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Abstract: In this paper, we mainly discuss the embedding theory of variable exponent fractional
Sobolev space W s(·),p(·)(Ω), and apply this theory to study the s(x)-p(x)-Laplacian equation:

(−∆)s(·)
p(·)u + V(x)|u|p(x)−2u = f (x, u) + g(x)

where x ∈ Ω ⊂ Rn, (−∆)s(·)
p(·) is s(x)-p(x)-Laplacian operator with 0 < s(x) < 1 < p(x) < ∞ and

p(x)s(x) < n, the nonlinear term f : Ω × R→ R is a Carathéodory function, V : Rn → R is a potential
function and g : Rn → R is a perturbation term.
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1. Introduction

Variable exponent Lebesgue spaces were first studied by Orlicz in 1931 (see [33]). Since the
1990s, variable exponent Lebesgue spaces and variable exponent Sobolev spaces have been used in
a variety of fields, the most important of which is the mathematical modeling of electrorheological
fluids. In 1997, the variable exponent Lebesgue spaces were applied to the study of image processing:
In image reconstruction, the variable exponent interpolation technique can be used to obtain a smoother
image. For the theory and applications of variable exponent Lebesgue spaces and variable exponent
Sobolev spaces, see [10, 12, 15, 21, 28] and the references therein.

As a part of the theory of variable exponent function spaces, variable exponent fractional Sobolev
spacea are also developing vigorously. In [27], Kaufmann et al gave a class of variable exponent
fractional Sobolev spaces:

W s,q(x),p(x,y)(Ω) :=
{

u ∈ Lq(x)(Ω) :
∫

Ω

∫
Ω

|u(x) − u(y)|p(x,y)

λp(x,y)|x − y|n+sp(x,y) dxdy < ∞ for some λ > 0
}
, (1.1)
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where s ∈ (0, 1), Ω ⊂ Rn is a bounded domain with Lipschitz boundary, q : Ω̄ → (1,∞) and p :
Ω̄ × Ω̄ → (1,∞) are two continuous functions bounded away from 1 and ∞. Assume further that p is
symmetric, i.e. p(x, y) = p(y, x).

Afterwards some scholars did further research on theory and applications of this kind of spaces
(see [3, 5–7, 13, 25, 32] and the references therein). In [31], we considered the case that the index s is
a function s(x), p(x, y) is p(x)+p(y)

2 , q(x) is p(x), established the so called variable exponent fractional
Sobolev spaces W s(·),p(·)(Ω) and gave some basic properties and an application. In this paper, we will
further study basic properties of this kind of spaces, for example: Embedding.

Embedding is always a classical topic in functional analysis, partial differential equations and other
fields. The first task of this paper is to give embedding theorems for W s(·),p(·)(Ω). Related to embedding
theorems, we refer to [14, 18, 24, 35] and the references therein.

In recent years, mathematicians have made some achievements in the study of fractional partial
differential equations with variable growth. In [7], Bahrouni and Rădulescu extended the classical
fractional Laplacian to a class of fractional p(x, y)-Laplacian defined as

Lu(x) = P.V.
∫

Ω

|u(x) − u(y)|p(x,y)−2(u(x) − u(y))
|x − y|n+sp(x,y) dy,

where Ω ⊂ Rn, 0 < s < 1 and p : Ω̄ × Ω̄→ R is continuous satisfing

1 < p− = min
(x,y)∈Ω̄×Ω̄

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω̄×Ω̄

p(x, y) < ∞,

p((x, y) − (z, z)) = p(x, y), (x, y), (z, z) ∈ Ω ×Ω.

Under certain conditions, they established the existence of solutions to the following problems by
means of the Ekeland variational principle:{

Lu(x) + |u(x)|q(x)−1u(x) = λ|u(x)|r(x)−1u(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.2)

In [32] Nguyen further discussed the problem (1.2) to show the existence of the eigenvalues of the
following fractional p(x, y)-Laplacian operator:{

Lu(x) + |u(x)|q(x)−2u(x) = λV(x)|u(x)|r(x)−2u(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.3)

In [27], Kaufmann et al considered the existence and uniqueness of the solution of fractional p(x, y)-
Laplacian equation as follows:{

Lu(x) + |u(x)|q(x)−2u(x) = f (x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.4)

In [6], comparison and sub-supersolution principles for the fractional p(x, y)-Laplacian are given.
In [4], Azroul et al studied the existence of nontrivial weak solutions for fractional p(x, y)-Kirchhoff

type problems. In [3], the existence of eigenvalues of fractional p(x, y)-Laplacian is studied by means
of Ekeland variational principle. These problems are considered under the condition that the exponent s
is constant.
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In [34], Xiang et al used the mountain pass theorem and Ekeland variational principle to study the
elliptic problems of Laplacian with variable exponent s and constant pc under appropriate assumptions:{

(−∆)s(·)u + λV(x)u = α|u|p(x)−2u + β|u|q(x)−2u, x ∈ Ω,

u(x) = 0, x ∈ Rn \Ω.

where
(−∆)s(·)u(x) = 2P.V.

