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1. Introduction

Mycobacterium ulcerans (MU) infection is considered to be the most common condition in human
society that causes both disability and deformity. This mycobacterium ulcerans (MU) is one of several
mycobacteria classified as potentially pathogenic to animals and humans [2, 20]. It is most often
observed in tropical wetlands, and especially in the West and Central African region, see for more
information [3, 27]. Due to the environmental variations, presently Buruli ulcer (UB) worldwide is
considered to be the reason of morbidity. Infected cases are present in many countries around the
world and frequently in tropical areas mention [4, 18]. Furthermore, in non-tropical areas, such as
China and Australia, infected cases have been identified [20].

Several studies have investigated the potential for Mycobacterium ulcerans (MU) infection in
wildlife. The authors in [19] studied inoculation of MU in brushtail opossums and found that an
unoinoculated opossum in the same room in a separate cage had been infected. Among Australian
koalas, there was a natural infection with ringed-tailed opossums and an alpaca [27]. The lesions
identified clinically were found the same as in humans. It is shown in [27] that in January 1998, an
adult ringed tail opossum (Pseudocheirusperegrinus) in east Cowes is a clinically identified lesion that
is consistent with Mycobacterium ulcerans infection. However, no other studies have been shown for
this infected animal about its PCR or culture to be diagnosed. Similarly, in May 1998, an additional
case of ring-tailed possum was reported at East Cowes with ulcers on the nose and posterior. In
both cases, PCR IS2404 confirmed that Mycobacterium ulcerans infection occurred east of Cowes in
January 2000 [27]. Some recent discoveries suggest that aquatic insects, some of which are responsible
for transmission of infection to the populations of anaemia as well as humans, see more for further
details [26]. Koalas or possum which are considered to be small mammals eat the M. ulcerans through
environment using aerosols and then transferring the M. ulcerans, see for details [1, 27]. The possum
individuals can be infected through the insect vectors which are infected or the mosquitoes that siting
on mammals and transmit the infection further. A vector that attacks small infected mammals can get
infected. Infected mammals increase infection and ultimately spread Mycobacterium ulcerans into the
environment. This cycle is under way for the spread of the disease among mammals and vector and
vice versa.

The mathematics regarding the modeling of infectious diseases is thought to be the fruitful for
disease understanding mechanism and to provide useful control mechanism for the eliminations of
many infectious diseases. Through the effective controls modeling one can be able to understand
efficiently the disease preventive mechanism. The models with controls have gotten attentions from
scientists and researchers around the world, see [4]. For example a mathematical model suggested
in [4] is used to study BU model with optimal controls with the main aims to minimizing the infections
in the infective compartments vectors and humans. The Ebola virus which produced a lot of infections
and death cases has been formulated mathematically in [2] where the authors put appropriate controls
for the minimizations of disease infections. In another study suggested in [15], where an effort have
been made to use control modeling by addressing effectively the dynamics of an Ebola disease model.
The authors considered the controls combinations and provided useful strategies for the minimization
of infection.

Optimal control is considered to be the best tools in order to study the dynamics of infectious
diseases and its possible control. In epidemiological models, this theory have been used widely and
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restrainable results have been obtained about the current disease progress and its controls. A few
recent papers using optimal control theory for outbreak models, can be seen [9–13]. For example,
the authors in [9] investigated the dynamics of the novel coronavirus using actual Pakistani data using
optimal control theory. Modeling the Zika dynamics through optimal control theory using actual data
was examined in [10]. The development of a new mathematical model for the dynamics of pine wilt
disease using optimal control theory has been discussed in [11]. The application of optimal control
analysis for vaccinated TB individuals is provided in [12]. A hepatitis B model including isolation,
immunization, treatment and optimal control analysis is examined in [13]. Moreover, in [8], the authors
constructed a mathematical model with optimal time-dependent controls to study malaria dynamics.
They suggest immunization and treatment strategies for potential malaria elimination in society. The
authors of [6] used the theory of optimal time-dependent control and suggested the control straggles
for the spread of malaria among infective immigrants. A dynamical model to assess the Zika infection
has been formulated and discussed through optimal control analysis in [7]. Furthermore, the authors
of [5] examined a mathematical model to study malaria disease with detailed control strategies.

According to the authors knowledge, no study has yet been mathematically designed to understand
BU’s mathematical modeling of possum and explore its dynamics. This work is categorized by section
is as follows: The work is organized as follows: In section 2 we provide a detailed formulation of
mathematical modeling for the given problem. A brief analysis of the equilibrium points of the model
and its stability both locally and globally are shown in Section 3. The theory of optimal control and its
application to the proposed model using Pontraygin’s Maximum Principle for characterizing optimal
control is presented in Section 4. Section 5 looks at the numerical simulation of an optimum control
problem. Sections 6 and 7 summarize the ecological impacts and key findings of the study, respectively.

2. Mathematical model formulation

Figure 1. Transmission diagram.

We provide here the brief descriptions of model formulation by denoting the population of possum
by Nm(t), and further splitting into two compartments, namely, the healthy or the susceptible individuals
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which are possibly to attract the infections, by S m(t), and those who are infectious with Mycobacterium
ulcerans is given by Im(t). Thus,

Nm(t) = S m(t) + Im(t).

We denote the vector (mosquitoes) population by Nv(t) at time t is partitioned into susceptible and
infected mosquitoes shown respectively by S v(t) and Iv(t). So that,

Nv(t) = S v(t) + Iv(t).

