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Abstract: In this paper, a new total generalized variational (TGV) model for restoring images with
Cauchy noise is proposed, which contains a non-convex fidelity term and a TGV regularization term.
In order to obtain a strictly convex model, we add an appropriate proximal term to the non-convex
fidelity term. We prove that the solution of the proposed model exists and is unique. Due to the
convexity of the proposed model and in order to get a convergent algorithm, we employ an alternating
minimization algorithm to solve the proposed model. Finally, we demonstrate the performance of
our scheme by numerical examples. Numerical results demonstrate that the proposed algorithm
significantly outperforms some previous methods for Cauchy noise removal.
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1. Introduction

In many imaging applications, images inevitably contain noise. Most of the literatures deal with the
reconstruction of images corrupted by additive Gaussian noise, for instance [1–6]. However, in many
engineering applications the noise has an impulsive characteristic, which is different from Gaussian
noise and cannot be modeled by Gaussian noise. Based on [7], a type of impulsive degradation is
given by Cauchy noise, which follows Cauchy distribution and appears frequently in radar and sonar
applications, atmospheric and underwater acoustic images, wireless communication systems. For more
details, we refer to [8, 9]. Recently, much attention has been paid to dealing with Cauchy noise and
several approaches have been proposed. In [10], Chang et al. employed recursive Markov random field
models to reconstruct images corrupted by Cauchy noise. Based on non-Gaussian distributions, Loza
et al. [11] proposed a statistical approach in the wavelet domain. By combining statistical methods with
denoising techniques, Wan et al. [12] developed a segmentation approach for RGB images corrupted
by Cauchy noise. Sciacchitano et al. [13] proposed a total variation (TV)-based variational method
for reconstructing images corrupted by Cauchy noise. The variational model in [13] (called as SDZ
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model) is

min
u∈BV(Ω)

∫
Ω

|Du| +
λ

2

( ∫
Ω

log
(
γ2 + (u − f )2)dx + η

∫
Ω

(u − u0)2dx
)
, (1.1)

where Ω is a bounded connected domain in R2, BV(Ω) is the space of functions of bounded variation,
u ∈ BV(Ω) (for more details, see (2.1)) represents the restored image and γ > 0 is the scale parameter
of Cauchy distribution. In (1.1), λ is a positive number, which controls the trade-off between the TV
regularization term and the fidelity term, u0 is the image obtained by applying the median filter [14]
to the noisy image f , and η > 0 is a penalty parameter. If 8ηγ2 ≥ 1, the objective functional in (1.1)
is strictly convex and its solution is unique. The term η||u − u0||

2
2 in (1.1) results in the solution being

close to the median filter result, but the median filter does not always perform well as to Cauchy noise
removal. In order to avoid this, in [15], the authors developed the the alternating direction method
of multipliers (ADMM) to solve the following non-convex variational model (called as MDH model)
directly

min
u∈BV(Ω)

∫
Ω

|Du| +
λ

2

∫
Ω

log
(
γ2 + (Ku − f )2)dx, (1.2)

where K represents a linear operator. As we know, solutions of variational problems with TV
regularization have many desirable properties, such as the feature of preserving sharp edges.
However, these solutions are always accompanied by blocking artifacts due to the property of BV
space.

In order to overcome blocking artifacts, we will employ TGV as a regularization term. In [16],
Bredies et al. proposed the concept of TGV, and they applied TGV to mathematical imaging problems
to overcome blocking artifacts. For more details of TGV, we refer interested readers to [17, 18]. In
order to overcome the defect of the median filter result, based on the proximal algorithm idea, we will
use the term ||u − z||22 to convexify the non-convex fidelity term

∫
Ω

log(γ2 + (u − f )2)dx. To simplify
computing, for the TGV regularization term, we employ the proximal method. Based on these, we
propose the following model

min
z∈BGV2

α(Ω),u∈L2(Ω)

{
TGV2

α(z) + λ
( ∫

Ω

log
(
γ2 + (u − f )2)dx

}
. (1.3)

with the constraint u = z. Meanwhile, we compare the proposed model (1.3) with the following model

min
z∈BGV2

α(Ω),u∈L2(Ω)

{
TGV2

α(u) + λ
( ∫

Ω

log
(
γ2 + (u − f )2)dx +

η

2

∫
Ω

(u − u0)2dx
)}
, (1.4)

where u0 is the image obtained by applying the median filter [14] to the noisy image. According
to Table 1, the numerical results show that the proposed model (1.3) is better than the model (1.4).
Compared with previous reports, the main novelty of our proposed approach has been condensed into
the following points:

1. Compared with the BV regularization term, we employ the TGV regularization term which
preserves the image structure and we prove that the proposed model admits a unique solution.