∫
Rn

u(x) − u(y)
|x − y|n+2s(x,y) dy.

It is proved that there are at least two different solutions to the above problems. Furthermore, the
existence of infinite many solutions for the limit problems is obtained.

In [11], Cheng et al further studied the existence of weak solutions for nonlinear elliptic equations
where the exponents s and p are of variable forms, i.e.

(−∆)k(·)
α(·)u + α|u|p̄(x)−2u = f (x)h(u), x ∈ Ω,

u(x) = 0, x ∈ Rn \Ω.

where the fractional α(·)-k(·)-Laplacian (−∆)k(·)
α(·) is defined by

(−∆)k(·)
α(·)u(x) = 2 lim

ε→0

∫
Rn\Bε(x)

|u(x) − u(y)|α(x,y)−2 u(x) − u(y)
|x − y|n+α(x,y)k(x,y) dy, x ∈ Rn.

As we know that when people studied nonlinear problems of fractional Laplace operators with
variable exponents, they mainly focus on the case that the exponent s is constant and p is variable. For
the cases that the exponent s is variable and p is constant or both the exponents s and p are variables,
there are still few results.

Under the quantum mechanics background, in [29,30] Laskin expanded the Feynman way integrals
from the kind of Braun quantum mechanics way to the kind of Lévy quantum mechanics way, proposed
the nonlinear fractional Schrödinger equation. Subsequently, results on the fractional Schrödinger
equation gradually appeared

(−∆)su + V(x)u = f (x, u), x ∈ Ω

where
(−∆)su := P.V.

∫
Ω

u(x) − u(y)
|x − y|n+2s dy

and f satisfies some conditions, which are stated in details in [17, 22].
As a direct application of embedding theorems for W s(·),p(·)(Ω), the second task of this paper is

to study the existence of multiple solutions for Dirichlet boundary value problem of the s(x)-p(x)-
Laplacian equations in W s(·),p(·)(Ω):{

(−∆)s(·)
p(·)u + V(x)|u|p(x)−2u = f (x, u) + g(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.5)

where 0 < s(x) < 1 < p(x) < ∞ with p(x)s(x) < n, (−∆p(·))s(·) is the s(x)-p(x)-Laplacian operator
defined as

(−∆)s(·)
p(·)u(x) := P.V.

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dy, x ∈ Ω.
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When p(x) = 2 and s(x) = s(constant), Eq (1.5) becomes a fractional Laplacian equation

(−∆)su + V(x)u = f (x, u) + g(x), x ∈ Ω.

This can be seen as fractional form of the following classic stationary Schrödinger equation

−∆u + V(x)u = f (x, u) + g(x), x ∈ Ω.

Therefore, we think it is meaningful to study problem (1.5), and further, it is very necessary to study
the application of s(x)-p(x)-Laplace equation in W s(·),p(·)(Ω).

2. Preliminaries

First we provide some basic concepts and related notations. Suppose that Ω be a Lebesgue
measurable subset of Rn with positive measure. Let Bk(0), B̄k(0) denote the open and close ball centered
at 0 with radius k, respectively. Let P(Ω) denote the family of all Lebesgue measurable functions
p : Ω → [1,∞] and S(Ω) denote the family of all Lebesgue measurable functions s : Ω → (0, 1).
Denote

p+ = ess sup
x∈Ω

p(x), p− = ess inf
x∈Ω

p(x),

s+ = ess sup
x∈Ω

s(x), s− = ess inf
x∈Ω

s(x).

For a Lebesgue measurable function u : Ω→ R, define

ρp(·),Ω(u) =

∫
Ω\Ω∞

|u(x)|p(x)dx + ‖u‖L∞(Ω∞),

The space W s(·),∞(Ω) is defined as the set of functions{
u ∈ L∞(Ω) :

|u(x) − u(y)|

|x − y|
s(x)+s(y)

2

∈ L∞(Ω ×Ω)
}
.

When the exponent s is constant, it is the space W s,∞(Ω) mentioned in [1, 26]. The norm can be
defined as

‖u‖W s(·),∞(Ω) = ‖u‖L∞(Ω) + |u|C0,s(·)(Ω),

where the Hölder semi-norm is defined by

|u|C0,s(·)(Ω) := sup
x,y∈Ω
x,y

|u(x) − u(y)|

|x − y|
s(x)+s(y)

2

.

