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1. Introduction

All graphs considered in this paper are simple and finite. Let G be a planar graph, and let V(G),
E(G) and F(G) be sets of vertices, edges and faces of G, respectively. Let f be a face in F(G), we
write f = [v1v2 · · · vk] when the vertices incident with f are in a cyclic order v1, v2, · · · , vk. Let |C| (|P|)
be the number of edges incident with the cycle C (the path P). A k-path P is a path with |P| = k. Let
a k-vertex (k−-vertex, k+-vertex) be a vertex with degree k (at most k, at least k). The notations will be
same for cycles and faces. A triangle is a 3-cycle in G. An edge or a vertex is triangular when it is
incident with a triangle. Let Ext(C) (or Int(C)) be induced by the vertices outside (or inside) of C. Let
Ext(C) = C

⋃
Ext(C) and Int(C) = C

⋃
Int(C). If Ext(C) , ∅ and Int(C) , ∅, then C is separating.

A proper k-coloring of G is a function f : V(G) → [k] such that f (u) , f (v) whenever uv ∈ E(G).
The chromatic number of G is the smallest k such that G is proper k-colorable, denoted by χ(G). On
the 3-colorability of planar graphs, Grötzsch [1] proved that every planar graph without triangles is 3-
colorable. In 1976, Steinberg [2] conjectured that planar graphs without {4, 5}-cycles are 3-colorable.
Borodin et al. [3] proved that every planar graph without cycles of lengths 4 to 7 is 3-colorable. Wang
and Chen [4] proved that every planar graph without {4, 6, 8}-cycles is 3-colorable. Choi, Yu and
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Zhang [5] proved that planar graphs with girth at least 5 are (3, 4)-colorable. Li and Zhang [6] proved
that every planar graph with minimum degree at least 2 and girth at least 8 has an RE-m-coloring for
each integer m ≥ 4.

List coloring was introduced by Vizing [7] and independently by Erdős, Rubin and Taylor [8]. A list
assignment L of G is a mapping that assigns to each v in G a list of available colors L(v). An L-coloring
of G is a function f : V(G) →

⋃
v∈V(G) L(v) such that f (v) ∈ L(v) for every v ∈ V(G) and f (u) , f (v)

whenever uv ∈ E(G). A graph G is k-choosable if G is L-colorable for each L with |L(v)| ≥ k. The
choice number of G is the smallest k such that G is k-choosable, denoted by χl(G). Thomassen [9]
proved that every planar graph without {3, 4}-cycles is 3-choosable. Dvor̂ák [10] showed that every
planar graph with the distance of {3, 4}-cycles from each other at least 26 is 3-choosable.

The method of identification of vertices can be used for ordinary coloring since all vertices have
the same color set. But for list coloring, it is impossible to use the method since different vertices may
have different color lists. To overcome this difficulty, Dvořák and Postle [11] introduced DP-coloring.
Here we give some definitions.

Definition 1. Let L be a list assignment for a simple graph G. Let L(v) = {v} × L(v) for each vertex
v in G. Let Muv be a matching between L(u) and L(v) for each edge uv in G. LetM =

⋃
uv∈E(G) Muv

be a matching assignment for G. For each v ∈ V(G), if L(v) = [k], then the matching assignment is a
k-matching assignment. A cover of G is a graph GL,M which satisfies the following two conditions:

(1) The set of vertices of GL,M is the disjoint union of L(v) for all v ∈ V(G);
(2) The set of edges of GL,M isM.
Note that for each v in G, GL,M[L(v)] is an independent set.
Definition 2. Let GL,M be a cover of a simple graph G. If GL,M has an independent set I such

that for each v in G, |I
⋂
L(v)| = 1, then G isM-colorable. If G isM-colorable for each k-matching

assignmentM, then G is DP-k-colorable. The DP-chromatic number of G, denoted by χDP(G), is the
smallest k such that G is DP-k-colorable.

Let W = v1v2 · · · vm be a closed walk with length m in G. LetM be a k-matching assignment on
W. If l1, l′1 ∈ L(v1) and li ∈ L(vi) for i = 2, · · · ,m such that (vi, li)(vi+1, li+1) is an edge in Mvivi+1 for
i = 1, · · · ,m − 1, and (vm, lm)(v1, l′1) is an edge in Mvmv1 with l′1 , l1, then M is inconsistent on W.
Otherwise,M is consistent on W.

Dvořák and Postle [11] showed that planar graphs without cycles of lengths 4 to 8 are 3-choosable
and noticed that χDP(G) ≤ 3 if G is a planar graph with girth at least 5. Liu and Li [12] proved that
every planar graph without adjacent cycles of length at most 8 is 3-choosable. Bernshteyn et al. [13–17]
gave some other results of DP-coloring. Liu et al. [18–20] showed some sufficient conditions for planar
graphs to be DP-3-colorable, and [21–23] showed some sufficient conditions for planar graphs to be
DP-4-colorable. In this paper, we prove the following result, which extends the results of Dvořák and
Postle [11] and Wang and Chen [4].