2. Different from the constraint by applying the median filter, we use the constraint by applying the
proximal approach and experiment results show better performance.

3. The previous literature used ADMM algorithm but we employ non-expansive operator and the
fixed point algorithm such that the convergence of the proposed algorithm is more efficiently
proved.
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Table 1. SSIM and PSNR measures for different methods, γ = 5.
SSIM PSNR

Image Noisy Model (1.4) Ours Noisy Model (1.4) Ours
Montage 0.3230 0.9213 0.9312 19.14 28.70 30.25

lena 0.5377 0.9252 0.9287 17.94 31.01 31.24
Vehicle 0.5707 0.9278 0.9322 19.20 30.83 31.14
Saturn 0.2080 0.8729 0.9125 19.04 36.01 36.49
parrot 0.3999 0.8732 0.8757 19.08 28.41 29.28

The next part is organized as below. We propose a new model and show the model has a unique
solution in Section 2. In Section 3, we employ a minimization scheme to deal with the new model. We
show the convergence of the proposed algorithm in Section 4. The performance of the new method is
demonstrated by numerical results in Section 5. Some remarks are concluded in Section 6.

2. Variational model

Similar to [13], we propose a new non-convex TGV model for denoising Cauchy noise. For
completeness, firstly, a review of BV space and TGV space is given. For more details on TGV models
and Cauchy noise removal, we refer to [19–22].

2.1. Preliminaries

For convenience, we introduce the following notations. The function u ∈ BV(Ω) iff u ∈ L1(Ω) and
its TV is finite, where TV of u is∫

Ω

|Du| = sup
{ ∫

Ω

udivφdx : φ ∈ C∞0 (Ω,R2), ||φ||∞ ≤ 1
}
. (2.1)

The space BV(Ω) is a Banach space with the norm ||u||BV(Ω) = ||u||L1(Ω) +
∫

Ω
|Du| [23, 24].

Throughout the paper, we denote the dimension by d, which is typically 2 or 3. For convenience,
Ck

c(Ω,Symk(Rd)) expresses the space of compactly supported symmetric tensor field, where Symk(Rd)
represents the symmetric tensors space on Rd, which can be written as [16]

Symk(Rd) =
{
w : Rd × · · · × Rd︸           ︷︷           ︸

k

→ R|w is multilinear and symmetric
}
. (2.2)

The TGV of order k with positive weights α = (α0, α1, · · ·, αk−1) is defined as [16]

TGVk
α(u) = sup

φ

{ ∫
Ω

udivk(φ)dx | φ ∈ Ck
c(Ω,Symk(Rd)), ||div jφ||∞ ≤ α j, j = 0, · · ·, k − 1

}
. (2.3)

When k = 1, α = 1, Sym1(Rd) = Rd, TGV1
α(u) = TV(u). When k = 2, Sym2(Rd) represents all

symmetric S d×d matrices as follows, for ξ ∈ Sym2(Rd),

ξ =


ξ11 · · · ξ1d

· · · · · · · · ·

ξd1 · · · ξdd
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for more details, we refer to [16]. In the following part, we mainly use second-order TGV as

TGV2
α(u) = sup

φ

{ ∫
Ω

udiv2(φ)dx | φ ∈ C2
c(Ω,Sym2(Rd)), ||φ||∞ ≤ α0, ||divφ||∞ ≤ α1

}
, (2.4)

where
(divφ)i =

n∑
j=1

∂φij

∂xj
, div2φ =

n∑
i,j=1

∂2φij

∂xi∂xj
, ||φ||∞ = sup

x∈Ω

( n∑
i, j=1
|φi, j|

2) 1
2 ,

and
||divφ||∞ = sup

x∈Ω

( n∑
i=1
|(divφ)i|

2) 1
2 .