Define

ϕs(·),p(·),Ω(u) =

∫
Ω\Ω∞

∫
Ω\Ω∞

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy + ‖u‖W s(·),∞(Ω∞),

where Ω∞ = {x ∈ Ω : p(x) = ∞}. The variable exponent Lebesgue space Lp(·)(Ω) is defined by

Lp(·)(Ω) :=
{
u : ∃λ > 0, s.t. ρp(·),Ω(

u
λ

) < ∞
}
.
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We define a norm, so called Luxembourg norm, for this space by

‖u‖Lp(·)(Ω) = inf
{
λ > 0 : ρp(·),Ω(

u
λ

) < 1
}
.

The variable exponent fractional Sobolev space W s(·),p(·)(Ω) is defined by

W s(·),p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : ∃λ > 0, s.t. ϕs(·),p(·),Ω(

u
λ

) < ∞
}
.

Let
[u]W s(·),p(·)(Ω) = inf

{
λ > 0 : ϕs(·),p(·),Ω(

u
λ

) < 1
}

be the corresponding variable exponent Gagliardo semi-norm. The norm is equipped as

‖u‖W s(·),p(·)(Ω) = ‖u‖Lp(·)(Ω) + [u]W s(·),p(·)(Ω).

It is easy to verify that under this norm this space is a Banach space.
For the sake of convenience, we give some notations. For the variable exponent p : Ω×Ω→ [1,∞]

which is symmetric, i.e. p(x, y) = p(y, x) on Ω ×Ω, denote

p̄+ = ess sup
(x,y)∈Ω×Ω

p(x, y), p̄− = ess inf
(x,y)∈Ω×Ω

p(x, y),

(Ω ×Ω)∞ = {(x, y) ∈ Ω ×Ω : p(x, y) = ∞}.

In view of ρp(·) and Lp(·)(Ω), we can define modular ρ̄p(·,·) and variable exponent Lebesgue spaces
Lp(·,·) on Ω × Ω. The conclusions on Lp(·)(Ω) can be moved to Lp(·,·)(Ω × Ω). Here we give another
modular and norm in W s(·),p(·)(Ω). In this case, we only consider the case of p+ < ∞. Modular is
defined as:

ρ̂s(·),p(·),Ω(u) =

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy +

∫
Ω

|u(x)|p(x)dx.

According to this modular, we define the norm as:

|||u|||W s(·),p(·)(Ω) = inf
{
λ > 0 : ρ̂s(·),p(·),Ω(

u
λ

) < 1
}
.

The following conclusions are what we will use later.

Proposition 2.1. Let p(·) ∈ P(Ω) with p+ < ∞. Then |||u|||W s(·),p(·)(Ω) is equivalent to ‖u‖W s(·),p(·)(Ω), i.e.

1
2
‖u‖W s(·),p(·)(Ω) ≤ |||u|||W s(·),p(·)(Ω) ≤

1

2
1

p+

‖u‖W s(·),p(·)(Ω).

Proof. By the definition of ρ̂s(·),p(·),Ω, ρp(·),Ω, ϕs(·),p(·),Ω, we have

ρp(·),Ω

( u
|||u|||W s(·),p(·)(Ω)

)
≤ ρ̂s(·),p(·),Ω

( u
|||u|||W s(·),p(·)(Ω)

)
≤ 1,

ϕs(·),p(·),Ω

( u
|||u|||W s(·),p(·)(Ω)

)
≤ ρ̂s(·),p(·),Ω

( u
|||u|||W s(·),p(·)(Ω)

)
≤ 1,
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so
‖u‖Lp(·)(Ω) ≤ |||u|||W s(·),p(·)(Ω), [u]W s(·),p(·)(Ω) ≤ |||u|||W s(·),p(·)(Ω),

and further
1
2
‖u‖W s(·),p(·)(Ω) ≤ |||u|||W s(·),p(·)(Ω).

On the other hand,

ρp(·),Ω

( 2
1

p+ u
‖u‖W s(·),p(·)(Ω)

)
≤ ρp(·),Ω

( 2
1

p+ u
‖u‖Lp(·)(Ω)

)
≤

1
2
,

ϕs(·),p(·),Ω

( 2
1

p+ u
‖u‖W s(·),p(·)(Ω)

)
≤ ϕs(·),p(·),Ω

( 2
1

p+ u
[u]W s(·),p(·)(Ω)

)
≤

1
2
,

so by the definition of |||u|||W s(·),p(·)(Ω),

|||u|||W s(·),p(·)(Ω) ≤
1

2
1

p+

‖u‖W s(·),p(·)(Ω).

