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1. Introduction

Consider the following mth degree homogeneous polynomial of n variables f (x) as

f (x) =
∑

i1,i2,...,im∈N

ai1i2···im xi1 xi2 · · · xim , (1.1)

where x = (x1, x2, · · · , xn) ∈ Rn. When m is even, f (x) is called positive definite if

f (x) > 0, f or any x ∈ Rn, x , 0.

The homogeneous polynomial f (x) in (1.1) can be expressed as the tensor product of a symmetric
tensorA with m-order, n-dimension and xm defined by

f (x) ≡ Axm =
∑

i1,i2,...,im∈N

ai1i2···im xi1 xi2 · · · xim , (1.2)
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where

A = (ai1i2···im), ai1i2···im ∈ C(R), i j = 1, 2, · · · , n, j = 1, 2, · · · ,m,

C(R) presents complex (real) number fields. The symmetric tensorA is called positive definite if f (x)
in (1.2) is positive definite [1]. Moreover, a tensor I = (δi1i2···im) is called the unit tensor [2], where

δi1i2···im =

{
1, i f i1 = · · · = im,

0, otherwise.

The positive definiteness of tensor has received much attention of researchers’ in recent decade
[3–5]. Based on the Sturm theorem, the positive definiteness of a multivariate polynomial form can
be checked for n ≤ 3 [6]. For n > 3 and m ≥ 4, it is difficult to determine the positive definiteness
of f (x) in (2). Ni et al. [1] provided an eigenvalue method for identifying positive definiteness of
a multivariate form. However, all the eigenvalues of the tensor are needed in this method, thus the
method is not practical when tensor order or dimension is large.

Recently, based on the criteria ofH-tensors, Li et al. [7] provided a practical method for identifying
the positive definiteness of an even-order symmetric tensor. H-tensor is a special kind of tensors
and an even order symmetric H-tensor with positive diagonal entries is positive definite. Due to
this, we may identify the positive definiteness of a tensor via identifying H-tensor. For the latter,
with the help of generalized diagonally dominant tensor, various criteria forH-tensors andM-tensors
is established [8–16], which only depends on the elements of the tensors and is more effective to
determine whether a given tensor is anH-tensor (M-tensor) or not. For example, the following result
is given in [16]:

Theorem 1. LetA = (ai1···im) be a complex tensor with m-order, n-dimension. If

|aii···i| >
∑

i2 ,i3 ,...,im∈Nm−1\Nm−1
3

δii2 ...im
=0

|aii2···im | +
∑

i2i3···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

Λ j(A)
|a j j··· j|

|aii2···im |, ∀i ∈ N1 ∪ N2,

thenA is anH-tensor.

In this paper, we continue to present new criterions based on H-tensors for identifying positive
definiteness of homogeneous polynomial forms. The obtained results extend the corresponding
conclusions [16–18]. The validity of our proposed methods are theoretically guaranteed and the
numerical experiments show their effciency.

2. Preliminaries

In this section, some notation, definitions and lemmas are given.
Let S be a nonempty subset of N = {1, 2, · · · , n} and let N\S be the complement of S in N. Given

an m-order n-dimension complex tensorA = (ai1···im), we denote

Λi(A) =
∑

i2 ,...,im∈N
δii2 ...im

=0

|aii2···im | =
∑

i2,...,im∈N

|aii2···im | − |aii···i|;
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N1 = N1(A) = {i ∈ N : 0 < |aii···i| = Λi(A)};
N2 = N2(A) = {i ∈ N : 0 < |aii···i| < Λi(A)};
N3 = N3(A) = {i ∈ N : |aii···i| > Λi(A)};

Nm−1
0 = Nm−1 \ (Nm−1

2 ∪ Nm−1
3 );

q = max
i∈N2

Λi (A) − |aii···i|

Λi (A)
;

Pi(A) = q


∑

i2,...,im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2,...,im∈Nm−1
2

∣∣∣aii2···im

∣∣∣ +
∑

i2 ,...,im∈Nm−1
3

δii2 ...im
=0

|aii2···im |

 , ∀i ∈ N3;

t = max
i∈N3

q

 ∑
i2···im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
Pi (A) −

∑
i2···im∈Nm−1

3
δii2 ···im =0

max
j∈{i2,i3,··· ,im}

P j(A)

|a j j··· j|

∣∣∣aii2···im

∣∣∣ .
In this paper, we always assume that neither N1 or N2 is empty. Otherwise, we assume that A

satisfies: aii···i , 0,Λi(A) , 0,∀i ∈ N.
we may define the following structured tensors extended from matrices.