Following the notation in [25], we define the discretized grid as

Ωh =
{
(ih, jh)|i, j ∈ N, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2

}
,

for some positive N1,N2 ∈ N, where h denotes the grid width and we take h = 1 for convenience. For
convenience, we define U,W,Z as

U =
{
u : Ωh → R

}
,W =

{
u : Ωh → R

2},Z =
{
u : Ωh → R

2×2}. (2.5)

For simplicity, the TGV2
α functional will be discretized by finite differences with step-size 1. Based

on [16], TGV2
α(u) can be reformulated as

TGV2
α(u) = min

w∈W

{
α0||∇u − w||1 + α1||ε(w)||1

}
. (2.6)

where w = (w1,w2)T ∈ W, ε(w) = 1
2 (∇w + ∇T w). The operators ∇ and ε , respectly, denote

∇ : U → W, ∇u =

(
∂+

x u
∂+

y u

)
,

ε : W → Z, ε(w) =

(
∂+

x w1
1
2 (∂+

y w1 + ∂+
x w2)

1
2 (∂+

y w1 + ∂+
x w2) ∂+

y w2

)
,

div : W → U, divw = ∂−x w1 + ∂−y w2,

divh : Z → W, divhz =

 ∂
−
x z11 + ∂−y z12

∂−x z21 + ∂−y z22

.
For more details on the above discretion , we refer to [26].

By [27], the Cauchy distribution can be written as

P(x) =
γ

π
(
(x − µ)2 + γ2) , (2.7)

where x represents a random variable which obeys the Cauchy distribution, µ represents the peak
location, γ > 0 is a scale parameter. The scale parameter is similar to the role of the variance. Here,
we denote Cauchy distribution by C(µ, γ).
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2.2. Proposed model

Following [13], we denote random variables by f,u, v and the respective instances by f , u, v. Denote
the noisy image by f = u + v, where v follows the Cauchy noise. We assume that the v follows the
Cauchy distribution with µ = 0 and its density function is defined as follows

gV(v) =
1
π

γ

γ2 + v2 .

The MAP estimator of u is obtained by maximizing the conditional probability of u with given f.
Based on Bayes’ rule, we have

argmax
u

P(u| f ) = argmax
u

P( f |u)P(u)
P( f )

. (2.8)

Equation (2.8) is equivalent to
argmin

u
−logP( f |u) − logP(u) (2.9)

= argmin
u
−

∫
Ω

logP( f (x)|u(x))dx − logP(u), (2.10)

where the term logP( f (x)|u(x)) presents the degradation process between f and u, and logP(u) denotes
the prior information on u. For the Cauchy distribution C(0, γ) and each x ∈ Ω, we have

P( f (x)|u(x)) =
γ

π
(
(u(x) − f (x))2 + γ2) .

In order to overcome blocking artifacts, we employ the prior P(u) = exp(− 2
λ
TGV2

α(u)). Then we obtain
the TGV model for denoising as

min
u∈BGV2

α(Ω)

{
TGV2

α(u) + λ

∫
Ω

log(γ2 + (u − f )2)dx
}
, (2.11)

where λ > 0 is the regularization parameter.
Next, we show that problem (2.11) admits at least one solution.

Theorem 2.1. The problem (2.11) has at least one solution in BGV2
α(Ω), if γ ≥ 1, λ > 0.

Proof. Clearly, if γ ≥ 1, there exists a lower bound of the model (2.11). Assume that {uk}k∈N is a
minimizing sequence for problem (2.11).

By contradiction, we show that {uk} is bounded in L2(Ω) and therefore bounded in L1(Ω). Assume
that ||uk||2 = +∞, so there exists a set E ⊂ Ω and measure(E), 0, such that for any x ∈ E, uk(x) = +∞.
With f ∈ L2(Ω), we have log(γ2 + (uk − f )2) = +∞ for all x ∈ E, which contradicts to

∫
Ω

log(γ2 + (u −
f )2)dx < +∞.