The density of the Mycobacterium ulcerans in the environment is shown by E. The parameter Λm

defines the birth rate of the healthy possum that attract the Buruli ulcer infections by contacting the
infectious mosquitoes by the rate βm, while βm defines to be the transmission probability of contact
through the infected mosquitoes. The death of the possum individuals that die naturally is given by
µm. Through the contact rate given by βmS mIv, the infection goes to the infected class of the possum.
Also, it is reasonable to highlight and also we mentioned it in our modeling that possum infected
individuals through the rate αm getting infection. The parameter αm defines to be the transmission
probability of contact through Mycobacterium ulcerans from the environment and is given by the route
αmS mE. The death due to infection of the possum infected individuals is given by δm. The birth of the
susceptible mosquitoes population is shown by Λv while the individuals in the vector class die naturally
and is shown by µv. The transmission route given by βvS vIm that generate the infection through the
contact among susceptible vector and infected humans, where βv is defines to be the probability of
the mosquitoes to be infected possum by contacting an infectious possum. The removal of infected
possum from the environment is given by αE while µE denotes the decay of Mycobacterium ulcerans
from the environment. It is assumed that all news born are to be susceptible. The above discussion
is presented in the diagram of Figure 1 while its transmission process through mathematical model is
given in the following equations:

dS m
dt = Λm − βmS mIv − αmES m − µmS m,

dIm
dt = βmS mIv + αmES m − (µm + δm)Im,

dS v
dt = Λv − βvS vIm − µvS v,

dIv
dt = βvS vIm − µvIv,

dE
dt = αEIm − µEE,

(2.1)

subject to non-negative initial conditions

S m(0) = S m0 ≥ 0, Im(0) = Im0 ≥ 0, S v(0) = S v0 ≥ 0, Iv(0) = Iv0 ≥ 0, E(0) = E0 ≥ 0. (2.2)

3. Mathematical analysis of the model

This section investigate some related properties of the model (2.1) which will be discussed in this
section. This include the positivity of the system, equilibrium points and its stability.
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3.1. Solution positivity

The following result regarding the nonnegativity of the model (2.1) is presented.

Theorem 1. Let for the model (2.1) the initial conditions to be S m(0) > 0, Im(0) > 0, S v(0) > 0,
Iv(0) > 0 and E(0) > 0. Then there exists (S m(t), Im(t), S v(t), Iv(t), E(t)) : (0,∞) −→ (0,∞) that solve
the system (2.1).

Proof. Consider

t∗ = sup{t > 0, S m > 0, Im > 0, S v > 0, Iv > 0, E > 0} ∈ [0, t]. (3.1)

So, t∗ > 0, we have the result below for the system (2.1) by considering its first equation,

dS m

dt
= Λm − (λ + µm)S m where λ = (βmIv + αmE).

So, we have

d
dt

[
S m(t) exp

{
µmt +

∫ t

0
λ(s)ds

}]
= Λm exp

[
µmt +

∫ t

0
λ(s)ds

]
.

So,

S m(t∗) exp
[
µmt∗ +

∫ t∗

0
λ(s)ds

]
− S m(0) =

∫ t∗

0
Λm exp

[
µmt∗ +

∫ t∗

0
λ(v)dv

]
dt∗,

giving

S m(t∗) = S m(0)exp
[
−

(
µmt∗ +

∫ t∗

0
λ(s)ds

)]
+ exp

[
−

(
µmt∗ +

∫ t∗

0
λ(s)ds

)]
×
[ ∫ t∗

0
Λm exp

[
µmt∗ +

∫ t∗

0
λ(v)dv

]
dt∗

]
> 0.

The following is obtained suing second equation of model (2.1),

dIm

dt
= λS m − (µm + δm)Im ≥ −(µm + δm)Im,

which implies

Im(t∗) ≥ Im(0)e
−(µm+δm)t∗ > 0.

The similar process can be used to show that S v(t) > 0, Iv(t) > 0 and E(t) > 0. �

3.2. Invariant region

Adding the first two equations of system (2.1), we get

dNm

dt
= Λm − µmNm − δmIm
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i.e.,

dNm

dt
+ µmNm ≤ Λm.

Using the theory in [21], we have

0 ≤ Nm

(
S m, Im

)
≤

Λm

µm
(1 − e−µmt) + Nm(S m(0) + Im(0))e−µmt.

Taking, t → ∞, we obtain 0 < Nm ≤
Λm
Nm

.
The dynamics of the total mosquito population is

dNv

dt
= Λv − µvNv. (3.2)

The solution of (3.2) when t approaches∞ is

Nv =
Λv

µv
.

So, the region that is feasible biologically for the system (2.1) is presented by

Φ =
{
(S m, Im, S v, Iv, E) ∈ R5

+|0 ≤ S m + Im ≤
Λm

µm
, 0 ≤ S v + Iv ≤

Λv

Iv
, 0 ≤ E ≤ E∗

}
,

where the fundamental results are hold in this region. To present the results for the positive invariance
of Φ, we have

dE
dt

= αEIm − µEE ≤ αE − µEE,

and E ≤ E∗, where E∗ = αE
µE

. So, it is worthy to determine the results of system in Φ, where
epidemiologically and mathematically the model is well posed.

3.3. Equilibria and basic reproduction number

Before establishing results for the computations of basic reproduction number, first, we need to
obtain the infection free equilibrium by denoting it E0 for system (2.1) and can be get through the
following way:

E0 =
(
S 0

m, I
0
m, S

0
v , I

0
v , E

0
)

=
(Λm

µm
, 0,

Λv

µv
, 0, 0

)
.

We follow the method and notation considered in [22] to have the expressions for R0. The sentential
matrices that needs during computations can be arranged as follows:

F =


0 βm

Λm
µm

αm
Λm
µm

βv
Λv
µv

0 0
0 0 0

 , V =


(δm + µm) 0 0

0 µv 0
−αE 0 µE

 ,
AIMS Mathematics Volume 6, Issue 9, 9859–9881



9865

Inverse of V

V−1 =


1

(δm+µm) 0 0
0 1

µv
0

αE
µE(δm+µm) 0 1

µE

 , FV−1 =


αEαmΛm

µEµm(δm+µm)
βmΛm
µmµv

αmΛm
µEµm

βvΛv
(δm+µm)µv

0 0
0 0 0

 .
The spectral radius of the above is to be the required basic reproduction number for our proposed model
(2.1) after some computations given by:

R0 =

√
Λm(αEαmµ2

v + µEβmβvΛv)
µEµmµ2

v(δm + µm)
.