Definition 1. [10] Let A = (ai1i2···im) be an m-order n-dimension complex tensor. A is called an
H-tensor if there is a positive vector x = (x1, x2, · · · , xn)T ∈ Rn such that

|aii···i|xm−1
i >

∑
i2 ,...,im∈N
δii2 ...im

=0

|aii2···im |xi2 · · · xim , ∀i ∈ N.

Definition 2. [2] An m-order n-dimension complex tensor A = (ai1i2···im) is called reducible if there
exists a nonempty proper index subset I ⊂ N such that

ai1i2···im = 0, ∀i1 ∈ I, ∀i2, · · · , im < I.

Otherwise, we sayA is irreducible.

Example 1. Consider the 4-order 4-dimension tensorA given

a1111 = a2222 = a3333 = a4444 = a1444 = a2333 = 2,

and zero elsewhere. Then ai1i2i3i4 = 0 for all i1 ∈ {1, 4} and for all i2, i3, i4 ∈ {2, 3}. From Definition 2,
we have thatA is reducible.

Definition 3. [12] Let A = (ai1i2···im) be an m-order n-dimension complex tensor, for i, j ∈ N(i , j), if
there exist indices k1, k2, · · · , kr with∑

i2 ,...,im∈N
δksi2 ...im

=0,ks+1∈{i2 ,...,im}

|aksi2···im | , 0, s = 0, 1, . . . , r,

where k0 = i, kr+1 = j, we call that there is a nonzero elements chain from i to j.
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It is shown that for any H-tensor, there exists at least one strictly diagonally dominant row [7].
Further, we have the following conclusion.

Lemma 1. [10] IfA is a strictly diagonally dominant tensor, thenA is anH-tensor.

Lemma 2. [7] Let A = (ai1···im) be a complex tensor with m-order, n-dimension. If there exists a
positive diagonal matrix X such thatAXm−1 is anH-tensor, thenA is anH-tensor.

Lemma 3. [7] LetA = (ai1···im) be a complex tensor with m-order, n-dimension. IfA is irreducible,

|ai···i| ≥ Λi(A), ∀i ∈ N,

and strictly inequality holds for at least one i, thenA is anH-tensor.

Lemma 4. [12] LetA = (ai1···im) be a complex tensor with m-order, n-dimension. If

• (i) |aii···i| ≥ Λi(A), ∀i ∈ N,
• (ii) N3 = {i ∈ N : |aii···i| > Λi(A)} , ∅,
• (iii) For any i < N3, there exists a nonzero elements chain from i to j such that j ∈ N3,

thenA is anH-tensor.

3. Criteria for identifyingH-tensors

In this section, we give some new criteria forH-tensors.

Theorem 2. LetA = (ai1···im) be a complex tensor with m-order, n-dimension. If for i ∈ N2,

|aii···i| >
Λi(A)

Λi(A) − |aii···i|

q


∑
i2i3···im∈Nm−1

0

|aii2···im | +
∑

i2i3 ···im∈Nm−1
2

δii2 ···im
=0

|aii2···im |


+

∑
i2i3···im∈Nm−1

3

max
j∈{i2,i3,··· ,im}

tP j(A)
|a j j··· j|

|aii2···im |

 , (3.1)

and for i ∈ N1, |aii···i| ,
∑

i2i3 ···im∈Nm−1
0

δii2 ···im
=0

|aii2···im |, thenA is anH-tensor.