Noting that ||∇u||1 and ||ε(w)||1 are both bounded, we obtain that {uk} is a bounded sequence in
BGV2

α(Ω). According to Rellich-Kondrachov compactness theorem, there exists a function u∗ ∈ L1(Ω)
such that uk → u∗. Because TGV2

α(u) is proper, semi-continuous and convex in BGV2
α(Ω) [16], we

obtain that liminfk→+∞TGV2
α(uk) ≥ TGV2

α(u∗). Meanwhile, according to the Fatou lemma, we can
deduce that
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inf
{
TGV2

α(u) + λ

∫
Ω

log
(
γ2 + (u − f )2)dx

}
≥

lim inf
k→∞

{
TGV2

α(uk) + λ

∫
Ω

log
(
γ2 + (uk − f )2)dx

}
≥

TGV2
α(u∗) + λ

∫
Ω

log
(
γ2 + (u∗ − f )2)dx,

which means that u∗ is the minimum point of (2.11), i.e., the problem (2.11) has at least one solution in
BGV2

α(Ω). Noting that the model (2.11) is strictly convex, based on the standard arguments in convex
analysis [28, 29], we obtain that the minimum u∗ is unique. �

3. The algorithm for solving (2.11)

In order to obtain a convergent algorithm, we employ the alternating minimization algorithm for the
variational model (2.11). The model (2.11) can be discretized as

min
z,u

{
E(z, u) = TGV2

α(z) + λ
( N∑

i=1

log
(
γ2 + (ui − f )2) +

η

2
||u − z||22

)}
. (3.1)

Remark 3.1. The proximal operator [30] prox f : Rn → Rn of f is defined as

prox f (v) = argmin
x

(
f (x) +

1
2
||x − v||22

)
.

The definition indicates that prox f (v) is the trade-off between minimizing f and being near to v. Based
on this idea, we convexify the model (2.11) by adding a proximal term. The advantages are as follows:

(1) A strictly convex model is obtained due to the proximal term.
(2) The result of each iteration is near to the previous one.

In order to simplify the alternating minimization algorithm, we first introduce the following
notations and definitions:

S(uk−1) , zk = argmin
z

TGV2
α(z) +

λη

2
||z − uk−1||22, (3.2)

L(zk) , uk = argmin
u

λ
( N∑

i=1

log(γ2 + (ui − f )2) +
η

2
||u − zk||22

)
. (3.3)

Now, we solve z-subproblem by (3.2). Based on [31],
∫

Ω
|Du| can be represented by〈

∇u, p
〉

= −
〈
u, divp

〉
, ||p||∞ ≤ 1. (3.4)

Equation (3.4) will make the calculation of the primal dual method very easy. Note that TGV2
α(u) =

inf
w∈W
{α0||∇u − w||1 + α1||ε(w)||1} (for more details, refer to [2, 32]), where α0, α1 are positive constant

parameters. Therefore the min-max problem of (3.2) can be reformulated as

min
z,w

max
p,q

{
η

2
||z − u||22 +

〈
∇z − w, p

〉
+

〈
ε(w), q

〉
− I{||·||∞≤α0}(p) − I{||·||∞≤α1}(q)

}
, (3.5)
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where p, q are the dual variables associated with the sets given by

P =
{
p ∈ W | ||p||∞ ≤ α0

}
, Q =

{
q ∈ Z| ||q||∞ ≤ α1

}
.

Similar to [25], the solution of the min-max problem (3.5) can be solved as follows

pk,l = Proj||p||∞≤α0

(
pk,l−1 + σ(∇z̃k,l−1 − w̃k,l−1)

)
, (3.6)

qk,l = Proj||q||∞≤α1

(
qk,l−1 + σε(w̃k,l−1)

)
, (3.7)

zk,l = uk +
τ

λη
divpk,l, (3.8)

wk,l = wk,l−1 + τ
(
pk,l + divh(qk,l)

)
, (3.9)(

z̃k,l

w̃k,l

)
= 2

(
zk,l

wk,l

)
−

(
zk,l−1

wk,l−1

)
, (3.10)

where the projection can be computed as

Proj||p||∞≤α0
(p) =

|p|

max
(
1, |p|

α0

) ,
Proj||q||∞≤α1

(q) =
|q|

max
(
1, |q|

α1

) ,
σ, τ are positive parameters such that στ ≤ 1/12, and k, l represent iteration numbers.

The optimality condition for (3.3) is

2λ(u − f )
γ2 + (u − f )2 + λ(u − v) − η(z − u) = 0. (3.11)

Based on the proximal-operator idea, we can take v = uk such that the result of each iteration is near
to the previous one. Multiplying both sides of (3.11) by γ2 + (u − f )2, one can obtain that (3.11) is
equivalent to

au3 + bu2 + cu + d = 0, (3.12)

where

a = λ + η, (3.13)
b = −(ηz + λuk) − 2(λ + η) f , (3.14)
c = (λ + η) f 2 + γ2(λ + η) + 2λ − 2(ηz + λuk) f , (3.15)
d = −(ηz + λuk)(γ2 + f 2) − 2λ f . (3.16)

In order to solve (3.12), we need the following proposition.