Theorem 1. Planar graphs without {4, 6, 8}-cycles are 3-choosable.
Let G be a set of planar graphs with no 4-, 6- or 8-cycle. We will prove the following result stronger

than Theorem 1.
Theorem 2. Let G ∈ G, and letM be a 3-matching assignment for G such thatM is consistent on

every closed walk with length 3. Let S be a subset of V(G) such that either |S | ≤ 1, or S consists of all
vertices on the outer face of G, then
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(i) G isM-colorable, and
(ii) Let D be the boundary cycle of the outer face of G. If |D| ≤ 12, then for everyM-coloring ϕ0 of

S , G has anM-coloring ϕ whose restriction to S is ϕ0.
LetM be a k-matching assignment. If |E(Muv)| = k, then uv is full inM. If for every (u, c1)(v, c2) ∈

E(Muv), c1 = c2, then uv is straight inM .
Lemma 3. [11] LetM be a k-matching assignment for a simple graph G. Let J be a subgraph of G.

For every cycle C in J, if all edges of C are full andM is consistent on C, then we obtain a k-matching
assignmentM′ fromM by renaming L(u) for u ∈ J such that every edge in J is straight inM′.

2. Proof of Theorem 2

Assume that Theorem 2 fails. If G is a planar graph with girth at least 5, then by Reference [11] it
is DP-3-colorable, so G isM-colorable and (i) holds. If G has a 3-cycle C such that itsM-coloring
cannot be extended either to Int(C) or to Ext(C), then there exists a counterexample to Statement (ii).
Let G be a minimal counterexample, such that

|V(G)| is minimized. (a)

Subject to (a),

|E(G)| − |E(G[S ])| is minimized. (b)

Subject to (a) and (b), ∑
uv∈E(G)

|E(Muv)| is maximized. (c)

Lemma 4. If v < S , then v is a 3+-vertex.
Proof. Let v be a 2−-vertex in G − S . By condition (a), ϕ0 can be extend to G − {v}. Since v has

at most two neighbors, we can color v such that (v, ϕ(v))(u, ϕ(u)) < E(Muv) for each neighbor u of v.
Therefore, G isM-colorable, a contradiction.

Lemma 5. Let C be a 12−-cycle in G. If C has a chord e, then |C| = 10, 11 or 12 and either e
is triangular, or e divides C into a 5-cycle and a 7-cycle when C is a 10-cycle, or e divides C into a
5-cycle and a 9-cycle when C is a 12-cycle, or e divides C into two 7-cycles when C is a 12-cycle.

Furthermore, if C has two chords, then the two chords divide C into two triangles and a 9-cycle
when C is an 11-cycle, or the two chords divide C into two triangles and a 10-cycle when C is a 12-
cycle. If C has three chords, then C is a 12-cycle and the three chords divide C into three triangles and
a 9-cycle.

Proof. Since G ∈ G, G has no 4-, 6- or 8-cycle. If C is a 9−-cycle, then C has no chord.
If C has one chord, then |C| = 10, 11 or 12. If C is a 10-cycle and has a chord e that is not triangular,

then e divides C into a 5-cycle and a 7-cycle. If C is an 11-cycle then C has only one triangular chord.
If C is a 12-cycle and has a chord e that is not triangular, then e divides C into a 5-cycle and a 9-cycle,
or two 7-cycles. If C has two chords e1 and e2, then |C| = 11 or 12. If C is an 11-cycle, then e1 and e2

divide C into two triangles and a 9-cycle. If C is a 12-cycle, then e1 and e2 divide C into two triangles
and a 10-cycle. If C has three chords, then C is a 12-cycle and the three chords divide C into three
triangles and a 9-cycle.
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Lemma 6. G is 2-connected.
Proof. First, G is connected by the condition (a),
Next, if v is a cut-vertex of G and G = G1

⋃
G2 such that V(G1)

⋂
V(G2) = {v}. If v ∈ S , then by the

condition (a), G1 and G2 have anM-coloring extending ϕ0. Thus, G has anM-coloring extending ϕ0,
a contradiction. If v < S , w.l.o.g., let S ⊂ V(G1). Then by the condition (a), G1 has anM-coloring ϕ1

extending ϕ0, and G2 has anM-coloring ϕ2 extending ϕ1(v). Thus, ϕ1 and ϕ2 together give an extension
of ϕ0 to G, a contradiction.

Lemma 7. G has no separating 12−-cycle.
Proof. Suppose that C is a separating 12−-cycle in G. Then Ext(C) has anM-coloring ϕ1 extending

ϕ0. Then the restriction of ϕ1 to C can be extended to ϕ2 of Int(C). Thus, ϕ1 and ϕ2 together give a
coloring of G that extends ϕ0, a contradiction.

By Lemma 5 and Lemma 7, all 9−-cycles of G are facial.
Lemma 8. If |S | ≤ 1, then G isM-colorable. So we still need to consider the case of S = V(D).
Proof. Suppose that |S | ≤ 1. If S = ∅, then we can include an arbitrary vertex of G in S , and thus

without loss of generality, we can assume that S = {v} for some vertex v ∈ V(G). If v is on a 12−-cycle,
then by Lemma 7, v is on a 12−-face f1 whose boundary cycle is induced in G. Now let G be embedded
in a plane such that f1 is the outer face of the embedding. Let S 1 = V( f1). We choose anM-coloring
ϕ1 for S 1, then |E(G)| − |E(G[S 1])| < |E(G)| − |E(G[S ])| and G has anM-coloring extending ϕ1 by the
condition (b). This implies that G has anM-coloring that extends ϕ0.