3.4. Local stability

The local stability for the given system (2.1) has been established in the following theorem.

Theorem 2. The model (2.1) is locally asymptotically stable, if R0 < 1 at the disease free case E0.

Proof. At E0, we have the following Jacobian system:

J(E0) =



−µm 0 0 −
βmΛm
µm

−
αmΛm
µm

0 −(δm + µm) 0 βmΛm
µm

αmΛm
µm

0 −
βvΛv
µv

−µv 0 0
0 βvΛv

µv
0 −µv 0

0 αE 0 0 −µE


.

The respective characteristics equation of J(E0) is given by

(λ + µm)(λ + µv)[λ3 + a1λ
2 + a2λ + a3] = 0, (3.3)

where

a1 = µE + δm + µm + µv,

a2 = (µE + µv) (δm + µm) + µEµv −
Λm (αEαmµv + βmβvΛv)

µmµv
,

a3 = µEµv (δm + µm)

1 − Λm

(
αEαmµ

2
v + µEβmβvΛv

)
µEµmµ2

v (δm + µm)


= µEµv (δm + µm) (1 − R2

0).

We have for Eq (3.3) the roots which are −µm < 0, −µv < 0, while the remaining are easy to obtained
by satisfying the Routh-Hurtwiz criteria (a j > 0 for j = 1, ..., 3 and further a1a2 > a3). Thus, the model
(2.1) when R0 < 1 at the infection free equilibrium is locally asymptotically stable. �
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3.5. Endemic equilibria

To have the expressions for the model (2.1) at the endemic case, we denote its endemic equilibrium
by

E1 =
(
S ∗∗m , I

∗∗
m , S

∗∗
v , I

∗∗
v , E

∗∗
)

and is given by

S ∗∗v =
Λv

µv + βvI∗∗m
, I∗∗v =

I∗∗m βvΛv

µv
(
µv + βvI∗∗m

) , E∗∗ =
αEI∗∗m
µE

,

S ∗∗m =
µEµv (δm + µm)

(
I∗∗m βv + µv

)
αEαmµv

(
I∗∗m βv + µv

)
+ µEβmβvΛv

.

We use the above result into first equation of the model (2.1), and obtain

f (Im) = aI2
m + bIm + c = 0, (3.4)

where,

a = αEαmβvµv (δm + µm) ,

b = µEβv (δm + µm) (βmΛv + µmµv) − αEαmΛmβvµv,

c = µEµmµ
2
v (δm + µm)

(
1 −

Λm

(
αEαmµ

2
v + µEβmβvΛv

)
µEµmµ2

v (δm + µm)

)
= µEµmµ

2
v (δm + µm) (1 − R0).

The coefficient a in (3.4) is positive while the positivity of the coefficient c depends when R0 < 1
otherwise negative. So, the sign of b and c can determine the positive solution of (3.4). For the case
when R0 > 1, two solutions can be obtained for (3.4), that are positive and negative. For the case when
considering c = 0 if and only if R0 = 1, then a solution of the form exists I∗∗m = −b/a, when b < 0. It
can be concluded that the equilibria depends on the changing value of R0, that shows the existing of an
interval for R0 with two equilibria,

I∗m1 =
−b −

√
b2 − 4ac

2a
and I∗m2 =

−b +
√

b2 − 4ac
2a

.

We have no solution for the Eq (3.4) in such a case when c > 0 and either b ≥ 0 or b2 < 4ac.

3.6. Stability of the endemic equilibrium

Theorem 3. The possum model (2.1) at E1 is locally asymptotically stable if R0 > 1.

Proof. At E1, the following Jacobian matrix is presented,

J(E1) =


−Q1 0 0 −Q5 −Q6

Q2 −Q3 0 Q5 Q6

0 −Q7 −Q4 0 0
0 Q7 I∗∗m βv −µv 0
0 αE 0 0 −µE


(3.5)
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where Q1 = I∗∗v βm + αmE∗∗ + µm, Q2 = I∗∗v βm + E∗∗αm, Q3 = (δm + µm), Q4 = βvI∗∗ + µv,

Q5 = βmS ∗∗m , Q6 = αmS ∗∗m , Q7 = βvS ∗∗v .
The characteristics equation of J(E1) is

λ5 + k1λ
4 + k2λ

3 + k3λ
2 + k2λ + k5 = 0,

where

k1 = µE + µv + Q1 + Q3 + Q4,

k2 = Q4µE + µv (µE + Q4) + Q3 (µE + Q4 + µv) + Q1 (µE + Q3 + Q4 + µv) − (Q5Q7 + Q6αE),

k3 = Q2 (Q6αE + Q5Q7) − µE(Q5Q7 − Q3Q4) + µv (−Q6αE + (Q3 + Q4) µE + Q3Q4)

+Q1 (−Q6αE + Q4µE + µv (µE + Q4) + Q3 (µE + Q4 + µv) − Q5Q7) + Q5Q7I∗∗m βv

−Q4(Q6αE + Q5Q7),

k4 = Q5Q7µE
(
I∗∗m βv − Q4

)
+ Q2

(
Q5Q7

(
µE − I∗∗m βv

)
+ Q4 (Q6αE + Q5Q7) + Q6αEµv

)
+Q1

(
Q5Q7

(
I∗∗m βv − µE

)
+ Q4 ((Q3µE − Q6αE) + µv (µE + Q3) − Q5Q7)