Proposition 3.2. [33] A generic cubic equation with real coefficients

ax3 + bx2 + cx + d = 0, a , 0 (3.17)

has at least one solution among the real numbers. Let

q =
3ac − b2

9a2 , r =
9abc − 27a2d − 2b3

54a3 . (3.18)
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If there exists a unique real solution of (3.17), the discriminant, 4 = q3 + r2 has to be positive.
Furthermore, if 4 ≥ 0, the only real root of (3.17) is given by

x =
3
√

r +
√
4 +

3
√

r −
√
4 −

b
3a
. (3.19)

Since the problem (3.3) is strictly convex with respect to u, then there exists a unique real solution
for (3.3) and it can be obtained by (3.19). Instead of the method presented above, the u
subproblem (3.3) can be solved by the Newton method because the objective function in (3.3) is twice
continuously differentiable.

The alternating minimization algorithm for Cauchy noise removal is given in Algorithm 1, where
K represents the maximum iteration number.

Algorithm 1. The alternating minimization algorithm for (3.1).
input K, f , u0 = f , p0,0, q0,0, λ, η, τ, α0, α1, σ.
Repeat
step 1: Update zk. Initialization:pk,0 = pk−1,Kz, qk,0 = qk−1,Kz, zk,0 = zk−1,Kz,wk,0 = wk−1,Kz,
when k − 1 = 0, Kz = 0.
Repeat for l=1:Kz
step 1.1: Update pk,l by (3.6),
step 1.2: Update qk,l by (3.7),
step 1.3: Update zk,l by (3.8),
step 1.4: Update wk,l by (3.9),
step 1.5: Update z̃k,l, w̃k,l by (3.10),

Define the next iterate as zk = zk,Kz,
step 2: Update uk by (3.3),
Until ||u

k,s−uk,s−1 ||2
||uk,s−1 ||2

< 10−5 or k > Ku, end.
step 3: Output ẑ-An optimal solution of (3.1).

4. Convergence

In the following section, we prove the convergence of the proposed Algorithm 1.

Definition 4.1. ( [34]). An operator Q : RN → RN is non-expansive, if for ∀y1, y2 ∈ R
N , there holds

||Q(y1) − Q(y2)||2 ≤ ||y1 − y2||2.

Clearly, the identity map I(x) = x for all x is non-expansive. One can easily check that the product
and the sum of two non-expansive operators are also non-expansive respectively. For any fixed v ∈ RN ,
the maps Q(y) = y + v and Q(y) = y − v are non-expansive.

Definition 4.2. ( [34]). Given a non-expansive operator P, T = (1 − β)I + βP, for some β ∈ (0, 1), is
said to be β-averaged non-expansive.

Definition 4.3. ( [34]). An operator G : RN → RN is called firmly non-expansive, if for any x1, x2 ∈ R
N ,

there holds (
G(x1) −G(x2)

)T (x1 − x2) ≥ ||G(x1) −G(x2)||22.

AIMS Mathematics Volume 6, Issue 9, 10296–10312.
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Remark 4.4. An operator G is firmly non-expansive if and only if it is 1
2 -averaged non-expansive.

Lemma 4.5. ( [35]). Let ϕ be convex and lower semi-continuous, and β > 0. Suppose x̂ is defined as
follows

S (y) , x̂ = argmin
x
||y − x||22 + βϕ(x).

Then S is 1
2 -averaged non-expansive.

Since TGV2
α(u) is convex and lower semi-continuous, based on Lemma 4.5, it is obvious that S(u)

is 1
2 -averaged non-expansive. Note that

N∑
i=1

log(γ2 + (ui − f )2) +
η

2
||u − zk||22 =

N∑
i=1

log(γ2 + (ui − f )2) +
1
2
||u − zk||22 +

η − 1
2
||u − zk||22.

Let ϕ(u) =
∑N

i=1 log(γ2 + (ui − f )2) + 1
2 ||u − zk||22, we have

log(γ2 + (ui − f )2) +
η

2
||u − zk||22 = ϕ(u) +

η − 1
2
||u − zk||22.