Proof. From the definition of q, we know that 0 ≤ q < 1, q ≥ Λi(A)−|aii···i |

Λi(A) (∀i ∈ N2), so for any i ∈ N3,

Pi(A) = q

 ∑
i2,...,im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2,...,im∈Nm−1
2

∣∣∣aii2···im

∣∣∣

+
∑

i2 ,...,im∈Nm−1
3

δii2 ...im
=0

|aii2···im |

 = qΛi(A) < q|aii···i|,
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that is

q >
Pi(A)
|aii···i|

. (3.2)

By the definition of Pi(A), we have

q

 ∑
i2i3···im∈Nm−1

0

|aii2···im | +
∑

i2i3···im∈Nm−1
2

|aii2···im |


Pi(A) −

∑
i2i3 ···im∈Nm−1

3
δii2 ···im

=0

max
j∈{i2,i3,··· ,im}

P j(A)
|a j j··· j |
|aii2···im |

=

Pi(A) − q
∑

i2 ...im∈Nm−1
3

δii2 ...im
=0

|aii2···im |

Pi(A) −
∑

i2i3 ···im∈Nm−1
3

δii2 ...im
=0

max
j∈{i2,i3,··· ,im}

P j(A)
|a j j··· j |
|aii2···im |

≤ 1.

For any i ∈ N3, from Inequality (3.2) and 0 ≤ t ≤ 1, we conclude that

q >
tPi(A)
|aii···i|

, ∀i ∈ N3. (3.3)

For any i ∈ N2, by Inequality (3.1), it holds that

|aii···i|
Λi (A) − |aii···i|

Λi (A)
> q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣. (3.4)

By Inequality (3.3) and Inequality (3.4), there exists a sufficiently small positive number ε such that

q >
tPi(A)
|aii···i|

+ ε, ∀i ∈ N3, (3.5)

and

|aii···i|
Λi (A) − |aii···i|

Λi (A)
> q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣
+ε

∑
i2···im∈Nm−1

3

∣∣∣aii2···im

∣∣∣, ∀i ∈ N2,

that is,

ε
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣ < |aii···i|
Λi (A) − |aii···i|

Λi (A)
− q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣
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−
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣, ∀i ∈ N2. (3.6)

By the definition of t, it holds that

t ≥

q

 ∑
i2···im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
Pi (A) −

∑
i2···im∈Nm−1

3
δii2 ···im =0

max
j∈{i2,i3,··· ,im}

P j(A)

|a j j··· j|

∣∣∣aii2···im

∣∣∣ , ∀i ∈ N2,

that is

q

 ∑
i2···im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣ + t
∑

i2···im∈Nm−1
3

δii2 ···im =0

max
j∈{i2,i3,··· ,im}

P j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣ ≤ tPi (A) , ∀i ∈ N2.(3.7)

Let the matrix D = diag(d1, d2, · · · , dn), and denote B = ADm−1 = (bi1i2···im), where

di =


q

1
m−1 , i ∈ N1,(

Λi(A)−|aii···i |

Λi(A)

) 1
m−1

, i ∈ N2,(
ε +

tPi(A)
|aii···i |

) 1
m−1

, i ∈ N3.

For any i ∈ N1, by q > tPi(A)
|aii···i |

(∀i ∈ N3), we conclude that

Λi (B) = q
∑

i2···im∈Nm−1
0

δii2 ···im =0

∣∣∣aii2···im

∣∣∣

+
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣ Λi2 (A) −
∣∣∣ai2i2···i2

∣∣∣
Λi2 (A)


1

m−1

· · ·

Λim (A) −
∣∣∣aimim···im

∣∣∣
Λim (A)


1

m−1

+
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣  tPi2 (A)∣∣∣ai2i2···i2

∣∣∣ + ε


1

m−1

· · ·

 tPim (A)∣∣∣aimim···im

∣∣∣ + ε


1

m−1

≤ q


∑

i2···im∈Nm−1
0

δii2 ···im =0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣  max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ + ε


< q


∑

i2···im∈Nm−1
0

δii2 ···im =0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
 + q

∑
i2···im∈Nm−1

3

∣∣∣aii2···im

∣∣∣
AIMS Mathematics Volume 6, Issue 9, 10281–10295.
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= q |aii···i| = |bii···i| .