)
+µv(Q4 + Q1) (Q3µE − Q6αE) ,

k5 = Q4µv((Q2Q6αE + (Q3µE − Q6αE)Q1) − (Q1 − Q2) Q5Q7µE
(
Q4 − I∗∗m βv

)
(3.6)

ki > 0 for i = 1, 2, ...5 where

H1 = k1, H2 =

(
k1 1
k3 k2

)
, H3 =


k1 1 0
k3 k2 k1

k5 k4 k3

 ,

H4 =


k1 1 0 0
k3 k2 1 0
k5 k4 k3 k2

0 0 k5 k4

 , H5 =


k1 1 0 0 0
k3 k2 k1 1 0
k5 k4 k3 k2 k1

0 0 k5 k4 k3

0 0 0 0 k5


. (3.7)

In order to have ki > 0 for i = 1, 2, ...5, an algebraic computation software can be used to satisfies
these conditions. If all these conditions are fulfilled, then it in ensured that the system (2.1) is locally
asymptotically stable at the endemic state. �

3.7. Global stability of DFE

In this subsection, we investigates the global asymptotical stability of the system (2.1) at DFE E0.
Stating the result given below:

Theorem 4. The possum model (2.1) is globally asymptotically stable at E0 when R0 < 1.
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Proof. Let define the Lyapunov function given by

L(t) = b1

∫ S m

S 0
m

(1 −
S 0

m

z
)dz + b2Im + b3

∫ S v

S 0
v

(1 −
S 0

v

z
)dz + b4Iv + b5E.

The time derivative of L(t) and further use of model (2.1) gives,

L
′(t) = b1(1 −

S 0
m

S m
)S ′m + b2I′m + b3(1 −

S 0
v

S v
)S ′v + b4I′v + b5E′.

where bi, for i = 1, 2, ...5 are constants.

L
′(t) = b1(1 −

S 0
m

S m
)[Λm − βmS mIv − αmES m − µmS m] + b2[βmS mIv + αmES m − (µm + δm)Im]

+b3(1 −
S 0

v

S v
)[Λv − βvS vIm − µvS v] + b4[βvS vIm − µvIv] + b5[αEIm − µEE].

Using S 0
m = Λm

µm
and S 0

v = Λv
µv

, we get

L
′(t) = −µmb1

(S m − S 0
m)2

S m
− µvb3

(S v − S 0
v)2

S v
+ (b2 − b1)[βmS mIv + αmES m]

+(b4 − b3)βvS vIm + (b1βm
Λm

µm
− b4µv)Iv

+(b1αm
Λm

µm
− b5µE)E + (b5αE + b3βv

Λv

µv
− b2(µm + δm))Im

Choosing the constants b1 = b2 = µv, b3 = b4 = βm
Λm
µm

and b5 =
Λmµvαm
µEµm

and further simplification, the
following is achieved,

L
′(t) = −µmµv

(S m − S 0
m)2

S m
− µv

βmΛm

µm

(S v − S 0
v)2

S v
− µv(µm + δm)(1 − R0)Im.

Thus, L′(t) is negative when R0 ≤ 1 and it can be equal to zero if S m = S 0
m, S v = S 0

v , Im = Iv =

E = 0. Thus, for the Φ, the largest sect is E0. Finally, it can be stated that the model (2.1) is globally
asymptotically stable at the disease free case whenever R0 < 1. �

3.8. Global stability endemic case

We study the global stability of the endemic case for the model (2.1) by using the following result:

Theorem 5. The possum system (2.1) at the endemic case E1 is stable globally asymptotically when
R0 > 1.

Proof. We define the Lapunove function given by:

L(t) =

∫ S m

S ∗∗m

(1 −
S ∗∗m
x

)dx +

∫ Im

I∗∗m

(1 −
I∗∗m
x

)dx +
βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

∫ S v

S ∗∗v

(1 −
S ∗∗v
x

)dx
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+
βmS ∗∗m I∗∗v
βvS ∗∗v I∗m

∫ Iv

I∗∗v

(1 −
I∗∗v
x

)dx +
αmE∗S ∗∗m
αEI∗∗m

∫ E

E∗∗
(1 −

E
x

)dx.

Differentiation and further using of model (2.1) leads to the following,

L̇ =
(
1 −

S ∗∗m
S m

)
S ′m +

(
1 −

I∗∗m
Im

)
I′m +

βmS ∗mI∗∗v
βvS ∗vI∗∗m

(
1 −

S ∗∗v
S v

)
S ′v +

βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

I∗∗v
Iv

)
I′v

+
αmE∗∗S ∗∗m
αEI∗∗m

(
1 −

E∗∗

E

)
E′.

After some calculations, we get(
1 −

S ∗∗m
S m

)
S ′m =

(
1 −

S ∗∗m
S m

)
[Λm − βmS mIv − αmES m − µmS m]

=
(
1 −

S ∗∗m
S m

)
[βmS ∗∗m I∗∗v + αmE∗∗S ∗∗m + µmS ∗∗m − βmS mIv − αmES m − µmS m]

= βmS ∗∗m I∗∗v
(
1 −

S ∗∗m
S m

)(
1 −

S mIv

S ∗∗m I∗∗v

)
+ αmE∗∗S ∗∗m

(
1 −

S ∗∗m
S m

)(
1 −

ES m

E∗∗S ∗∗m

)
+µmS ∗∗m

(
1 −

S ∗∗m
S m

)(
1 −

S m

S ∗∗m

)
≤ βmS ∗∗m I∗∗v

(
1 −

S ∗∗m
S m

)(
1 −

S mIv

S ∗∗m I∗∗v

)
+ αmE∗∗S ∗∗m

(
1 −

S ∗∗m
S m

)(
1 −

ES m

E∗∗S ∗∗m

)
= βmS ∗∗m I∗∗v

(
1 −

S ∗∗m
S m
−

S mIv

S ∗∗m I∗∗v
+

Iv

I∗∗v

)
+ αmE∗∗S ∗∗m

(
1 −

S ∗∗m
S m
−

ES m

E∗∗S ∗∗m
+

E
E∗∗

)
.(3.8)