If every cycle incident with v is a 13+-cycle, then G has a 13+-face f2 incident with v. Let v1, v2 ∈

V( f2) be adjacent to v. Let G
⋃
{v1v2} = G′, then f3 = [v1v2v] is a 3-face. Let G′ be embedded in a plane

such that f3 is the outer face of the embedding. Let S 2 = {v1, v2, v} andM
′

be obtained fromM with
Mv1v2 is edgeless. We choose anM

′

-coloring ϕ2 for S 2, then |E(G′)| − |E(G′[S 2])| < |E(G)| − |E(G[S ])|
and G′ has anM

′

-coloring extending ϕ2 by the condition (b). This implies that G has anM-coloring
that extends ϕ0. So we still need to consider the case of S = V(D).

Lemma 9. D has no chord.
Proof. Suppose otherwise that D is divided by a chord into two cycles D1 and D2, where |D1| ≤ |D2|.

Since |D| ≤ 12, |D1|+|D2| = |D|+2 ≤ 14. Then we have 3 ≤ |D1| ≤ |D2| ≤ 11. By Lemma 7, both D1 and
D2 are not separating. This implies that V(G) = V(D) and G has beenM-colorable, a contradiction.

P is a dividing path of C if its two end-vertices are in V(C) and all other vertices of P are in Int(C).
Lemma 10. If P is a dividing path of D, then D is divided by P into two cycles D1 and D2.
(1) If |P| = 2, then one of {D1,D2} is a 3-cycle;
(2) if |P| = 3, then one of {D1,D2} is a 5-cycle;
(3) if |P| = 4, then one of {D1,D2} is a 5- or 7-cycle;
(4) if |P| = 5, then one of {D1,D2} is a 9−-cycle.
Proof. (1) Let P = uvw and |D1|, |D2| ≥ 5. v has a neighbor v′ not in V(P) by Lemma 4. W.l.o.g., let

|D1| ≤ |D2|. Since |D| ≤ 12, |D1| + |D2| = |D| + 2 × |P| ≤ 12 + 2 × |P| = 16. Then we have 5 ≤ |D1| < 8
and 5 ≤ |D2| ≤ 11. Since |D1| and |D2| are not separating by Lemma 7, vv′ is a chord of D1 or D2.
Since 5 ≤ |D1| < 8, D1 has no chord by Lemma 5. Then vv′ is a chord of D2 and |D2| ≥ 10. Since G
has no 6-cycle, if |D2| = 10, then |D1| = 5 and vv′ splits D2 into a triangle and a 9-cycle, or a 5-cycle
and a 7-cycle. This implies that G contains a 6-cycle or an 8-cycle, a contradiction. If |D2| = 11, then
|D1| = 5 and vv′ splits D2 into a triangle and a 10-cycle. This implies that G contains a 6-cycle, a
contradiction.
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(2) Let P = uvwx and |D1|, |D2| ≥ 7. W.l.o.g., let |D1| ≤ |D2|. Since |D| ≤ 12, |D1| + |D2| =

|D| + 2 × |P| ≤ 12 + 2 × |P| = 18. Then we have 7 ≤ |D1| ≤ 9 and 7 ≤ |D2| ≤ 11. If two nonconsecutive
vertices of P are connected by an edge e, then a part of P together with e can form a cycle C. Since G
has no 4-cycle, |C| = 3. W.l.o.g., let e = uw and let e lie inside D1. Now D is divided by the path uwx
into D′ and D′′. By (1), one of {D′,D′′} is a triangle. By Lemma 7, the triangle is not separating. Since
the location of vertex v, D1 is a 4-cycle, a contradiction. So w (v) has a neighbor w′ (v′) not in V(P) by
Lemma 4.

Since |D1| and |D2| are not separating by Lemma 7, vv′ and ww′ are two chords of D1 or D2. Since
7 ≤ |D1| < 9, D1 has no chord by Lemma 5. Then vv′ and ww′ are two chords of D2. By Lemma 5,
|D2| = 11. Since |D1|+ |D2| ≤ 18, |D1| = 7 and the two chords split D2 into two triangles and a 9-cycle.
This implies that G has an 8-cycle, a contradiction.

(3) Let P = vwxyz and |D1|, |D2| ≥ 9. W.l.o.g., let |D1| ≤ |D2|. Since |D| ≤ 12, |D1| + |D2| =

|D|+ 2× |P| ≤ 12+ 2× |P| = 20. Then we have 9 ≤ |D1| ≤ 10 and 9 ≤ |D2| ≤ 11. If two nonconsecutive
vertices of P are connected by an edge e, then a part of P together with e can form a cycle C. By
Lemma 9, D has no chord, so |C| , 5. Since G has no 4-cycle, |C| = 3. W.l.o.g., let e = wy and let e lie
inside D1. Now D is divided by the path vwyz into D′ and D′′. By (2), one of {D′,D′′} is a 5-cycle. By
Lemma 7, the 5-cycle is not separating. Since the location of vertex x, D1 is a 6-cycle, a contradiction.
So y (w, x) has a neighbor y′ (w′, x′) not in V(P) by Lemma 4.

Since |D1| and |D2| are not separating by Lemma 7, ww′, xx′ and yy′ are three chords of D1 or D2.
If |D1| = 9, then |D2| ∈ {9, 10, 11}. By Lemma 5, D1 has no chord and D2 cannot have three chords,
a contradiction. If |D1| = 10, then |D2| = 10. By Lemma 5, both D1 and D2 have at most one chord
respectively, a contradiction.