The equivalence between |||u|||W s(·),p(·)(Ω) and ‖u‖W s(·),p(·)(Ω) is proved. �

Just like the relationship between norm ‖ · ‖Lp(·)(Ω) and module ρp(·),Ω(·) in Lp(·)(Ω) space (see [12,15,
21]), norm |||u|||W s(·),p(·)(Ω) and module ρ̂s(·),p(·),Ω have similar results.

Proposition 2.2. Let Ω be a open set in Rn and p(·) ∈ P(Ω) with p+ < ∞. Then next statements
are correct
1. min{|||u|||p

−

W s(·),p(·)(Ω), |||u|||
p+

W s(·),p(·)(Ω)} ≤ ρ̂s(·),p(·),Ω(u) ≤ max{|||u|||p
−

W s(·),p(·)(Ω), |||u|||
p+

W s(·),p(·)(Ω)}, if |||u|||W s(·),p(·)(Ω) <

+∞.

2. min{ρ̂1/p−

s(·),p(·),Ω(u), ρ̂1/p+

s(·),p(·),Ω(u)} ≤ |||u|||W s(·),p(·)(Ω) ≤ max{ρ̂1/p−

s(·),p(·),Ω(u), ρ̂1/p+

s(·),p(·),Ω(u)}, if ρ̂s(·),p(·),Ω(u) < +∞.

Proposition 2.3. ( [12, 21]) Let Ω ⊂ Rn, p(·) ∈ P(Ω) with p+ < ∞ and uk, u ∈ Lp(·)(Ω). The following
are equivalent:
1. lim

k→∞
‖uk − u‖Lp(·)(Ω) = 0,

2. lim
k→∞

ρ(uk − u) = 0,
3. uk → u in measure and lim

k→∞
ρ(γuk) = ρ(γu) for some γ > 0.

Proposition 2.4. [31] Let Ω ⊂ Rn, p(·) ∈ P(Ω) with p+ < ∞ and uk, u ∈ W s(·),p(·)(Ω). Then lim
k→∞

ϕ(uk −

u) = 0 if and only if lim
k→∞

[uk − u]W s(·),p(·)(Ω) = 0.

Proposition 2.5. [31] If |Ω| < +∞ and p+ < ∞, then for u ∈ W s(·),p(·)(Ω) and {uk} ⊂ W s(·),p(·)(Ω), the
following statements are equivalent:

1. uk
‖·‖
−→ u.

2. uk
ρ
−→ u and uk

ϕ
−→ u.

3. uk → u in measure and ρ(γuk)→ ρ(γu), ϕ(δuk)→ ϕ(δu) for some γ, δ > 0.

Proposition 2.6. Suppose that Ω ⊂ Rn, s(·) ∈ S(Rn), p(·) ∈ P(Rn), p+ < ∞ and 0 < s− ≤ s(x) ≤ s+ <

1. Then C∞0 (Ω) ⊂ W s(·),p(·)(Ω).
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Proof. Let u ∈ C∞0 (Ω) with suppu ⊂ Ω, we already know u ∈ Lp(·)(Ω). Now we prove:∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy < ∞.

Suppose that suppu ⊂ Br(0) ∩Ω, then∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

=

∫
Br(0)∩Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy +

∫
Ω\Br(0)

∫
Br(0)∩Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

≤ 2
∫

Br(0)

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

≤ 2
∫

Br(0)

∫
B2r(0)

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy + 2
∫

Br(0)

∫
Ω\B2r(0)

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

= 2I1 + 2I2.

Now we estimate I1 and I2. Since u ∈ C∞0 (Ω), we have

u(x) − u(y) = ∇u(θx + (1 − θ)y) · (x − y)

for x ∈ Br(0), y ∈ B2r(0), 0 < θ < 1. So

I1 =

∫
Br(0)

∫
B2r(0)

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

=

∫
B2r(0)

∫
Br(0)

|∇u(θx + (1 − θ)y)|
p(x)+p(y)

2

|x − y|n+
(s(x)−1)p(x)+(s(y)−1)p(y)

2

dxdy

≤

∫
B2r(0)

∫
B2r(0)

‖u‖p+

C1(Ω) + ‖u‖p−

C1(Ω)

|x − y|n+
(s(x)−1)p(x)+(s(y)−1)p(y)

2

dxdy

≤ C
∫

B 1
2

(0)

( ∫
B 1

2
(0)

1
|z|n−(1−s+)p− dz

)
dx,

where constant C depends on ‖u‖C1(Ω), r, p− and p+. Since n − (1 − s+)p− < n, we know that∫
B 1

2
(0)

1
|z|n−(1−s+)p− dz is finite and further I1 is also finite.