For ∀i ∈ N2, by Inequality (3.6), then

Λi (B) = q
∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣
+

∑
i2 ···im∈Nm−1

2
δii2 ···im

=0

∣∣∣aii2···im

∣∣∣ Λi2 (A) −
∣∣∣ai2i2···i2

∣∣∣
Λi2 (A)


1

m−1

· · ·

Λim (A) −
∣∣∣aimim···im

∣∣∣
Λim (A)


1

m−1

+
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣  tPi2 (A)∣∣∣ai2i2···i2

∣∣∣ + ε


1

m−1

· · ·

 tPim (A)∣∣∣aimim···im

∣∣∣ + ε


1

m−1

≤ q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2 ···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣  max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ + ε


= q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2 ···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣ + ε
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣

< q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2 ···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣

+

|aii···i|
Λi (A) − |aii···i|

Λi (A)
− q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


−
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣
= |aii···i|

Λi(A) − |aii···i|

Λi(A)
= |bii···i| .
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Finally, for any i ∈ N3, by Inequality (3.7), thus

Λi (B) = q
∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣
+

∑
i2···im∈Nm−1

2

∣∣∣aii2···im

∣∣∣ Λi2 (A) −
∣∣∣ai2i2···i2

∣∣∣
Λi2 (A)


1

m−1

· · ·

Λim (A) −
∣∣∣aimim···im

∣∣∣
Λim (A)


1

m−1

+
∑

i2 ···im∈Nm−1
3

δii2 ···im
=0

∣∣∣aii2···im

∣∣∣  tPi2 (A)∣∣∣ai2i2···i2

∣∣∣ + ε


1

m−1

· · ·

 tPim (A)∣∣∣aimim···im

∣∣∣ + ε


1

m−1

≤ q

 ∑
i2···im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
+

∑
i2 ···im∈Nm−1

3
δii2 ···im =0

∣∣∣aii2···im

∣∣∣  max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ + ε


= q

 ∑
i2···im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
+

∑
i2 ···im∈Nm−1

3
δii2 ···im =0

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣ + ε
∑

i2 ···im∈Nm−1
3

δii2 ···im =0

∣∣∣aii2···im

∣∣∣
≤ tPi (A) + ε

∑
i2 ···im∈Nm−1

3
δii2 ···im =0

∣∣∣aii2···im

∣∣∣
< tPi (A) + ε|aii···i| = |bii···i| .

Therefore, we obtain that |bii···i| > Λi(B)(∀i ∈ N). From Lemma 1, B is an H-tensor. Further, by
Lemma 2,A is anH-tensor. �

Remark 1. From Theorem 2, we conclude that 0 ≤ p < 1, 0 ≤ t ≤ 1, and for any i ∈ N3,

tPi(A)
|aii···i|

<
Λi(A)
|aii···i|

< 1.

Thus, all conditions in Theorem 2 are weaker than that in Theorem 1. Example 2 illustrates the
superiority of Theorem 2.

Theorem 3. LetA = (ai1···im) be a complex tensor with m-order, n-dimension. IfA is irreducible, and
for all i ∈ N2,

|aii···i| ≥
Λi(A)

Λi(A) − |aii···i|

q


∑
i2i3···im∈Nm−1

0

|aii2···im | +
∑

i2i3 ···im∈Nm−1
2

δii2 ···im
=0

|aii2···im |
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+
∑

i2i3···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j(A)
|a j j··· j|

|aii2···im |

 , (3.8)

and at least one strict inequality in (3.8) holds, thenA is anH-tensor.

Proof. Notice thatA is irreducible, this implies that for any i ∈ N3, Pi(A) > 0, t > 0 (Otherwise,A is
reducible).

For any i ∈ N2, by Inequality (3.8), we obtain

|aii···i|
Λi(A) − |aii···i|

Λi(A)
≥ q


∑

i2i3···im∈Nm−1
0

|aii2···im | +
∑

i2i3 ···im∈Nm−1
2

δii2 ···im
=0

|aii2···im |


+

∑
i2i3···im∈Nm−1

3

max
j∈{i2,i3,··· ,im}

tP j(A)
|a j j··· j|

|aii2···im |. (3.9)

Let the matrix D = diag(d1, d2, · · · , dn), denote B = ADm−1 = (bi1i2···im), where

di =


q

1
m−1 , i ∈ N1,(

Λi(A)−|aii···i |

Λi(A)

) 1
m−1

, i ∈ N2,(
tPi(A)
|aii···i |

) 1
m−1

, i ∈ N3.