(4) Let P = uvwxyz and |D1|, |D2| ≥ 10. W.l.o.g., let |D1| ≤ |D2|. Since |D| ≤ 12, |D1| + |D2| =

|D| + 2 × |P| ≤ 12 + 2 × |P| = 22. Then we have 10 ≤ |D1| ≤ 11 and 10 ≤ |D2| ≤ 12. If two
nonconsecutive vertices of P are connected by an edge e, then a part of P together with e can form a
cycle C. Since G has no 4- or 6-cycle, |C| = {3, 5}. Let |C| = 5. W.l.o.g., let e = vz and let e lie inside
D1. Then D is divided by the path uvz into D′ and D′′. By (1), one of {D′,D′′} is a triangle. By Lemma
7, the 3-cycle is not separating. Since the location of vertex w, D1 is a 6-cycle, a contradiction. Let
|C| = 3. W.l.o.g., let e = vx and let e lie inside D1. Then D is divided by the path uvxyz into D′ and
D′′. By (3), one of {D′,D′′} is a 5- or 7-cycle. By Lemma 7, the 7−-cycle is not separating. Since the
location of vertex w, D1 is a 6-cycle or an 8-cycle, a contradiction. So x (w, y, v) has a neighbor x′ (w′,
y′, v′) not in V(P).

Since |D1| and |D2| are not separating by Lemma 7, ww′, xx′, vv′ and yy′ are four chords of D1 or
D2. If |D1| = 10, then |D2| = {10, 11, 12}. Since D1 has at most one chord by Lemma 5, |D2| = 12
and D2 has three chords. Then the three chords split D2 into three triangles and a 9-cycle, this implies
that G has a 4-cycle, a contradiction. If |D1| = 11, then |D2| = 11. By Lemma 5, both D1 and D2 have
two chords respectively, and the chords split them into two triangles and a 9-cycle respectively. Since
G contains no edge that connects two nonconsecutive vertices on P and two chords split D1 into two
triangles and a 9-cycle, vv′ and yy′ are the two chords of D1. But ww′ and xx′ cannot split D2 into two
triangles and a 9-cycle, a contradiction.

The following Lemma 11 and Lemma 12 about some crucial properties of the 3-matching
assignmentM are from [11]. Since the proof processes are similar, they are omitted here.

Lemma 11. [11] If uv ∈ E(G) and uv < E(D) , then |E(Muv)| ≥ 2 in the 3-matching assignmentM.
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Moreover, if uv is not triangular, then uv is full in the 3-matching assignmentM.
Lemma 12. [11] Let T = [uvw] be a triangle in G. If u,w < V(D) and d(u) = d(w) = 3, then all

edges on the triangle are full in the 3-matching assignmentM.
Let f0 be the outer face of G, then D is the boundary cycle of f0. A vertex or an edge is internal

when it is not on D. A 3-path P is good if every v ∈ V(P) is an internal 3-vertex and at least one
end-edge of P is triangular as shown in Figure 1.

Figure 1. A good 3-path v2v3v4v5.

Lemma 13. No face of G is incident with a good 3-path.
Proof. Suppose otherwise that G contains a k-face f which is incident with a good 3-path P (see

Figure 1). Since G has no 4-, 6- or 8-cycle, k ≥ 9. Let f = [v1v2 · · · vk] and P = v2v3v4v5. Let v, which
is not on P, be the common neighbor of v2 and v3. Let x, which is not on P, be the neighbor of v4.
Since G contains no 4-cycle, x , v and x , v1. We delete {v5, v4, v3, v2} and identify x and v1. Let G′

be the resulting planar graph.
Suppose that two vertices of D are identified, or two vertices of D are connected by an edge. Then

P is a dividing 4- or 5-path of D which has {x, v4, v3, v2, v1}. Thus G contains a 9−-cycle C formed by
a part of D and P′ by Lemma 10. Since |C| ≤ 9, C is facial and neither v nor v5 lie inside C. Since
v5 is internal, v is on C. Now vv2 and vv3 are two chords of C, contrary to that C is facial. For each
uv ∈ E(G′), let M′uv = Muv andM′ =

⋃
uv∈E(G′) M′uv. Then theM′-coloring of D in G′ is ϕ0.

Suppose that an 8−-cycle is created. Then G − {v5} contains a 12−-cycle C that contains v1v2 · · · v4x.
If v is on C, then G contains a 6−-cycle adjacent to [vv2v3], a contradiction. Thus v lies inside C,
and C is separating, contradicting Lemma 7. Therefore we create no 8−-cycle. So G′ ∈ G andM′ is
consistent on every closed walk of length 3.

Since |V(G′)| < |V(G)|, then G′ has anM′-coloring ϕ′ extending ϕ0 by condition (a). Since d(v2) =
d(v3) = 3, each edge of [vv2v3] is full by Lemma 12. If v5 is adjacent to x, recall d(v4) = d(v5) = 3,
then each edge of [xv4v5] is full by Lemma 12. If v5 is not adjacent to x, then v4 is not on a triangle,
then by Lemma 11 and Lemma 12, all edges incident with v2, v3 and v4 are full. SinceM is consistent
on each closed walk of length 3, we can rename the vertices in {v2, v, v3, v4, x} so that each edge in
{v1v2, v2v, v2v3, v3v, v3v4,v4x} is straight by lemma 3. Now we keep the color of every vertex in G′ and
give the color of the identified vertex to v1 and x. We color v5 and v4 in the order. Since v1 and v4 have
different colors, v2 and v3 can be colored. Thus, G has anM-coloring extending ϕ0, a contradiction.
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A vertex is bad if it is a triangular internal vertex with degree 3. Otherwise it is good.
Lemma 14. No face of G has five bad vertices which are consecutive. Furthermore, if a 9+-face f

of G contains a path v0v1 · · · v5 and the vertices v1, · · · , v4 are bad, then each edge in {v0v1, v2v3, v4v5}

is triangular.
Proof. Since G has no 4-, 6- or 8-cycle, f has no bad vertex when d( f ) ≤ 7. Let d( f ) ≥ 9. Suppose

that f contains five bad vertices in a path v1v2 · · · v5. Since v3 is triangular and G contains no 4-cycle,
we can assume that v2v3 is triangular by symmetry. Since d(v3) = 3, v3v4 is not triangular, and thus the
triangle which is incident with v4 contains v4v5. Then v2v3v4v5 is a good 3-path, a contradiction.