Next

I2 =

∫
Br(0)

∫
Ω\B2r(0)

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

=

∫
Br(0)

∫
Ω\B2r(0)

|u(x)|
p(x)+p(y)

2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy
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≤

∫
Br(0)

∫
Rn\B2r(0)

Mp− + Mp+

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

≤ C
∫

B1(0)

( ∫
Rn\B2(0)

1
|z|n+s−p− dz

)
dx

where M = max
x∈suppu

|u(x)| and constant C depends on M, r, p− and p+. Since n + s−p− > n, we have∫
Rn\B2(0)

1
|z|n+s− p− dz is finite and further I2 is also finite.

Based on the discussion above, we arrive at the conclusion. �

In view of Proposition 2.6, it is reasonable to define W s(·),p(·)
0 (Ω) as the closure of C∞0 (Ω) in

W s(·),p(·)(Ω). According to Remark 3.2 on the trace theorem of in [13], we know that under the condition
s−p− > 1, the trace of a function in W s(·),p(·)

0 (Ω) can be guaranteed to be zero.
Next, we list the theorems will use.

Theorem 2.1. ( [12, 15]) Give r(·), q(·) ∈ P(Ω). Define p(·) ∈ P(Ω) by

1
p(x)

=
1

q(x)
+

1
r(x)

.

Then there exists a constant C such that for all u ∈ Lq(·)(Ω) and v ∈ Lr(·)(Ω), uv ∈ Lp(·)(Ω) and

‖uv‖Lp(·)(Ω) ≤ C‖u‖Lq(·)(Ω)‖v‖Lr(·)(Ω).

At the end of this section, we consider the s(x)-p(x)-Laplacian operator (−∆)s(·)
p(·) on W s(·),p(·)

0 (Ω).
Here, we denote by (W s(·),p(·)

0 (Ω))′ the space dual to W s(·),p(·)
0 (Ω), and by 〈·, ·〉 denote the scalar product

on the pair [(W s(·),p(·)
0 (Ω))′,W s(·),p(·)

0 (Ω)].
The operator (−∆)s(·)

p(·) can be thought of as a mapping from W s(·),p(·)
0 (Ω) into (W s(·),p(·)

0 (Ω))′ by

〈(−∆)s(·)
p(·)u, v〉 :=

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))(v(x) − v(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy (2.1)

for u, v ∈ W s(·),p(·)
0 (Ω) and this definition makes sense. Indeed, we can use Theorem 2.1 to get the

desired result very easily.

3. Embedding theorems for W s(·),p(·)(Ω)

Theorem 3.1. Let Ω be a bounded open set in Rn and p ∈ P(Ω), p+ < ∞. s1, s2 ∈ S(Ω) and
s2(x) ≥ s1(x) a.e. on Ω, then there exists a positive constant C = C(p, s1, s2,Ω) such that, for any
u ∈ W s2(·),p(·)(Ω), we have

‖u‖W s1(·),p(·)(Ω) ≤ C‖u‖W s2(·),p(·)(Ω),

i.e. the space W s2(·),p(·)(Ω) is continuously embedded in W s1(·),p(·)(Ω).

Proof. For convenience, let [u]W s2(·),p(·)(Ω) = 1 and

C = sup
(x,y)∈Ω×Ω

|x − y|
p(x)(s2(x)−s1(x))+p(y)(s2(y)−s1(y))

p(x)+p(y)
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then ∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

C
p(x)+p(y)

2 |x − y|n+
p(x)s1(x)+p(y)s1(y)

2

dxdy

=

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s2(x)+p(y)s2(y)

2

·
|x − y|

p(x)(s2(x)−s1(x))+p(y)(s2(y)−s1(y))
2

C
p(x)+p(y)

2

dxdy

≤

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s2(x)+p(y)s2(y)

2

≤1,

therefore
[u]W s1(·),p(·)(Ω) ≤ C[u]W s2(·),p(·)(Ω)

and further
‖u‖W s1(·),p(·)(Ω) ≤ C‖u‖W s2(·),p(·)(Ω).

�

Theorem 3.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. p, s are continuous on Ω̄ with 1 > s(x) ≥
s− > 0 and p(x) ≥ 1, s(x)p(x) < n for x ∈ Ω̄. Assume that q : Ω̄→ [1,∞) is a continuous function with

q(x) < p∗(x) :=
np(x)

n − s(x)p(x)

for x ∈ Ω̄, then there exists a constant C = C(n, s, p, q,Ω) such that for every u ∈ W s(·),p(·)(Ω),
there holds

‖u‖Lq(·)(Ω) ≤ C‖u‖W s(·),p(·)(Ω),

i.e. the space W s(·),p(·)(Ω) is continuously embedded in Lq(·)(Ω). Moreover, this embedding is compact.