For any i ∈ N1, by q > tPi(A)
|aii···i |

(∀i ∈ N3), we conclude that

Λi (B) = q
∑

i2···im∈Nm−1
0

δii2 ···im =0

∣∣∣aii2···im

∣∣∣

+
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣ Λi2 (A) −
∣∣∣ai2i2···i2

∣∣∣
Λi2 (A)


1

m−1

· · ·

Λim (A) −
∣∣∣aimim···im

∣∣∣
Λim (A)


1

m−1

+
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣  tPi2 (A)∣∣∣ai2i2···i2

∣∣∣


1
m−1

· · ·

 tPim (A)∣∣∣aimim···im

∣∣∣


1
m−1

≤ q


∑

i2···im∈Nm−1
0

δii2 ···im =0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣

< q


∑

i2···im∈Nm−1
0

δii2 ···im =0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
 + q

∑
i2···im∈Nm−1

3

∣∣∣aii2···im

∣∣∣
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= q |aii···i| = |bii···i| .

For any i ∈ N2, by Inequality (3.9), it holds that

Λi (B) = q
∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣
+

∑
i2 ···im∈Nm−1

2
δii2 ···im

=0

∣∣∣aii2···im

∣∣∣ Λi2 (A) −
∣∣∣ai2i2···i2

∣∣∣
Λi2 (A)


1

m−1

· · ·

Λim (A) −
∣∣∣aimim···im

∣∣∣
Λim (A)


1

m−1

+
∑

i2···im∈Nm−1
3

∣∣∣aii2···im

∣∣∣  tPi2 (A)∣∣∣ai2i2···i2

∣∣∣


1
m−1

· · ·

 tPim (A)∣∣∣aimim···im

∣∣∣


1
m−1

≤ q


∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣ +
∑

i2 ···im∈Nm−1
2

δii2 ···im =0

∣∣∣aii2···im

∣∣∣


+
∑

i2···im∈Nm−1
3

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣
≤ |aii···i|

Λi(A) − |aii···i|

Λi(A)
= |bii···i| .

Next, for any i ∈ N3, by Inequality (3.7), then

Λi (B) = q
∑

i2···im∈Nm−1
0

∣∣∣aii2···im

∣∣∣
+

∑
i2···im∈Nm−1

2

∣∣∣aii2···im

∣∣∣ Λi2 (A) −
∣∣∣ai2i2···i2

∣∣∣
Λi2 (A)


1

m−1

· · ·

Λim (A) −
∣∣∣aimim···im

∣∣∣
Λim (A)


1

m−1

+
∑

i2 ···im∈Nm−1
3

δii2 ···im
=0

∣∣∣aii2···im

∣∣∣  tPi2 (A)∣∣∣ai2i2···i2

∣∣∣


1
m−1

· · ·

 tPim (A)∣∣∣aimim···im

∣∣∣


1
m−1

≤ q

 ∑
i2···im∈Nm−1

0

∣∣∣aii2···im

∣∣∣ +
∑

i2···im∈Nm−1
2

∣∣∣aii2···im

∣∣∣
+

∑
i2 ···im∈Nm−1

3
δii2 ···im =0

max
j∈{i2,i3,··· ,im}

tP j (A)∣∣∣a j j··· j

∣∣∣ ∣∣∣aii2···im

∣∣∣
≤ tPi (A) =

tPi (A)
|aii···i|

× |aii···i| = |bii···i| .

Therefore, |bii···i| ≥ Λi(B) (∀i ∈ N), and for all ∀i ∈ N2, at least one strict inequality in (10) holds,
that is, there exists an i0 ∈ N2 such that |bi0i0···i0 | > Λi0(B).
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On the other hand, since A is irreducible and so is B. Then, by Lemma 3, we have that B is an
H-tensor. By Lemma 2,A is also anH-tensor. �

Let

K(A) =

i ∈ N2 : |aii···i| >
Λi(A)

Λi(A) − |aii···i|

q


∑
i2i3···im∈Nm−1

0

|aii2···im | +
∑

i2i3 ···im∈Nm−1
2

δii2 ···im
=0

|aii2···im |


+

∑
i2i3···im∈Nm−1

3

max
j∈{i2,i3,··· ,im}

tP j(A)
|a j j··· j|

|aii2···im |


 .