Similarly, if a 9+-face f of G contains a path v0v1 · · · v5 and the vertices v1, · · · , v4 are bad, then
either each edge in {v1v2, v3v4} or each edge in {v0v1, v2v3, v4v5} is triangular. In the former case, the
path v1v2v3v4 is a good 3-path, contrary to Lemma 13. Therefore, only the latter case remains. Then
each edge in {v0v1, v2v3, v4v5} is triangular.

Lemma 15. G has no 5-face containing five internal 3-vertices.
Proof. Suppose otherwise that a 5-face f in G contains five internal 3-vertices. Let f = [v1v2 · · · v5],

and let ui be the neighbor of vi not on f for 1 ≤ i ≤ 5. Since G has no 4- or 6-cycle, the vertices in
{u1, u2, · · · , u5} are pairwise distinct. Since G has no 6- or 8-cycle, each vertex in V( f ) is on two 7+-
faces. By Lemma 11, each edge in {u2v2, v2v1, v1u1, v1v5, v5u5} is full. We can rename the vertices in
{v2, v1, u1, v5, u5} so that each edge in {u2v2, v2v1, v1u1, v1v5, v5u5} is straight by Lemma 3. We delete
{v1, v2, · · · , v5} and add an edge between u2 and u5. Let G′ be the resulting planar graph.

Assume u5, u2 ∈ V(D). Then the path u5v5v1v2u2 is a dividing 4-path of D, and it together with a
part of D form a 5- or 7-cycle C in G by Lemma 10. Since C is a 7−-cycle, C is facial. According to
the location of vertices u1 and u4, C cannot be facial, a contradiction. For each uv ∈ E(G′)

⋂
E(G), let

M′uv = Muv and let M′u2u5
be a full and straight matching. LetM′ =

⋃
uv∈E(G′) M′uv. Then theM′-coloring

of D in G′ is ϕ0.
Suppose that an 8−-cycle is created. Then G − {v4, v3} contains an 11−-cycle C which contains

u2v2v1v5u5. Since |C| ≤ 11, no vertex in {u1, v3, v4} lies inside C by Lemma 7. Then u1 is on C and C is
divided by u1v1 into two cycles C1 and C2 and |C1| + |C2| = |C| + 2 ≤ 13. Recall each vertex in V( f ) is
on two 7+-faces, |C1| + |C2| ≥ 14, a contradiction. Therefore no 8−-cycle is created. So G′ ∈ G andM′

is consistent on every closed walk of length 3.
Since |V(G′)| < |V(G)|, then G′ has anM′-coloring ϕ′ extending ϕ0 by condition (a). Now we keep

the color of every vertex in G′. Since M′u2u5
is full and straight, u2 and u5 have different colors. So at

least one color of {u5, u2} is different from the color of u1. W.l.o.g., let the color of u1 be different from
u2. Since each edge in {u2v2, v2v1, v1u1, v1v5, v5u5} is straight, we give v2 the color of u1 and color v3,
v4, v5 and v1 in the order. Thus, G has anM-coloring extending ϕ0, a contradiction.

Lemma 16. G has no 7-face containing seven internal 3-vertices.
Proof. Suppose otherwise that a 7-face f in G contains seven internal 3-vertices. Let f =

[v1v2 · · · v7], and let ui be the neighbor of vi not on f for 1 ≤ i ≤ 7. Since G has no 4-,
6- or 8-cycle, the vertices in {u1, u2, · · · , u7} are pairwise distinct. By Lemma 11, each edge in
{u1v1, v1v7, v7u7, v7v6, v6u6, v6v5, v5u5} is full. We can rename the vertices in {v1, v7, u7, v6, u6, v5, u5}

so that each edge in {u1v1, v1v7, v7u7, v7v6, v6u6, v6v5, v5u5} is straight by Lemma 3. We delete
{v1, v2, · · · , v7} and add an edge between u1 and u5. Let G′ be the resulting planar graph.

Suppose {u1, u5} ∈ V(D). Then the path u1v1v7v6v5u5 is a dividing 5-path of D, and it together with
a part of D form a 9−-cycle C in G by Lemma 10. Since C is a 9−-cycle, C is facial. Since v2 is internal,
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u6, u7 ∈ V(C). Then v6u6 and v7u7 are two chords of C, contrary to that C is facial. For each uv ∈
E(G′)

⋂
E(G), let M′uv = Muv and let M′u1u5

be a full and straight matching. LetM′ =
⋃

uv∈E(G′) M′uv.
Then theM′-coloring of D in G′ is ϕ0.

