaxation factor,
which satisfies 0 < a < 1

‖Â‖2
. Since Â is self adjoint operator, we obtain

f̂ m,δ(ξ) = a
m−1∑
k=0

(I − aÂ2)kÂĝδ(ξ). (2.11)

Using (2.7), we get

f̂ m,δ(ξ) = Rmĝδ(ξ) =
1 − (1 − aÂ2)m

Â
ĝδ(ξ). (2.12)

Then

f m,δ(x) =
1
√

2π

∫ ∞

−∞

eiξx 1 − (1 − aÂ2)m

Â
ĝδ(ξ)dξ. (2.13)

Before giving the error estimation between the regularization solution and the exact solution, we
give the uniqueness of problem (1.1), i.e., through using u(x, 1) = g(x), we can uniquely determine a
pair (u(x, y), f (x)).

Theorem 2.2. Let ui(x, y) ∈ C2,2((−∞,+∞) × (0, 1]), fi(x) ∈ L2(R)(i = 1, 2). If (ui(x, y), fi(x))(i = 1, 2)
satisfy (1.1), then (u1(x, y), f1(x)) = (u2(x, y), f2(x)).

Proof. Put û(x, y) = u1(x, y) − u2(x, y), f̂ = f1(x) − f2(x), then û(x, y) satisfy
∆û(x, y) − k2û(x, y) = f̂ (x), −∞ < x < ∞, 0 < y < +∞,

û(x, 0) = 0, −∞ < x < ∞,

û(x, 1) = 0, −∞ < x < ∞.

(2.14)

Using (2.4) or (2.5), we know f̂ (x) = 0. Then using (2.14), we know û = 0. Thus the uniqueness is
proved.

3. Error estimate under two parameters choice

In this section, we will give two error estimates with a priori parameter choice rule and posterior
parameter choice rule, respectively.

3.1. The error estimate with a priori parameter choice

Theorem 3.1. Let f (x) given by (2.5) be the exact solution of problem (1.1). Let f m,δ(x) given by
(2.13) be the regularization Landweber iterative approximation solution. Choosing the regularization
parameter m = [r], where

r = (
E
δ

)
4

p+2 , (3.1)

then we have an error estimate:

‖ f m,δ(·) − f (·)‖ ≤ C2E
2

p+2 δ
p

p+2 , (3.2)

where [r] denotes the largest integer less than or equal to r, and C2 =
√

a + (4p
a )

p
4 is positive constant

depending on a, p.
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Proof. By the triangle inequality and Parseval formula, we know

‖ f m,δ(·) − f (·)‖ = ‖ f̂ m,δ(·) − f̂ (·)‖

≤ ‖ f̂ m,δ(·) − f̂ m(·)‖ + ‖ f̂ m(·) − f̂ (·)‖.

We firstly give an estimate for the first term. From condition (1.2) and (2.12), we have

‖ f̂ m,δ(·) − f̂ m(·)‖2 = ‖
1 − (1 − aÂ2)m

Â
ĝδ(ξ) −

1 − (1 − aÂ2)m

Â
ĝ(ξ)‖

= ‖
1 − (1 − aÂ2)m

Â
(̂gδ(ξ) − ĝ(ξ))‖2

≤ sup
ξ∈R

B(ξ)2δ2,

where B(ξ) := 1−(1−aÂ2)m

Â
.

By using Bernolli inequality, we get

1 − (1 − aÂ2)m

Â
≤
√

am, (3.3)

i.e.,
B(ξ) ≤

√
am. (3.4)

So
‖ f̂ m,δ(·) − f̂ m(·)‖ ≤

√
amδ. (3.5)

Now we estimate the second term. By using (2.6), (2.8) and (2.9), we have

‖ f̂ m(·) − f̂ (·)‖2 = ‖
1 − (1 − aÂ2)m

Â
ĝ(ξ) − Â−1ĝ(ξ)‖2

= ‖
(1 − aÂ2)m

Â
ĝ(ξ)‖2

= ‖(1 − aÂ2)m(k2 + ξ2)−
p
2 (k2 + ξ2)

p
2 f̂ (ξ)‖2

≤ sup
ξ∈R

D(ξ)2E2,

where D(ξ) := (1 − a(−1−e−
√
ξ2+k2

ξ2+k2 )2)m(k2 + ξ2)−
p
2 .