Theorem 4. LetA = (ai1···im) be a complex tensor with m-order, n-dimension. For any i ∈ N2,

|aii···i| ≥
Λi(A)

Λi(A) − |aii···i|

q


∑
i2i3···im∈Nm−1

0

|aii2···im | +
∑

i2i3 ···im∈Nm−1
2

δii2 ···im
=0

|aii2···im |


+

∑
i2i3···im∈Nm−1

3

max
j∈{i2,i3,··· ,im}

tP j(A)
|a j j··· j|

|aii2···im |

 ,
and if for any i ∈ N\K(A) , ∅, there exists a nonzero elements chain from i to j such that j ∈ K(A) , ∅,
thenA is anH-tensor.

Proof. Let the matrix D = diag(d1, d2, · · · , dn), and denote B = ADm−1 = (bi1i2···im), where

di =


q

1
m−1 , i ∈ N1,(

Λi(A)−|aii···i |

Λi(A)

) 1
m−1

, i ∈ N2,(
tPi(A)
|aii···i |

) 1
m−1

, i ∈ N3.

A similar argument to that of Theorem 2, we can prove that |bii···i| ≥ Λi(B)(∀i ∈ N), and there exists
at least an i ∈ N2 such that |bii···i| > Λi(B).

On the other hand, if |bii···i| = Λi(B), then i ∈ N \ K(A), by the assumption, we know that there
exists a nonzero elements chain of A from i to j, such that j ∈ K(A). Hence, there exists a nonzero
elements chain of B from i to j, such that j satisfying |b j j··· j| > Λ j(B).

Based on above analysis, we get that B satisfies the conditions of Lemma 4, so B is an H-tensor.
By Lemma 2,A is anH-tensor. �

Example 2. Consider the 3-order 3-dimension tensorA = (ai jk) defined as follows:

A = [A(1, :, :), A(2, :, :), A(3, :, :)],

A(1, :, :) =


12 1 0
1 6 0
1 0 15

 , A(2, :, :) =


1 1 0
0 6 0
0 0 1

 , A(3, :, :) =


1 0 0
0 1 0
0 0 16

 .
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Obviously,

|a111| = 12, Λ1(A) = 24, |a222| = 6, Λ2(A) = 3, |a333| = 16, Λ3(A) = 2.

so N1 = ∅,N2 = {1},N3 = {2, 3}. By calculations, we have

qi=1 =
24 − 12

24
=

1
2

= q,

P2(A) =
1
2

(1 + 1 + 1) =
3
2
, P3(A) =

1
2

(0 + 1 + 1) = 1,

P2(A)
|a222|

=

3
2

6
=

1
4
,

P3(A)
|a333|

=
1

16
,

ti=2 =

1
2 (1 + 1)

3
2 −

1
4 × 1

=
4
5
, ti=3 =

1
2 (0 + 1)

1 − 1
4 × 1

=
2
3
, t =

4
5
.

When i = 1, we get

Λ1(A)
Λ1(A) − |a111|

q


∑
i2i3∈N2

0

|a1i2i3 | +
∑

i2i3∈N2
2

δ1i2i3
=0

|a1i2i3 |

 +
∑

i2i3∈N2
3

max
j∈{i2,i3}

tP j(A)
|a j j j|

|a1i2i3 |


=

24
24 − 12

[
1
2

(3 + 0) +
4
5
×

1
4
× 21

]
=

57
5
< 12 = |a111|,

soA satisfies the conditions of Theorem 2, thenA is anH-tensor. However,∑
i2i3∈N2\N2

3
δ1i2i3 =0

∣∣∣a1i2i3

∣∣∣ +
∑

i2i3∈N2
3

max
j∈{i2,i3}

Λ j (A)∣∣∣a j j j

∣∣∣ ∣∣∣a1i2i3

∣∣∣ = 3 +
1
2
× 21 =

27
2
> 12 = |a111| ,

soA does not satisfy the conditions of Theorem 1.

4. An application: the positive definiteness of homogeneous polynomial forms

Based on the criteria ofH-tensors in Section 3, we present some criteria for identifying the positive
definiteness of an even-order real symmetric tensor. First, we recall the following lemma.

Lemma 5. [7] Let A = (ai1i2···im) be an even-order real symmetric tensor with m-order, n-dimension,
and ak···k > 0 for all k ∈ N. IfA is anH-tensor, thenA is positive definite.