Noting that ϕ(u) is convex and by Lemma 4.5, we have that L(z) is 1
2 -averaged non-expansive.

Lemma 4.6. ( [36]) Let P1 and P2 be β1-averaged and β2-averaged non-expansive operators
respectively.

By Lemma 4.5, we obtain that L ◦ S is 3
4 -averaged non-expansive.

Definition 4.7. ( [37]). A function φ : Rn → R is proper over a set X ⊂ Rn if φ(x) < +∞ for at least
one x ∈ X and φ(x) > −∞ for all x ∈ X.

Definition 4.8. ( [37]). A function φ : Rn → R is coercive over a set X ⊂ Rn if for every sequence
{xk} ∈ X such that ||xk|| → ∞, we have lim

k→∞
φ(xk) = ∞.

The following Lemma 4.9 can be shown easily, and we omit its proof here.

Lemma 4.9. The functional E(z, u) in (3.1) is coercive.

Lemma 4.10. ( [28]). Let φ : RN → R be a closed, proper and coercive function. Then the set of the
minimizers of φ over RN is nonempty and compact.

Lemma 4.11. The set of the fixed points of L ◦ S is non-empty.

Proof. By Lemma 4.9, the objective function E(z, u) is coercive. Based on Lemma 4.10, the set of
minimizers of E(z, u) is non-empty. Set (ẑ, û) is a minimizer of E(z, u). Therefore we have

∂E
∂u

(ẑ, û) = 0,
∂E
∂z

(ẑ, û) = 0.

It indicates that
û = L(ẑ) = argmin

u
J(ẑ, u), ẑ = S(û) = argmin

z
J(z, û).

Thus we have û = L ◦ S(û). �
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According to the Krasnoselskii-Mann (KM) theorem [38], noting that L ◦ S is non-expansive and
the set of the fixed points of L ◦ S is nonempty, one has that the sequence {ui} converges weakly to a
fixed point of L ◦ S, for any initial point u0. Since E(z, u) is strictly convex and differentiable with u,
one has that the minimizer of E(z, u) is unique. Clearly, the fixed points ofL◦S are just the minimizers
of E(z, u). Thus the sequence {uk} converges to the unique minimizer of E(z, u). Therefore, we have
the following theorem.

Theorem 4.12. The sequence {uk} converges to the unique minimizer of E(z, u) as k → ∞, for any
initial point u0.

5. Numerical simulations

In this section we provide numerical results to show the performance of the proposed method for
image restoration problems under Cauchy noise. Here, we compare our method with existing models
as follows: ROF model [1], the median filter [39], SDZ model [13] and MDH model [15]. For ROF
model, we use the primal dual method proposed in [31]. For SDZ model and MDH model, we use the
source codes of [13] and [15] respectively.

Considering the quality of the restoration results, we measure them by different evaluation metrics:
The peak-signal-to-noise ratio (PSNR) value and the structural similarity (SSIM) value, which are
defined as

PS NR(u0, u) = 20log10
max(u)
RMS E

, RMS E =

√∑
Ω

(u − u0)2

M × N
,

where u0 denotes the original signal with mean ū0 and u is the denoised signal, M × N is the image
size,

S S IM =
(2µuµu0 + c1)(2σuu0 + c2)

(µ2
u + µ2

u0
+ c1)(σ2

u + σ2
u0

+ c2)
,

where µu, µu0 , σ
2
u, σ

2
u0
, σuu0 denote, respectively, mean, variance, co-variance of the image u and u0, c1

and c2 are small positive constants. To compare with different approaches easily, we use the same
stopping criterion for all the algorithms, that is

||uk − uk−1||2

||uk−1||2
< 10−5,

or the maximum number of iterations.
Combined with relevant reports [13, 15–17, 25, 26], we adjust each parameter one by one. For each

image in Figure 1, we try our best to tune the parameters of the compared algorithms to obtain the
highest PSNR and SSIM. Based on hundreds of experiments, we observe that τ is the key parameter
to control the restoration quality and convergence speed. For the proposed model, ROF model, MDH
model and the median filter, the grey level range is [0,255]. For SDZ model, the grey level range is
normalized to [0,1]. For the proposed model, the range of τ is [0.3,0.7], σ = τ/12, the range of λ is
[15,30], and the range of η is [0.9,3]. For MDH model, the range of λ is [25,50]. For SDZ model, the
range of λ is [2,9] and the range of η is [0.3,3]. For ROF model, the range of λ is [1,8].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Original images.