(
1 −

I∗∗m
Im

)
I′m =

(
1 −

I∗∗m
Im

)
[βmS mIv + αmES m − (µm + δm)Im]

= βmS ∗∗m I∗∗v
(
1 −

I∗∗m
Im

)( S mIv

S ∗∗m I∗∗v
−

Im

I∗∗m

)
+ αmE∗∗S ∗∗m

(
1 −

I∗∗m
Im

)( ES m

E∗∗S ∗∗m
−

Im

I∗∗m

)
= βmS ∗∗m I∗∗v

(
1 −

Im

I∗∗m
+

S mIv

S ∗∗m I∗∗v
−

S mIvI∗∗m
S ∗∗m I∗∗v Im

)
+αmE∗∗S ∗∗m

(
1 −

Im

I∗∗m
+

ES m

E∗∗S ∗∗m
−

ES mI∗∗m
E∗∗S ∗∗m Im

)
. (3.9)

βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

S ∗∗v
S v

)
S ′v =

βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

S ∗∗v
S v

)
[Λv − βvS vIm − µvS v]

=
βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

S ∗∗v
S v

)
[βvS ∗∗v I∗∗m + µvS ∗∗v − βvS vIm − µvS v]

= βmS ∗∗m I∗v
(
1 −

S ∗∗v
S v

)(
1 −

S vIm

S ∗∗v I∗∗m

)
+
βmS ∗∗m I∗∗v
βvI∗∗m

µv

(
1 −

S ∗∗v
S v

)(
1 −

S v

S ∗∗v

)
≤ βmS ∗∗m I∗∗v

(
1 −

S ∗∗v
S v

)(
1 −

S vIm

S ∗∗v I∗∗m

)
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= βmS ∗∗m I∗v
(
1 −

S ∗∗v
S v
−

S vIm

S ∗∗v I∗∗m
+

Im

I∗∗m

)
. (3.10)

βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

I∗∗v
Iv

)
I′v =

βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

I∗∗v
Iv

)
[βvS vIm − µvIv]

=
βmS ∗∗m I∗∗v
βvS ∗∗v I∗∗m

(
1 −

I∗∗v
Iv

)
[βvS vIm − βvS ∗∗v I∗∗m

Iv

I∗∗v
]

= βmS ∗∗m I∗∗v
(
1 −

I∗∗v
Iv

)( S vIm

S ∗∗v I∗∗m
−

Iv

I∗∗v

)
= βmS ∗∗m I∗∗v

(
1 −

Iv

I∗∗v
+

S vIm

S ∗∗v I∗∗m
−

I∗∗v S vIm

IvS ∗∗v I∗∗m

)
. (3.11)

and
αmE∗∗S ∗∗m
αEI∗∗m

(
1 −

E∗∗

E

)
E′ =

αmE∗∗S ∗∗m
αEI∗∗m

(
1 −

E∗∗

E

)
[αEIm − µEE]

=
αmE∗∗S ∗∗m
αEI∗∗m

(
1 −

E∗

E

)
[αEIm −

αEI∗∗m
E∗∗

E]

= αmE∗∗S ∗∗m
(
1 −

E∗∗

E

)( Im

I∗∗m
−

E
E∗∗

)
= αmE∗∗S ∗∗m

(
1 −

E
E∗∗

+
Im

I∗∗m
−

ImE∗∗

EI∗∗m

)
. (3.12)

It follows from (3.8-3.12)

L̇ = βmS ∗∗m I∗∗v
(
1 −

S ∗∗m
S m
−

S mIv

S ∗∗m I∗∗v
+

Iv

I∗∗v

)
+ αmE∗∗S ∗∗m

(
1 −

S ∗∗m
S m
−

ES m

E∗∗S ∗∗m
+

E
E∗∗

)
+βmS ∗∗m I∗∗v

(
1 −

Im

I∗∗m
+

S mIv

S ∗∗m I∗∗v
−

S mIvI∗∗m
S ∗∗m I∗∗v Im

)
+ αmE∗∗S ∗∗m

(
1 −

Im

I∗∗m
+

ES m

E∗∗S ∗∗m
−

ES mI∗∗m
E∗∗S ∗∗m Im

)
+βmS ∗∗m I∗∗v

(
1 −

S ∗∗v
S v
−

S vIm

S ∗∗v I∗m
+

Im

I∗∗m

)
+ βmS ∗∗m I∗∗v

(
1 −

Iv

I∗v
+

S vIm

S ∗∗v I∗∗m
−

I∗∗v S vIm

IvS ∗∗v I∗∗m

)
+αmE∗∗S ∗∗m

(
1 −

E
E∗∗

+
Im

I∗∗m
−

ImE∗∗

EI∗∗m

)
= βmS ∗∗m I∗∗v

(
4 −

S ∗∗m
S m
−

S ∗∗v
S v
−

S mIvI∗∗m
S ∗∗m I∗∗v Im

−
I∗∗v S vIm

IvS ∗∗v I∗∗m

)
+αmE∗∗S ∗∗m

(
3 −

S ∗∗m
S m
−

ImE∗∗

EI∗∗m
−

I∗∗m ES m

ImE∗∗S ∗∗m

)
≤ 0.