The embedding theorem given in [11] (the space involved is Xk(·),α(·)), the exponent α(·) is restricted
by the exponent p1(·) in the space Lp1(·) under the condition: α(z, s) < p1(z) for (z, s) ∈ Ω̄ × Ω̄, but
the conclusion of our theorem does not require such a requirement. In addition, in the statement of
the embedding theorem in this paper, the case that the variable exponent p and q are equal to 1 is
considered, which is not mentioned in references [8, 11].

In order to prove this embedding theorem, we will use embedding theorem for constant exponent
fractional Sobolev space. In order to make the proof more clear, we list this theorem here.

Theorem 3.3. [16] (Embedding theorem for constant exponent fractional Sobolev space) Let s ∈ (0, 1)
and p ∈ [1,+∞) be constants and satisfy sp < n. Denote p∗ =

np
n−sp . Let Ω ⊂ Rn be an extension domain

for W s,p(Ω). Then there exists a positive constant C = C(n, p, s,Ω) such that for any u ∈ W s,p(Ω),
we have

‖u‖Lq(Ω) ≤ C‖u‖W s,p(Ω)

for any q ∈ [p, p∗]. i.e. the space W s,p(Ω) is continuously embedded in Lq(Ω) for any q ∈ [p, p∗].
If in addition Ω is bounded, then the space W s,p(Ω) is continuously embedded in Lq(Ω) for any

q ∈ [1, p∗]. Moreover, this embedding is compact for q ∈ [1, p∗).
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With these preparations, we will now prove the Theorem 3.2.

Proof. Since p, s, q are continuous on Ω̄ and Ω is bounded, there exists a positive constant ξ such that

np(x)
n − s(x)p(x)

− q(x) ≥ ξ > 0 (3.1)

for every x ∈ Ω̄.
In view of the continuity of p and (3.1), we can find a constant ε = ε(n, p, q, s,Ω) and a fnite family

of disjoint Lipschitz sets Oi such that

Ω =

N⋃
i=1

Oi

and
sup

(x,y)∈Oi×Oi

|p(x) − p(y)| < ε, sup
(x,y)∈Oi×Oi

|s(x) − s(y)| < ε

such that
np(y)

n − s(z)p(y)
− q(x) ≥

ξ

2

for every x, y, z ∈ Oi.
We can choose constant pi and ti, with pi = inf

y∈Oi
p(y), 0 < ti < si := inf

y∈Oi
s(y), such that

p∗i =
npi

n − ti pi
≥
ξ

3
+ q(x) (3.2)

for each x ∈ Oi.
By Theoremn 3.3, there exists a constant C = C(n, ε, ti, pi,Oi), such that

‖u‖Lp∗i (Oi)
≤ C(‖u‖Lpi (Oi) + [u]W ti ,pi (Oi)) (3.3)

Now, we prove the following inequalities.
(a) There exists a constant c1 such that

N∑
i=1

‖u‖Lp∗i (Oi)
≥ c1‖u‖Lq(·)(Ω).

(b) There exists a constant c2 such that

c2[u]W s̄(·),p(·)(Ω) ≥

N∑
i=1

[u]W ti ,pi (Oi).

where s̄(x) := siχOi(x), x ∈ Ω.

(c) There exists a constant c3 such that

N∑
i=1

‖u‖Lpi (Oi) ≤ c3‖u‖Lp(·)(Ω).
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If the above three inequalities hold, a conclusion can be drawn by combining (3.3) and Theorem 3.1
as the following:

‖u‖Lq(·)(Ω) ≤ C
N∑

i=1

‖u‖Lp∗i (Oi)

≤ C
N∑

i=1

(‖u‖Lpi (Oi) + [u]W ti ,pi (Oi))

≤ C(‖u‖Lp(·)(Ω) + [u]W s̄(·),p(·)(Ω))
= C‖u‖W s̄(·),p(·)(Ω)

≤ C‖u‖W s(·),p(·)(Ω).

(3.4)

First prove (a). We have

|u(x)| =
N∑

i=1

|u(x)|χOi

i.e.

‖u‖Lq(·)(Ω) ≤

N∑
i=1

‖u‖Lq(·)(Oi)

Since for each i, p∗i > q(x) for x ∈ Oi, these exists αi such that

1
q(x)

=
1
p∗i

+
1

αi(x)
.