From Theorems 2 − 4 and Lemma 5, we obtain easily the following result.

Theorem 5. LetA = (ai1i2···im) be an even-order real symmetric tensor with m-order, n-dimension, and
aii···i > 0 for all i ∈ N. If one of the following holds:

• (i)A satisfies all the conditions of Theorem 2,
• (ii)A satisfies all the conditions of Theorem 3,
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• (iii)A satisfies all the conditions of Theorem 4,

thenA is positive definite.

Example 3. Let

f (x) = Ax4 = 16x4
1 + 20x4

2 + 30x4
3 + 33x4

4 − 8x3
1x4 + 12x2

1x2x3 − 12x2x2
3x4 − 24x1x2x3x4

be a 4th-degree homogeneous polynomial. We can get the 4-order 4-dimension real symmetric tensor
A = (ai1i2i3i4), where

a1111 = 16, a2222 = 20, a3333 = 30, a4444 = 33,
a1114 = a1141 = a1411 = a4111 = −2,
a1123 = a1132 = a1213 = a1312 = a1231 = a1321 = 1,
a2113 = a2131 = a2311 = a3112 = a3121 = a3211 = 1,
a2334 = a2343 = a2433 = a4233 = a4323 = a4332 = −1,
a3234 = a3243 = a3324 = a3342 = a3423 = a3432 = −1,
a1234 = a1243 = a1324 = a1342 = a1423 = a1432 = −1,
a2134 = a2143 = a2314 = a2341 = a2413 = a2431 = −1,
a3124 = a3142 = a3214 = a3241 = a3412 = a3421 = −1,
a4123 = a4132 = a4213 = a4231 = a4312 = a4321 = −1,

and zero elsewhere. By calculations, we have

a1111 = 16 < 18 = Λ1(A),

and
a4444 (a1111 − Λ1(A) + |a1444|) = −66 < 0 = Λ4(A)|a1444|.

Then A is not strictly diagonally dominate as defined in [17] or quasidoubly strictly diagonally
dominant as defined in [18]. Hence, we cannot use Theorem 3 in [17] and Theorem 4 in [18] to
identify the positive definiteness ofA. However, it can be verified thatA satisfies all the conditions of
Theorem 2.

Λ1(A) = 18, Λ2(A) = 12, Λ3(A) = 15, Λ4(A) = 11,

so N1 = ∅,N2 = {1},N3 = {2, 3, 4}. By calculations, we have

qi=1 =
18 − 16

18
=

1
9

= q,

P2(A) =
1
9

(9 + 0 + 3) =
4
3
, P3(A) =

1
9

(9 + 0 + 6) =
5
3
, P4(A) =

1
9

(6 + 2 + 3) =
11
9
,

P2(A)
|a2222|

=

4
3

20
=

1
15
,

P3(A)
|a3333|

=

5
3

30
=

1
18
,

P4(A)
|a4444|

=

11
9

33
=

1
27
,

ti=2 =

1
9 (9 + 0)

4
3 −

1
15 × 3

=
15
17
, ti=3 =

1
9 (9 + 1)

5
3 −

1
15 × 6

=
15
19
,
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ti=4 =

1
9 (6 + 2)

11
9 −

1
15 × 3

=
10
13
, t =

15
17
.

When i = 1, we get

Λ1(A)
Λ1(A) − |a1111|

q


∑
i2i3i4∈N3

0

|a1i2i3i4 | +
∑

i2i3i4∈N3
2

δ1i2i3i4
=0

|a1i2i3i4 |

 +
∑

i2i3i4∈N3
3

max
j∈{i2,i3,i4}

tP j(A)
|a j j j j|

|a1i2i3i4 |


=

18
18 − 16

[
1
9

(12 + 0) +
15
17
×

1
15
× 6

]
=

258
17

< 16 = |a1111|.

Therefore, from Theorem 5, we have thatA is positive definite, that is, f (x) is positive definite.

5. Conclusions

In this paper, we given some inequalities to identify whether a tensor is an H-tensor, which was
also used to identify the positive definiteness of an even degree homogeneous polynomial f (x) ≡ Axm.
These inequalities were expressed in terms of the elements ofA, so they can be checked easily.
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