According to the images in Figures 2–4, images visual quality of our method is better than others.
Compared with TV-based methods, block-effects can be more significantly reduced by our method.
The reason is that the solution of kernel space of second-order TGV is first-order polynomial, but
not the piecewise constant function in BV space. In Tables 2 and 3, we list PSNR, SSIM values of
numerical results. Clearly, PSNR, SSIM values of our method are better than others. According to
the zoomed images in Figures 2–4, our method enhances the image quality and reduces noise more
significantly while there is much more noise residual in images of other methods. According to the
images in Figure 4, the structure around the eye is better preserved in the proposed method than others.

Table 2. PSNR measures for different methods, γ = 5.
Image Noisy ROF Median SDZ MDH Ours

Lena 18.31 26.52 27.91 28.38 30.26 30.81
Boat 18.01 24.62 26.03 27.12 28.07 29.44
Montage 19.14 25.88 27.52 28.06 29.88 30.25
Bridge 19.18 22.17 22.63 24.32 25.25 26.12
House 17.94 24.56 24.84 25.69 26.71 27.48
Vehicle 19.20 28.54 28.05 30.98 30.68 31.14
Saturn 19.04 32.24 34.15 35.65 35.42 36.49
Parrot 19.08 24.02 27.20 27.19 29.06 29.28
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(a) Noisy (b) ROF (c) Median

(d) Noisyzoom (e) ROFzoom (f) Medianzoom

(g) SDZ (h) MDH (i) TGV

(j) SDZzoom (k) MDHzoom (l) TGVzoom

Figure 2. The noisy image, restored images and the locally zoomed images, respectively.
For ROF method, λ = 2.2. For SDZ method, η = 0.66, λ = 5.0. For MDH method, λ = 42.
For the proposed method, λ = 20, τ = 0.58.

AIMS Mathematics Volume 6, Issue 9, 10296–10312.



10308

(a) Noisy (b) ROF (c) Median

(d) Noisyzoom (e) ROFzoom (f) Medianzoom

(g) SDZ (h) MDH (i) TGV

(j) SDZzoom (k) MDHzoom (l) TGVzoom

Figure 3. The noisy image, restored images and the locally zoomed images, respectively.
For ROF method, λ = 2.6. For SDZ method, η = 0.68, λ = 5.2. For MDH method, λ = 45.
For the proposed method, λ = 22, τ = 0.65.
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(a) Noisy (b) ROF (c) Median

(d) Noisyzoom (e) ROFzoom (f) Medianzoom

(g) SDZ (h) MDH (i) TGV

(j) SDZzoom (k) MDHzoom (l) TGVzoom

Figure 4. The noisy image, restored images and the locally zoomed images, respectively.
For ROF method, λ = 1.8. For SDZ method, η = 0.65, λ = 4.5. For MDH method, λ = 42.
For the proposed method, λ = 20, τ = 0.55.
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Table 3. SSIM measures for deferent methods, γ = 5.
Image Noisy ROF Median SDZ MDH Ours

Lena 0.5377 0.8187 0.8766 0.9061 0.9126 0.9211
Boat 0.3252 0.4659 0.7782 0.8276 0.8545 0.8662

Montage 0.3230 0.8671 0.8772 0.9210 0.9152 0.9312
Bridge 0.4354 0.7354 0.6325 0.7857 0.8112 0.8893
House 0.2356 0.7332 0.7510 0.7786 0.8326 0.8627
Vehicle 0.5707 0.8129 0.9012 0.9121 0.9236 0.9322
Saturn 0.2080 0.8376 0.8636 0.9063 0.9041 0.9125
Parrot 0.3999 0.7736 0.8353 0.8471 0.8729 0.8757

6. Conclusions

Based on the Moreau envelop [30] idea and TGV regularization, we propose a new approach to
Cauchy noise removal. We show that the solution of the proposed model is unique. In order to solve the
new model, an alternating minimization method is employed and its convergence is proved. Numerical
results demonstrate that the images quality of our method is better than that of some earlier restoration
methods.
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