Thus, the largest invariant subset, L′(t) = 0 is E1. The result in [14], confirms the equilibrium E1 is
globally asymptotically stable for R0 > 1. �

4. Optimal control analysis

Modeling of infectious diseases and its control analysis is considered useful tool in disease
epidemiology, where some recent publications use this control analysis for their proposed work
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[23–25]. Considering the optimal control theory and its applications to model (2.1) by incorporating
the controls variables and using the Pontryagin’s Maximum Principle to obtain the required optimal
controls results. We endeavor to ensure minimizing the individuals infected through mycobacterium
ulcerans and the related measure of cost and the uses of the prevention mechanisms, insecticide
controls and the related possible treatment of the infected possum individuals. The term given by
(1 − u1), is used in order to keep the infection possibly minimum by reducing the interactions among
the susceptible possum, MU in the environment or the infected vector, where u1 is defined to the control
preventive mechanism effort, a useful and intensive necessary education/informatios for officers of the
wildlife. The control variable u2 denotes the possible effort that can be brought by making spraying
on the population of vectors and its reservoirs to decrease better the minimizations or reduction of the
infectious vector population. While u3 is the treatment control effort in order to minimize the infected
possum by reducing the discard rate and death of the infection of the possum infected individuals.
Keeping the above discussions in mind the following optimal control system is given:



dS m
dt = Λm − (1 − u1)(βmIv + αmE)S m − µmS m,

dIm
dt = (1 − u1)(βmIv + αmE)S m − (µm + u3δm)Im,

dS v
dt = Λv − (1 − u1)βvS vIm − u2µvS v,

dIv
dt = (1 − u1)βvS vIm − u2µvIv,
dE
dt = u3αEIm − u2µEE,

(4.1)

with the non-negative initial conditions.
In model (4.1), we taking into account the three controls variables that are time dependent, and

given by u(t) = (ui) ∈ U with i = 1, ..., 3 which have been discussed and defined above. These controls
variables shown by u(t) = (u1, u2, u3) ∈ U are associated with the state variables S m, Im, S v, Iv and E.
It is bounded and measure with the set given by

U = {(u1, u2, u3)|ui is Lebsegue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, t ∈ [0,T ], i = 1, 2, 3}. (4.2)

Now, let define the objective functional for the optimal control problem above, given by

J(u1, u2, u3) =

∫ t f

0

(
W1Im + W2Iv + W3E +

a1

2
u2

1 +
a2

2
u2

2 +
a3

2
u2

3

)
dt, (4.3)

associated to the model (4.1). The constants in (4.3), W1, W2, W3, a1, a2 and a3 respectively denote
the balancing and weight constants. The first weight constant given by a1 is related possum infected
individuals, a2 related with the infected vectors while a3 is used for the MU in the environment. Further,
the given constants W1,W2,W3 and a1, a2, a3 describe the cost related to the interventions in the given
interval [0,T ]. To have an optimal control problem, u∗1, u

∗
2, u

∗
3 such that

J(u∗1, u
∗
2, u

∗
3) = min

U
J(u1, u2, u3). (4.4)

where the setU is defined in (4.2). The Hamiltonian equation for the control system is defined through
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the equation given below:

H = W1Im + W2Iv + W3E + a1u2
1 + a2u2

2 + a3u2
3

+λS m {Λm − (1 − u1)(βmIv + αmE)S m − µmS m}

+λIm {(1 − u1)(βmIv + αmE)S m − (µm + u3δm)Im}

+λS v {Λv − (1 − u1)βvS vIm − u2µvS v}

+λIv {(1 − u1)βvS vIm − u2µvIv}

+λE {u3αEIm − u2µEE}

(4.5)

where λS m , λIm , λS v , λIv and λE are the adjoint variables.

4.1. Existence of the control problem

This section determine the existence of the control problem (4.1) by using the approach given
in [16]. The system (4.1) is clearly bounded above, which make enable us to follow the results given
in [16] for our considered system (4.1) with the suggested assumptions to be fulfilled.
G1 : Both the state and controls variables are non empty.
G2 : The given setU is closed and convex.
G3 : The equations in (4.1) where its right side is continuous and bounded and can be shown in form
in u given by with coefficients hinging on time and state.
G4 : The existence of constants i1, i2 > 0 and n > 1 in such a manner that the term inside the objective
functional J is convex and holds the following,

I(z, u, t) ≥ i1(|u1|
2 + |u2|

2 + |u3|
2)

n
2 − i2.

For the fulfillment of the conditions above the results in [28] will be used to show the existence of the
model (4.1). The first condition is satisfied with the fulfillment of the state and controls variables which
is nonempty and bounded. The second conditions about the boundedness and the convex property are
fulfilled as the system does. The conditions is valid due to the characterization of the system in bilinear
in control variables. For the condition four the following is shown,

W1Im + W2Iv + W3E +
1
2

(a1u2
1 + a2u2

2 + a3u2
3) ≥ i1(|u1|

2 + |u2|
2 + |u3|

2)
n
2 − i2.

where W1,W2,W3, a1, a2, a3, i1, i2 > 0 and n > 1. Therefore, we have the result below:

Theorem 6. For the objective functional (4.3) with the control set (4.2) and the optimality system (4.1)
there exists an optimal control u∗ = (u∗1, u

∗
2, u

∗
3) such that J(u∗1, u

∗
2, u

∗
3) = minU J(u1, u2, u3).