Suppose that an 8−-cycle is created. Then G − {v4, v3, v2} contains a 12−-cycle C which contains
u1v1v7v6v5u5. Since |C| ≤ 12, none of v2, v3 and v4 lie inside C by Lemma 7. It follows that both u6

and u7 are on C, then v6u6 and v7u7 are two chords of C. If |C| ≤ 10, then C has at most one chord by
Lemma 5, a contradiction. If |C| = 11 and C has two chords, then the chords split C into two triangles
and a 9-cycle by Lemma 5, contrary to that the vertices in {u1, u2, · · · , u7} are pairwise distinct. If
|C| = 12 and C has two chords, then the chords split C into two triangles and a 10-cycle by Lemma 5,
contrary to that the vertices in {u1, u2, · · · , u7} are pairwise distinct. Therefore we create no 8−-cycle.
So G′ ∈ G andM′ is consistent on every closed walk of length 3.

Since |V(G′)| < |V(G)|, then G′ has anM′-coloring ϕ′ extending ϕ0 by condition (a). Now we keep
the color of every vertex in G′. Since M′u1u5

is straight, u1 and u5 have different colors. Since each
edge in {u1v1, v1v7, v7u7, v7v6, v6u6, v6v5, v5u5} is straight, if u7 and u1 have different colors, then color
v7 same as u1 and color v6, v5, v4, v3, v2, v1 in the order. If u7 and u1 have the same color, then u7 and u5

have different colors. If u6 and u5 have different colors, then color v6 same as the color of u5 and color
v7, v1, v2, v3, v4, v5 in the order. If u6 and u5 have the same color, then u7 and u6 have different colors,
color v7 same as u6 and color v1, v2, v3, v4, v5, v6 in the order. Thus, G has anM-coloring extending
ϕ0, a contradiction.

A 9-face is light if it has two internal 4-vertices and seven bad vertices. By Lemma 14, a light 9-face
is adjacent to five 3-faces. So it is isomorphic to the graph in Figure 2.

Figure 2. A light 9-face.

Let the initial charge µ(x) = d(x) − 4 for x ∈ V(G)
⋃

F(G) − { f0}, and µ( f0) = d( f0) + 4.
The rules:
(R1): Let f be a 3-face. If v is on f , then f receives 1

3 from v.
(R2): Let v be a 3-vertex not on D and let f be a face that contains v.
1O If d( f ) = 5, then f sends 1

4 to v.
2O Suppose d( f ) ≥ 7. If v is a bad vertex, then f sends 2

3 to v. If one of the other two faces that
contain v is a 5-face, then f sends 3

8 to v. If all faces that contain v are 7+-faces, then f sends 1
3 to v.

(R3): Let v be a 4-vertex not on D.
1O If v is on two triangles, then v receives 1

3 from the other two faces that contain v.
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2O Suppose that v is on one triangle f . If v is not on a light 9-face, then v receives 1
6 from the two

incident 9+-faces adjacent to f , respectively. If v is on a light 9-face f1 adjacent to f , then v receives
1
6 from each incident face except f and f1. If v is on two light 9-faces adjacent to f , then v receives 1

3
from the face incident with v which is not adjacent to f .

(R4): The outer face f0 sends 4
3 to each vertex on D.

(R5): Let v be a vertex on D and be incident with a 5+-face f , f0.
1O If v is a 2-vertex, then v receives 2

3 from f .
2O Suppose that v is a 3-vertex. If v is on a 3-face, then v receives 1

12 from f . If v is not on a 3-face,
then f receives 1

12 from v.
3O If d(v) ≥ 4, then f receives 1

3 from v.
After discharging, let µ∗(x) be the final charge.
Lemma 17. µ∗( f ) ≥ 0 for each f ∈ F(G).
Proof. First suppose that all vertices on f are internal. By Lemma 4, d(v) ≥ 3 for each v ∈ V( f ).

Since G has no 4-, 6- or 8-cycle, if d( f ) = 5, then f cannot be adjacent to a 3- or 5-face. If d( f ) = 7,
then f cannot be adjacent to a 3-face.

Let d( f ) = 3. Then µ∗( f ) = µ( f ) + 1
3 × 3 = 0 by (R1).

Let d( f ) = 5. Since f has at most four 3-vertices by Lemma 15, µ∗( f ) = µ( f )− 1
4 ×4 = 0 by (R2) 1O.

Let d( f ) = 7. Since f is adjacent to no 3-face, by (R2) 2O and (R3) 2O, f sends at most 3
8 to each

v ∈ V( f ). Therefore, µ∗( f ) ≥ µ( f ) − 7 × 3
8 > 0.

Let d( f ) ≥ 9. Let D( f ) be the set of bad vertices of f . Let uvw be a 2-path on f and A( f ) = {v : v
is good, both u and w are bad}, B( f ) = {v : v is good, u is bad, and w is good}, C( f ) = {v : v is good,
both u and w are good}. Then V( f ) = D( f )

⋃
C( f )

⋃
B( f )

⋃
A( f ) and D( f ), A( f ), B( f ) and C( f ) are

pairwise disjoint. Let n1 = |A( f )|, n2 = |B( f )|, n3 = |C( f )| and n4 = |D( f )|. If v ∈ D( f ), then f sends
2
3 to v by (R2) 2O. If v ∈ A( f ). Since v is good, if v is a 3-vertex, then v cannot be triangular. Since u
and w are bad and G has no 6-cycle, v is incident with no 5-face. By (R2) 2O, f sends 1

3 to v. If v is
a 4-vertex, then f sends at most 1

3 to v by (R3) 1O 2O. So if v ∈ A( f ), v receives at most 1
3 from f . If

v ∈ B( f )
⋃

C( f ), then f sends at most 3
8 to v by (R2) 2O and (R3) 1O 2O. Therefore,

µ∗( f ) ≥ d( f ) − 4 − n1 ×
1
3
− (n2 + n3) ×

3
8
− (d( f ) − n1 − n2 − n3) ×

2
3

=
1
3
× d( f ) +

1
3
× n1 +

7
24
× (n2 + n3) − 4

(2.1)