Using Lemma 2.2 and (2.3), we have

D(ξ) ≤ (1 −
a

4(ξ2 + k2)2 )m(k2 + ξ2)−
p
2 .

Let ξ2 + k2 = t,
F(t) = (1 −

a
(2t)2 )mt−

p
2 . (3.6)

Let t0 satisfy F′(t0) = 0, and we easily obtain

t0 = (
a(4m + p)

4p
)

1
2 . (3.7)
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Thus
F(t0) = (1 −

p
4m + p

)m(
a(4m + p)

4p
)−

p
4 ≤ (

4p
a(m + 1)

)
p
4 ,

i.e.,

F(t) ≤ (
4p
a

)
p
4 (m + 1)−

p
4 . (3.8)

Thus we obtain
D(ξ) ≤ (

4p
a

)
p
4 (m + 1)−

p
4 . (3.9)

Hence
‖ f̂ m(·) − f̂ (·)‖ ≤ (

4p
a

)
p
4 (m + 1)−

p
4 E. (3.10)

Combining (3.5) and (2.12), we choose m = [r], and get

‖ f̂ m,δ(·) − f̂ (·)‖ ≤ C2E
2

p+2 δ
p

p+2 , (3.11)

where C2 =
√

a + ( 4p
a )

p
4 .

We complete the proof of Theorem 3.1.

3.2. The error estimate with a posteriori parameter choice

We consider the a posteriori parameter choice in the Morozov’s discrepancy, and construct
regularization solution sequences f m,δ(x) by Landweber iterative regularization method. Assume τ > 1
is given a fixed constant. Stop the algorithm at the first occurrence of m = m(δ) ∈ N0 with

‖Â f̂ m,δ(·) − ĝδ(·)‖ ≤ τδ, (3.12)

where ‖̂gδ‖ ≥ τδ is constant.

Lemma 4.1. Let ρ(m) = ‖Â f̂ m,δ(·) − ĝδ(·)‖, then we have the following conclusions:
(a) ρ(m) is a continuous function;
(b) limm→0+ ρ(m) = ‖̂gδ‖;
(c) limm→+∞ ρ(m) = 0;
(d) ρ(m) is a strictly decreasing function, for any m ∈ (0,+∞).

The proof is very obvious and we omit it here.

Lemma 4.2. For fixed τ > 1, combining Landweber’s iteration method with stopping rule (3.12), we
can obtain the regularization parameter m = m(δ, ĝδ) ∈ N0 satisfies:

m ≤ (
2(p + 2)

a
)(

E
(τ − 1)δ

)
4

p+2 . (3.13)

Proof. From (2.12), we have the following representation:

Rmĝ =
1 − (1 − aÂ2)m

Â
ĝ(ξ), (3.14)

and

‖ÂRmg − g‖2 = ‖ÂRmĝ − ĝ‖2 = ‖(1 − (1 − aÂ2)m)̂g(ξ) − ĝ(ξ)‖2
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= ‖(−(1 − aÂ2)m)̂g(ξ)‖2

= (1 − aÂ2)2mĝ2(ξ).

From |1 − aÂ2| < 1, we conclude that ‖ÂRm−1 − I‖ ≤ 1.
It is easily to see that m is the minimum value and satisfies

‖ÂRmĝδ − ĝδ‖ = ‖Â f̂ m,δ − ĝδ‖ ≤ τδ.

Hence

‖ÂRm−1ĝ − ĝ‖ ≥ ‖ÂRm−1ĝδ − ĝδ‖ − ‖(ÂRm−1 − I)(̂g − ĝδ)‖

≥ τδ − ‖ÂRm−1 − I‖δ

≥ (τ − 1)δ.

On the other hand, using (2.8), we obtain

‖ÂRm−1ĝ(ξ) − ĝ(ξ)‖ = ‖(1 − (1 − aÂ2)m−1)̂g(ξ) − ĝ(ξ)‖

= ‖ − (1 − aÂ2)m−1ĝ(ξ)‖

= ‖(1 − aÂ2)m−1Â(ξ2 + k2)−
p
2 f̂ (ξ)(ξ2 + k2)

p
2 ‖

≤ sup
ξ∈R

|(1 − aÂ2)m−1Â(ξ2 + k2)−
p
2 |E.