To get the solution of the optimal control system (4.1), it is require to determine the Lagrangian and
Hamiltonian for (4.1). The Lagrangian I can be defined in the following way for the control model
(4.1):

I(Im, Iv, E, u1, u2, u3) = W1Im + W2Iv + W3E +
1
2

(a1u2
1 + a2u2

2 + a1u2
3) (4.6)

For obtaining the marginal value of the Lagrangian I, writing the Hamiltonian H, by choosing Y =

(S m, Im, S v, Iv, E),U = (u1, u2, u3) and λ = (λS m , λIm , λS v , λIv , λE), to get:
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H = W1Im + W2Iv + W3E + a1u2
1 + a2u2

2 + a3u2
3

+λS m {Λm − (1 − u1)(βmIv + αmE)S m − µmS m}

+λIm {(1 − u1)(βmIv + αmE)S m − (µm + u3δm)Im}

+λS v {Λv − (1 − u1)βvS vIm − u2µvS v}

+λIv {(1 − u1)βvS vIm − u2µvIv}

+λE {u3αEIm − u2µEE}

(4.7)

where H=(Y ,U, λ)

4.2. Optimal control solution

Using the Pontryagins Maximum principles we present the optimal control solutions [17]. Using
this principal to reformulate (4.1-4.3) into a problem of minimizing pointwise a Hamiltonian H with
regard to u1, u2 and u3.

Theorem 7. Given optimal controls u∗1, u
∗
2, u

∗
3 and solutions S m, Im, S v, Iv, E of the optimality (4.3 -4.1)

that minimize J (u1, u2, u3) over U. Then adjoint variables λS m , λIm , λS v , λIv , λE are exists and satisfying,

−dλi

dt
=
∂H
∂i

(4.8)

where i is S m, Im, S v, Iv, E and with transversality conditions

λS m

(
t f

)
= λIm

(
t f

)
= λS v

(
t f

)
= λIv

(
t f

)
= λE

(
t f

)
= 0 (4.9)

u∗1 = min
{

1,max
(
0,

S m(βmIv + αmE)(λIm − λS m) + βvS vIm(λIv − λS v)
a1

)}
, (4.10)

u∗2 = min
{

1,max
(
0,
µvS vλS + µvIvλV + µEEλE

a2

)}
, (4.11)

u∗3 = min
{

1,max
(
0,
αEEλE + δmImλm

a3

)}
(4.12)

Proof. Corollary 4.1 of [16] leads to guarantee the existence of an optimal control. The convexity and
other properties related to the control system and the solution of the control are fulfilled. Therefore,
the differential equations associated to the adjoint variables are achieved through differentiating the
Hamiltonian equation together with the optimal control. The adjoint equations obtained and then
rearranged is as follows:

−
dλS m

dt = µmλS m + (1 − u1) (λS m − λIm)(βmIv + αmE),
−

dλIm
dt = −W1 + (µm + u3δm)λIm + (1 − u1)βvS v(λS v − λIv) − u3αEλE,

−
dλS v

dt = u2µvλS v + (1 − u1)βvIm(λS v − λIv),
−

dλIv
dt = −W2 + (1 − u1)βmS m(λS m − λIm) + u2µvλIv ,

−
dλE
dt = −W3 + u2µEλE + αmS m(1 − u1)(λS m − λIm).

(4.13)

The solution of u∗i for i = 1, 2, 3 subjected to the given conditions, the required results are obtained in
(24)-(26). �
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5. Numerical simulation

For us to depict the results of the numerical solution of the proposed model with and without control,
the following parameter values given in Table 1 are used which are defined briefly. We consider the
time unit for the entire numerical results in per day. For illustrations perspective, some parameter
values are assumed for this exercise.

Table 1. Descriptions of parameters and its values.

Parameter Description value Ref
Λm Birth rate of possum 2 day−1 Assumed
Λv Birth rate of vector 5 day−1 Assumed
βm Contact rate among S m and Iv 0.2 day−1 Assumed
βv Contact rate among S v and Im 0.09 Assumed
µm Natural death rate for possum 1/(365×60) day−1 [2]
µv Natural death rate in mosquito 1/14 [2]
δm Disease mortality rate for mosquitos 1/14 day−1 [1]
µE Natural death rate of MU in E 1/14 day−1 [1]
αE Rate of shedding of infected individual in E 1/14 day−1 [3]
αm Probability of possum getting infection due to E 0.01 day−1 [3]

5.1. Prevention (u1) and (u2) of Buruli ulcer

The two prevention controls u1 and u2 (proper educations to wildlife officers and spraying of
insecticide on mosquitos) is employed for the optimization of the objective functional J in the absence
of control u3 = 0 and the desired results are obtained graphically in Figure 2. With this strategy, the
result shown in Figure 2(a-d) for the infected compartments together with controls variables are useful
for the infection minimization. Figure 2(a) determine the BU infected possums Im compared to the non-
controlled system is decreasing significantly. The combination of controls u1 and u2 is very effective
strategy that can minimize the BU infection effectively. It is obvious in Figure 2(b) that there is a
vast and a clear difference between the case with control and without control. The proper educations
to the wildlife officers regarding the infections mechanism and its preventions, and using the quality
insecticide spray can best reduce the population of infected vector Iv. In Figure 2(c) there is a little
variations among the two system of control and without control. The proper and effective education to
the officers of the wildlife and proper straying of insecticides mechanism enhance the reduction of the
concentrations of MU in the environment E. The control profile in Figure 2(d) indicates one requires
25% efforts control u1 for almost 110 days before getting to 120 days while one needs control u2 effort
of 90 days at 100 % maximum before reducing to 26% and kept constant for the rest of the 120 days.

5.2. Prevention (u1) and treatment (u3) of Buruli ulcer

This set of controls that is the prevention (u1) and treatment (u3) of Buruli ulcer are used and
obtained the desired results graphically while u2 is set to be zero. The controls in the form of prevention
and treatment u1, u3 ( insecticide spraying and the treatment of possum infected individuals) are
considered and the numerical experiment is performed and desired results are depicted in Figure 3.
Figure 3(a) shows that the number of infected possums Im is considerably less as compared to the
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system with no control. This combination of controls is effective because in developed countries like
Australia where there is a better veterinary practitioners compare to the less developed countries. In
Figure 3(b) there is a clearly evidence that the infected number of water bugs is quit substantially
different from the case with controlled and without controlled. It can be inferred from Figure 3(b)
that the present set of controls show good behavior for the minimization of infection in the infected
compartment such as the water bugs Iv. Figure 3(c) describes the MU in the environment, and a
decrease is observed in the minimization of MU in the environment E after day 80 fully. It shows that
the two combined mechanism is good to reduce the concentration of MU in the environment. In Figure
3(d) the control profile u1 indicates that one requires about 26% effort and maintained constantly for
110 days before getting to 120 days. The control profile u3 in Figure 3(d) is at 100% effort for 90 days
period before it reduce to 25% effort which is maintained the for the entire 120 days while the control
u2 is set to zero.
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Figure 2. Numerical experiment when u1 = u2 , 0 and u3 = 0.
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Figure 3. Simulation for the case u1 = u3 , 0 and u2 = 0.