According to Theorem 2.1, we have

‖u‖Lq(·)(Oi) ≤ C‖u‖Lp∗i (Oi)
‖1‖Lαi(·)(Oi)

= C‖u‖Lp∗i (Oi)

In this way, (a) is proved.
Next prove (b). Set

Fi(x, y) :=
|u(x) − u(y)|
|x − y|si

then

[u]W ti ,pi (Oi) =

( ∫
Oi

∫
Oi

|u(x) − u(y)|pi

|x − y|n+ti pi+si pi−si pi
dxdy

) 1
pi

=

( ∫
Oi

∫
Oi

(
|u(x) − u(y)|
|x − y|si

)pi 1
|x − y|n+(ti−si)pi

dxdy
) 1

pi

= ‖Fi‖Lpi (Oi×Oi)

≤ C‖Fi‖
L

p(x)+p(y)
2 (µ,Oi×Oi)

‖1‖Lβi(x,y)(µ,Oi×Oi)

≤ C‖Fi‖
L

p(x)+p(y)
2 (µ,Oi×Oi)
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where
1
pi

=
1

p(x)+p(y)
2

+
1

βi(x, y)

and
dµ(x, y) =

dxdy
|x − y|n+(ti−si)pi

is a measure on Oi × Oi.

Set λ = [u]W si ,p(·)(Oi) and k = max
i

{
sup

(x,y)∈Oi×Oi

{|x − y|
2pi(si−ti)
p(x)+p(y) }

}
. We have

∫
Oi

∫
Oi

(
|u(x) − u(y)|
kλ|x − y|si

) p(x)+p(y)
2 1
|x − y|n+(ti−si)pi

dxdy

=

∫
Oi

∫
Oi

|x − y|(si−ti)pi

k
p(x)+p(y)

2

|u(x) − u(y)|
p(x)+p(y)

2

λ
p(x)+p(y)

2 |x − y|n+
si(p(x)+p(y))

2

dxdy

<

∫
Oi

∫
Oi

|u(x) − u(y)|
p(x)+p(y)

2

λ
p(x)+p(y)

2 |x − y|n+
si(p(x)+p(y))

2

dxdy

≤1

Therefore

‖Fi‖
L

p(x)+p(y)
2 (µ,Oi×Oi)

≤ k[u]W si ,p(·)(Oi)

≤ k[u]W s̄(·),p(·)(Ω)

and further
[u]W ti ,pi (Oi) ≤ C[u]W s̄(·),p(·)(Ω)

In this way, (b) is proved.
By the same way to prove (a), we can prove (c).
Finally, prove the compactness of this embedding. Let {uk} be a sequence in W s(·),p(·)(Ω) with

‖uk‖W s(·),p(·)(Ω) ≤ M. According to (3.4), for any i, ‖uk‖W ti ,pi (Oi) ≤ M. By Theorem 3.3 and (3.2), {uk}

has a subsequence {u1
k} such that {u1

k |O1} converges in Lp∗1−
ξ
3 (O1) to some u1 ∈ Lp∗1−

ξ
3 (O1). Similarly, {u1

k}

has a subsequence {u2
k} such that {u2

k |O2} converges in Lp∗2−
ξ
3 (O2) to some u2 ∈ Lp∗2−

ξ
3 (O2). And so on,

{uN−1
k } has a subsequence {uN

k } such that {uN
k |ON } converges in Lp∗N−

ξ
3 (ON) to some uN ∈ Lp∗N−

ξ
3 (ON). Set

u(x) =

N∑
i=1

ui(x)χOi ,

then

‖uN
k − u‖Lq(·)(Ω) ≤ C

N∑
i=1

‖uN
k |Oi − ui‖

Lp∗i −
ξ
3 (Oi)
→ 0 as k → ∞. (3.5)

Now the proof is finished. �

Remark.
1. We can reduce the condition that q is continuous in the Theorem 3.2 to ess inf(p∗ − q) > 0;
2. Theorem 3.2 remains true if we replace W s(·),p(·)(Ω) by W s(·),p(·)

0 (Ω).
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4. An application

For problem (1.5), we make the following assumptions.
Let Ω be a bounded Lipschitz domain in Rn and
(PQS) p, q, s ∈ C(Ω̄), 0 < s(x) < 1, s(x)p(x) < n, 1 < s−p− < p(x) ≤ p+ < q− ≤ q(x) < p∗(x) :=
np(x)

n − s(x)p(x)
for all x ∈ Ω̄,

(F) f : Ω × R → R is a Carathéodory function and there exist constant a1 > 0, r > 0, µ > p+

such that
(F1) | f (x, t)| ≤ a1(1 + |t|q(x)−1) for a.e. x ∈ Ω and for each t ∈ R,
(F2) 0 < µF(x, t) ≤ f (x, t)t for a.e. x ∈ Ω and for each t, |t| ≥ r, where

F(x, t) =

∫ t

0
f (x, τ)dτ for a.e. x ∈ Ω and for each t ∈ R,

(F3) f (x, t) = o(|t|p(x)−1) as t → 0, uniformly for x ∈ Ω.
(V) V ∈ C(Ω) and V0 := min

x∈Ω
V(x) > 0,

(G) g ∈ Lp′(·)(Ω), where p′(·) defined by equality
1

p(x)
+

1
p′(x)

= 1 for all x ∈ Ω̄.