Clearly, if n2 , 0, then n2 is even. If n2 = 0, then n3 = d( f ) or n3 = 0.
Suppose d( f ) = 9. If n1 ≥ 3, then by inequality (2.1), µ∗( f ) ≥ 0. So we need to consider the

following cases.
Case 1: n1 ≤ 2, n2 = 0 and n3 = 0. Then n1 = 2 by Lemma 13. Let f = [v1 · · · v9] and every

edge in {v1v2, v3v4, v4v5, v6v7, v8v9} be triangular, then A( f ) = {v4, v8} and D( f ) = V( f ) − A( f ). If one
vertex in {v4, v8} is a 5+-vertex, then the 5+-vertex receives nothing from f by the rules. Therefore,
µ∗( f ) ≥ µ( f )− 7× 2

3 −
1
3 = 0. If d(v4) = d(v8) = 4, then f is a light 9-face and sends no charge to v8 by

(R3) 2O. Therefore, µ∗( f ) ≥ µ( f ) − 2
3 × 7 − 1

3 = 0.
Case 2: n1 = 1, n2 = 2 and n3 = 0. Then A( f )

⋃
B( f ) divides D( f ) into 4+2 (four consecutive bad

vertices and two other consecutive bad vertices) or 3+3 (three consecutive bad vertices and three other
consecutive bad vertices) on f by Lemma 13.
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In the former case 4+2, let f = [v1 · · · v9], A( f ) = {v1} and B( f ) = {v4, v5}. By Lemma 14,
d(v1), d(v5) ≥ 4. If d(v1) ≥ 5, then f sends no charge to v1 by the rules. Therefore, µ∗( f ) ≥
µ( f ) − 6 × 2

3 − 2 × 3
8 > 0. Now let d(v1) = 4. By Lemma 14, v1v9 is triangular. If v1 is on one

3-face, then f sends at most 1
6 to v1 by (R3) 2O. Therefore, µ∗( f ) ≥ µ( f )− 6× 2

3 −
1
6 − 2× 3

8 > 0. If v1 is
on two 3-faces, then d(v4), d(v5) ≥ 4. Then by (R3) 1O, f sends at most 1

3 to v1. By (R3) 1O 2O, f sends
at most 1

3 to v4 and v5, respectively. Therefore, µ∗( f ) ≥ d( f ) − 4 − 6 × 2
3 − 3 × 1

3 = 0.
In the latter case 3+3, let f = [v1 · · · v9] and A( f ) = {v1}, then B( f ) = {v5, v6} and D( f ) =

{v2, v3, v4, v7, v8, v9}. By Lemma 13, at least one vertex in {v5, v6} should be a 4+-vertex. If one
vertex in {v5, v6}is a 5+-vertex, then the 5+-vertex receives nothing from f by the rules. Therefore,
µ∗( f ) ≥ µ( f ) − 2

3 × 6 − 1
3 −

3
8 > 0. So d(v5), d(v6) ≤ 4. If d(v5) = d(v6) = 4, then f sends at most 1

3
to v5 and v6 by (R3) 1O 2O, respectively. Therefore, µ∗( f ) ≥ µ( f ) − 6 × 2

3 − 3 × 1
3 = 0. If one vertex in

{v5, v6}is a 3-vertex, then v5v6 cannot be on a 3-face since {v5, v6} ∈ B( f ). W.l.o.g., let d(v5) = 3 and
d(v6) = 4. Since v5 is good and all vertices in {v2, v3, v4} are bad, every edge in {v1v2, v3v4} is triangular.
Recall A( f ) = {v1}, d(v1) , 3. If d(v1) ≥ 5, then f sends no charge to v1 by the rules. Therefore,
µ∗( f ) ≥ µ( f ) − 2

3 × 6 − 1
3 −

3
8 > 0. If d(v1) = 4 and v1 is on precise one 3-face, recall v1v2 is triangular,

then f sends at most 1
6 to v1 by (R3) 2O. Therefore, µ∗( f ) ≥ µ( f )− 6× 2

3 −
1
6 −

1
3 −

3
8 > 0. If v1 is on two

3-face, then v6v7 is not triangular and v6 is on at most one 3-face. If v6 is not triangular, then v receives
nothing by (R3) 1O 2O. Therefore, µ∗( f ) ≥ µ( f )− 2

3 × 6− 1
3 −

3
8 > 0. If v6 is on a 3-face T , then T is not

adjacent to f . By (R3) 2O, f sends at most 1
3 to v6. Since G has no 6-cycle, both v4v5 and v5v6 are not

on a 5-face. Then f sends at most 1
3 to v5 by (R2) 2O. Therefore, µ∗( f ) ≥ µ( f ) − 2

3 × 6 − 1
3 × 3 = 0.

Case 3: n1 = 0, n2 = 2 and n3 ≤ 2. Since n2 + n3 ≤ 4, f has at least five consecutive bad vertices,
contradicting Lemma 14.