5.3. Prevention (u2) and treatment (u3) of Buruli ulcer

In the present set of combinations of controls, the prevention and treatment control u2, u3 ( intensive
education for wildlife officers and treating infected possums) are used and the simulated results of the
model with and without controls systems are obtained in Figure 4 in the absense of u1 control. In
Figure 4(a), it is obvious that the infected possums with BU Im is significantly different from activation
of control and without control which can be seen as effective control strategy. Figure 4(b) describes
that a highly substantial difference among the two systems. It can be seen in 4(b) that the combination
of such controls capable of reducing the infected water bugs that eventually bit the possum to bring
about the BU. Figure 4(c) indicates that there is a different between the activation of control and
without control in the concentration of MU in the environment E. Thus, this strategy minimizes the
concentration level of MU in the environment E. Figure 4(d) shows the control profile u3 which is
maintained at 100% effort for 90 days then reduce to 24% which is maintained for the rest of the 120
days while control u2 is also kept at 26% effort for 70 days before gradually reducing till the 120 days
and control u1 is set to zero.
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Figure 4. Simulation for the case u2 = u3 , 0 and u1 = 0.

5.4. Prevention (u1),(u2) and treatment (u3) of Buruli ulcer

The entire controls which are u1, u2, u3 ( intensive education for wildlife officers, spraying of
insecticides and treating infected possums) are used and the simulated results of the system are obtained
graphically in Figure 5. Figure 5(a) shows that there is significantly different between the application of
the three controls and the case of without control. This appears to infer that the combination of all the
three controls at the same time minimize the number of infected possum with BU. A similar situation
is depicted in Figure 5(b) and therefore, keeping and practicing of this mechanism is a potential tool
of reducing the number of infected water bugs Iv. The result shown in 5(c) describes that the infection
may decrease little but meaningful after day 80 to 120. This shows that putting all the controls active
and employing each strategy appropriately can best reduce the level of concentration of MU in the
environment E. The control profile in 5(d) shows that one needs to maintain the control u1 at 25% for
the period of 113 days before reducing in effort the rest of 120 days. The control u2 requires same
effort as in control u1 but sharply reduces after 72 days for the rest of the days. In 5(d), the control u3

is maintained at 100% for the maximum of 84 days and then reducing to 25% and has be maintained
till 120 days.
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Figure 5. Numerical experiment when u1 = u2 = u3 , 0.

6. Ecological implications environmental studies

Australia confirmed the ingestion of the M. ulcerans due to insect vector or through the environment.
It is considered to be the reason for shedding the virus into the environment. With the implementation
of the controls strategies properly, the rate of possums M. ulcerans infection can be brought to a
minimum level which is to be the useful ecological implications. The literature [30–32] suggest that
the Buruli ulcer is identified and has been associated with the aquatic environment. In some other
studies [29], it has been mentioned that the infection can be identified in terrestrial mammals. The use
of prevention that can reduce better the infection of M. ulcerans in possums, can be more effective,
and possibly it will help by reducing the M. ulcerans recycle in the soil which possibly to back in
the populations of mammals. The use of insecticide spraying can also an effective control for the
reduction of infection. It will reduce the infections in the reservoirs as well as the vectors populations.
That vectors reservoirs that are sprayed can reduced M.ulcerans, and hence the bite to the possums will
not lead to an infection. The proper controls strategies can also give a proper preventive mechanism
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and at the same time, the right medications in order to treat the infected possums which are identified
can better reduce the disease spread in the species. Since the preventive mechanism as shown by the
control u1 includes the proper training of the wildlife department and its workers that can improve
the quality of handling the infected possum with M.ulcerans. Although, the implementation of all
the control strategies at the same time can reduce possibly better the infection minimization. If these
discussions are kept in mind well and applied properly then the ecosystem that enhances the survival
of these bacteria will be broken and eventually will be reduced.

7. Conclusions

We studied a possum mammal deterministic mathematical model and carried out the detailed
mathematical results. We obtained the fundamental results of the model and examined its results using
the threshold quantity R0 which usually driven the spread of the disease is determined. The fixed points
are obtained and its stability results are explored. We found that the model possess two equilibrium
points. Each of the fixed is used to present its stability for the case when the threshold less or greater
than unity. The analysis of the equilibrium points for the infection free and endemic case are discussed
and obtained the results that the model is globally asymptotically stable. We considered time dependent
controls and formulated an optimal control system. The necessary results for the optimality system are
carried out in details. We proved that control model exists. We presented in deep the simulation of the
model and presented the numerical results considering different set of controls combination. Each set
of control is used and the desired results are obtained and discussed graphically. Finally, we utilized all
the effective controls at the same time and the results are obtained by which we found that the infection
can be eliminated best by considering all the controls active such as the intensive wildlife officer’s
education, praying of insecticide and treatment of infected possum. The numerical solution showed
that optimizing all the three controls is the best strategy to curtail the spread of BU among possum. In
addition, given any one of the two preventive control and treatment is also an effective way particularly
for the minimizing the spread of BU in possum mammal and infection of MU in water bugs.
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