Let
T (ξ) := (1 − aÂ2)m−1Â(ξ2 + k2)−

p
2 , (3.15)

so
(τ − 1)δ ≤ T (ξ)E. (3.16)

Using (2.3), we have

T (ξ) ≤ (1 − a(
1
2t

)2)m−1t−
p
2−1. (3.17)

Let
G(t) = (1 − a(

1
2t

)2)m−1t−
p
2−1, (3.18)

suppose t∗ satisfy G′(t∗) = 0, we easily get

t∗ = (
a(4m + p − 2)

4(p + 2)
)

1
2 , (3.19)

so

G(t∗) = (1 −
4(p + 2)

4m + p − 2
)m−1(

a(4m + p − 2)
4(p + 2)

)−
p+2

4

≤ (
2(p + 2)

ma
)

p+2
4 .

(3.20)

Then
T (ξ) ≤ (

2(p + 2)
ma

)
p+2

4 . (3.21)
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Combining (3.16) with (3.21), we obtain

m ≤ (
2(p + 2)

a
)(

E
(τ − 1)δ

)
4

p+2 .

The proof of Lemma is completed.

Theorem 4.3. Let f (x) given by (2.5) be the exact solution of problem (1.1). Let f m,δ(x) given by (2.13)
be the regularization Landweber iterative approximation solution. The regularization parameter is
chosen with stopping rule (3.12), then we have the following error estimate:

‖ f m,δ(·) − f (·)‖ ≤ (C1(τ + 1)
2

p+2 + C3)E
2

p+2 δ
p

p+2 , (3.22)

where C3 = (2(p + 2))( 1
τ−1 )

2
p+2 is a constant.

Proof. Using triangle inequality and Parseval equality, we obtain

‖ f m,δ(·) − f (·)‖ = ‖ f̂ m,δ(·) − f̂ (·)‖

≤ ‖ f̂ m,δ(·) − f̂ m(·)‖ + ‖ f̂ m(·) − f̂ (·)‖.

Applying (3.5) and Lemma 4.2, we get

‖ f̂ m,δ(·) − f̂ m(·)‖ ≤
√

amδ ≤ C4E
2

p+2 δ
p

p+2 , (3.23)

where C4 = (2(p + 2))
1
2 ( 1

τ−1 )
2

p+2 .
For the second part of the right side, we get

‖Â( f̂ m(·) − f̂ (·))‖ = ‖(−(1 − aÂ2)m)̂g(ξ)‖

= ‖(−(1 − aÂ2)m)(̂g(ξ) − ĝδ(ξ))‖ + ‖(−(1 − aÂ2)m)̂gδ(ξ)‖.

Combining (1.2) and (3.12), we have

‖Â( f̂ m(·) − f̂ (·))‖ ≤ (τ + 1)δ. (3.24)

Using Theorem 2.1 and (2.9), we have

‖ f̂ m(·) − f̂ (·)‖p = (
∫ ∞

−∞

(−(1 − aÂ2)2m f̂ 2(ξ)(ξ2 + k2)p)dξ)
1
2

≤ (
∫ ∞

−∞

( f̂ 2(ξ)(ξ2 + k2)p)dξ)
1
2

≤ E.

So
‖ f̂ m(·) − f̂ (·)‖ ≤ C1(τ + 1)

p
p+2 E

2
p+2 δ

p
p+2 . (3.25)

Hence
‖ f̂ m,δ(·) − f̂ (·)‖ ≤ (C1(τ + 1)

p
p+2 + C3)E

2
p+2 δ

p
p+2 . (3.26)

The theorem is proved.
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4. Numerical implementation and numerical examples

In this section, the numerical results are presented, which verify the validity of the theoretical results
of this method.
Example 1. It is easy to see that the function

u(x, y) =

(1 − e−
√

2ky) sin kx, y > 0,
0, y ≤ 0,

(4.1)

and the function
f (x) = −2k2 sin kx (4.2)

are satisfied with the problem (1.1) with exact data

g(x) = (1 − e−
√

2k) sin kx. (4.3)

Suppose that the sequence g(xi)i=n
i=1 represents samples from the function g(x) on an equidistant grid,

and n is even, then we use the rand function given in Matlab to generate the noisy data,

(gδ) = g + ε rand(size(g)), (4.4)

where

g = (g(x1), . . . , g(xn))T , xi = (i − 1)4x − 5, (4.5)

4x =
10

n − 1
, i = 1, . . . , n. (4.6)