Suppose d( f ) ≥ 10. If 2 × n1 + n2 ≥ 4, then µ∗( f ) ≥ 0 by inequality (2.1). Now, we assume either
n1 ≤ 1 and n2 = 0, or n1 = 0 and n2 = 2. If n1 ≤ 1 and n2 = 0, then n3 = 0 and f contains at least nine
consecutive bad vertices, contradicting Lemma 14. If n1 = 0 and n2 = 2, then n4 ≤ 4 by Lemma 14.
So n3 ≥ 4 and µ∗( f ) ≥ 0 by inequality (2.1).

Next assume f and f0 have some common vertices. If f = f0, then µ∗( f0) ≥ d( f0)+4− 4
3×d( f0) ≥ 0

by R5 since d( f0) ≤ 12. Now, let f , f0. If d( f ) ≤ 7, then the vertices in V( f )
⋂

V( f0) are consecutive
one by one by Lemma 5, Lemma 7 and Lemma 10. Furthermore, there is at most one 2-vertex in V( f )
when f is a 5-face, and at most two 2-vertices in V( f ) when f is a 7-face.

Let d( f ) = 3. By (R1), µ∗( f ) = µ( f ) + 1
3 × 3 = 0.

Let d( f ) = 5. If there is no 2-vertex in V( f ), then by (R2) 1O, f sends at most 1
4 to each incident

internal vertex. Therefore, µ∗( f ) ≥ µ( f ) − 1
4 × 4 = 0. If there is one 2-vertex in V( f ), then f contains

two 3+-vertices of f0. By (R5), both of the 3+-vertices send at least 1
12 to f . Therefore, µ∗( f ) ≥

µ( f ) − 2
3 − 2 × 1

4 + 2 × 1
12 = 0.

Let d( f ) = 7. Since f cannot be adjacent to a triangle, by (R2) 2O and (R3) 2O, f sends at most 3
8

to each incident internal vertex. If f and f0 has a common 4+-vertex v, then f receives 1
3 from v by

(R5) 3O. Therefore, µ∗( f ) ≥ µ( f )−2× 2
3−3× 3

8+
1
3 > 0. If f and f0 has no common 4+-vertex, then f and

f0 have at least two common 3-vertices u and v. Since d( f ) = 7, both u and v are not triangular, then f
receives 2 × 1

12 from them by (R5) 2O. Since f cannot be adjacent to a triangle, by (R2) 2O and (R3) 2O,
f sends at most 3

8 to each incident internal vertex. Therefore, µ∗( f ) ≥ µ( f )− 2× 2
3 − 3× 3

8 + 2× 1
12 > 0.

Let d( f ) ≥ 9. If f and f0 have a common 4+-vertex v, then by (R5) 3O, v sends 1
3 to f . Therefore,

µ∗( f ) ≥ µ( f )− (d( f )−1)× 2
3 +

1
3 =

1
3 (d( f )−9) ≥ 0. If f and f0 has no common 4+-vertex, then f and f0
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have at least two common 3-vertices. By (R5) 2O, f sends at most 1
12 to the two 3-vertices, respectively.

Therefore, µ∗( f ) ≥ µ( f ) − 2
3 × (d( f ) − 2) − 2 × 1

12 =
1
6 (2d( f ) − 17) > 0.

Lemma 18. µ∗(v) ≥ 0 for each v ∈ V(G).
Proof. If v internal, then by Lemma 4, d(v) ≥ 3.
Let d(v) = 3. The lengths of the faces that contain v is {7+, 7+, 7+}, {3, 9+, 9+} or {5, 7+, 7+} since G

is in G. By (R1) and (R2) 1O 2O µ∗(v) ≥ 0.
Let d(v) = 4. the charge that v receives is equal to the charge that v sends out by (R1) and (R3)

1O 2O. Therefore, µ∗(v) = µ(v) = 0.
If d(v) ≥ 5, then v sends 1

3 to each incident 3-face by (R1). Therefore, µ∗(v) ≥ µ(v) − d(v)
2 ×

1
3 =

5
6 × d(v) − 4 > 0.

If v is not internal, then d(v) ≥ 2.
If d(v) = 2, then v is not triangular by Lemma 9. By (R4) and (R5) 1O, µ∗(v) ≥ µ(v) + 4

3 +
2
3 = 0.

Let d(v) = 3. If v is triangular, then µ∗(v) ≥ µ(v) + 4
3 −

1
3 +

1
12 > 0 by (R4) and (R5) 2O. If v is not

triangular, then µ∗(v) ≥ µ(v) + 4
3 −

1
12 > 0 by (R4) and (R5) 2O.

Let d(v) ≥ 4. By (R4), f0 sends 4
3 to v. By (R5) 3O and (R1), v sends 1

3 to each other incident face
than f0. Therefore, µ∗(v) ≥ µ(v) + 4

3 −
1
3 × (d(v) − 1) = 2

3 × d(v) − 7
3 > 0.

Proof of Theorem 2. Clearly, V(G) , V(D). Let x0 be a 3+-vertex on D. From Lemma 18,
µ∗(x0) > 0. Therefore,

∑
x∈V
⋃

F µ
∗(x) > 0 from Lemmas 17 and 18, contradicting Euler’s Formula. So

Theorem 2 is true.

3. Conclusions

It is well known that the problem of deciding whether a planar graph is 3-colorable is NP-complete.
This provides motivation for finding some sufficient conditions for 3-coloring of planar graphs. DP-
coloring is a stronger version of list coloring.

In this paper, we prove that planar graphs without {4, 6, 8}-cycles are 3-choosable by using the
technique developed in DP-coloring. We like to conclude this paper by raising the following
conjecture:

Conjecture 1 Planar graphs without {4, 6, 8}-cycles are DP-3-colorable.
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