The function “ rand(·)” generates arrays of random numbers whose elements are normally distributed
with mean 0, variance σ2 = 1, and standard deviation σ = 1. “ Rand(size(g))” returns an array of
random entries that is the same size as g. The total noise level δ can be measured in the sense of Root
Mean Square Error(RMSE) according to

δ = ‖gδ − g‖2 = (
1
n

n∑
i=1

(gi − gδi )
2)

1
2 . (4.7)

The numerical calculation is described as follows:
Step 1: Take the Fast Fourier Transform (FFT) for the vector ĝδ.
Step 2: Compute the vectors

{−
ξ2

j + k2

1 − e−
√
ξ2

j +k2
[1 − (1 − a(

1 − e−
√
ξ2

j +k2

ξ2
j + k2

)2)m]ĝδ(ξ j)}
n
2
j=− n

2−1, (4.8)

where ξ j = 2π j.
Step 3: Take the inverse FFT for the vector (2.12), and obtain (2.13).
When we use the FFT algorithm, the vector gδ(x) must be a periodic function. But the vector

gδ(x) ∈ L2(R) is only measurable, it is not a periodic function. Thus we need to modify the algorithm.
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The detail of the modify algorithm can be found in [14]. In the other hand, f (x) is unknown, the
exact priori bound is not obtained. Thus in our computation, we only give the compute result under
the posteriori regularization parameter according to (3.12). In the following numerical experiment, we
take τ = 1.1, n = 100, and the relative error is given as follows:

rerr( f ) :=
‖ f m,δ − f ‖2
‖ f ‖2

, (4.9)

where ‖ · ‖2 is defined by (4.4).
Next we will give two examples to show the effectiveness of this regularization method. In two

examples, we first give the unknown source function f (x) and solve the direct problem and obtain
u(x, y). Then use u(x, 1) = g(x) and obtain gδ(x). Last, we solve the inverse problem to obtain the
regularization solution f m,δ(x), and compare the exact solution the regularization solution for different
noisy level and k.
Example 2. Consider a piecewise smooth unknown source:

f (x) =


0, 0 ≤ −10 ≤ −5,
x + 5, −5 ≤ x ≤ 0,
−x + 5, 0 ≤ x ≤ 5,
0, 5 ≤ x ≤ 10.

(4.10)

Example 3. Consider the following discontinuous unknown source:

f (x) =


−1, 0 ≤ −10 ≤ −5,
1, −5 ≤ x ≤ 0,
−1, 0 ≤ x ≤ 5,
1, 5 ≤ x ≤ 10.

(4.11)

Figure 1 shows the comparison of the exact solution f (x) and the Landweber regularization solution
f m,δ(x) in Example 1 for the relative error levels ε = 0.001, 0.0001, 0.00001 with various values k =

2, 4, 6. Figure 2 shows the comparison of the exact solution f (x) and the Landweber regularization
solution f m,δ(x) in Example 2 for the relative error levels ε = 0.001, 0.0001, 0.00001 with various
values k = 2, 4, 6. Figure 3 shows the comparison of the exact solution f (x) and the Landweber
regularization solution f m,δ(x) in Example 3 for the relative error levels ε = 0.001, 0.0001, 0.00001
with various values k = 2, 4, 6. From Figures 1–3, we can see the smaller ε and k, the better the fitting
effect. Moreover, we can see the numerical effectiveness of Example 1 is better than that of Example 2
and 3, because Example 2 and 3 first needs to solve the direct problem to obtain the data g(x).
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Figure 1. The comparison of the numerical effects between the exact solution and its
computed approximations for ε = 0.01, 0.001, 0.0001 with example 1. (a) k = 2. (b) k = 4.
(c) k = 6.
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Figure 2. The Comparison of the numerical effects between the exact solution and its
computed approximations for ε = 0.01, 0.001, 0.0001 with example 2. (a) k = 2. (b) k = 4.
(c) k = 6.
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Figure 3. The comparison of the numerical effects between the exact solution and its
computed approximations for ε = 0.01, 0.001, 0.0001 with example 3. (a) k = 2. (b) k = 4.
(c) k = 6.
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5. Conclusions

In this paper, we use the Landweber regularization method to reconstruct the unknown source for
the modified Helmholtz equation. The error estimates between the exact solution and the regularization
solution are obtained under the priori regularization parameter choice and the posteriori regularization
parameter choice. Meanwhile, different kind numerical examples are used to verify the efficiency and
accuracy of this method.
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