Definition 4.1. We say that u ∈ W s(·),p(·)
0 (Ω) is a weak solution of problem (1.5) if for all v ∈ W s(·),p(·)

0 (Ω)
we have ∫

Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))(v(x) − v(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

+

∫
Ω

V(x)|u(x)|p(x)−2u(x)v(x)dx =

∫
Ω

f (x, u)v(x)dx +

∫
Ω

g(x)v(x)dx.

Theorem 4.1. Let (PQS), (F), (F1)–(F3) and (V) hold and suppose that 0 . g ∈ Lp′(·)(Ω). Then there
exists a constant δ0 > 0 such that problem (1.5) admits at least two nontrivial solutions in W s(·),p(·)

0 (Ω)
provided that ‖g‖Lp′(·)(Ω) ≤ δ0.

Corresponding to the problem (1.2), consider the energy functional I : W s(·),p(·)
0 (Ω)→ R defined by

I(u) = J(u) − H(u) −G(u),

where

J(u) =

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy +

∫
Ω

V(x)
p(x)
|u(x)|p(x)dx,

H(u) =

∫
Ω

F(x, u(x))dx,

G(u) =

∫
Ω

g(x)u(x)dx.

We know that a critical point of I is a weak solution to the problem (1.2). To prove Theorem 4.1,
we give some lemmas.
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Lemma 4.1. Suppose that (V) hold. Then J ∈ C1(W s(·),p(·)
0 (Ω)) and

〈J′(u), v〉 =

∫
Ω

∫
Ω

|u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))(v(x) − v(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy

+

∫
Ω

V(x)|u(x)|p(x)−2u(x)v(x)dx

(4.1)

for all u, v ∈ W s(·),p(·)
0 (Ω). Moreover, J is weakly lower semi-continuous on W s(·),p(·)

0 (Ω).

Proof. We can easily verify the Gâteaux differentiability of J on W s(·),p(·)
0 (Ω) and (4.1) holds for all

u, v ∈ W s(·),p(·)
0 (Ω).

Now prove J ∈ C1(W s(·),p(·)
0 (Ω)). For any {un} ⊂ W s(·),p(·)

0 (Ω) and un → u in W s(·),p(·)
0 (Ω) as n → ∞,

we have

lim
n→∞

∫
Ω

∫
Ω

(
|un(x) − un(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

−
|u(x) − u(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

)
dxdy = 0. (4.2)

Without loss of generality, we further assume that

un → u a.e. in Ω as n→ ∞.

By (4.2),

{
|un(x) − un(y)|

p(x)+p(y)
2 −2(un(x) − un(y))

|x − y|(n+
s(x)p(x)+s(y)p(y)

2 )( p(x)+p(y)−2
p(x)+p(y) )

}
n

is bounded in L
p(x)+p(y)

p(x)+p(y)−2 (Ω) and by Brezis-Lieb Lemma in [23] we have

lim
n→∞

∫
Ω

∫
Ω

(
|un(x) − un(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

−
|u(x) − u(y)|

p(x)+p(y)
2

|x − y|n+
s(x)p(x)+s(y)p(y)

2

)
dxdy = 0.

Similarly,

lim
n→∞

∫
Ω

V(x)
∣∣∣∣∣|un(x)|p(x)−2un(x) − |u(x)|p(x)−2u(x)

∣∣∣∣∣ p(x)+p(y)
p(x)+p(y)−2

dx = 0.

By Hölder inequality,

‖J′(un) − J′(u)‖(W s(·),p(·)
0 (Ω))′ = sup

v∈Ws(·),p(·)
0 (Ω)

‖v‖
Ws(·),p(·)

0 (Ω)
=1

|〈J′(un) − J′(u), v〉| → 0

as n→ ∞. Hence J ∈ C1(W s(·),p(·)
0 (Ω)).
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Next we prove J is weakly lower semi-continuous on W s(·),p(·)
0 (Ω). Let {un} ⊂ W s(·),p(·)

0 (Ω) and un ⇀ u
weakly in W s(·),p(·)

0 (Ω) as n→ ∞. Notice that for w, v ∈ W s(·),p(·)
0 (Ω),

J(
w + v

2
) =

∫
Ω

∫
Ω

|
w(x)+v(x)

2 −
w(y)+v(y)

2 |
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy +

∫
Ω

V(x)
p(x)

∣∣∣∣∣w(x) + v(x)
2

∣∣∣∣∣p(x)

dx

≤
1
2

( ∫
Ω

∫
Ω

|w(x) − w(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy +

∫
Ω

V(x)
p(x)
|w(x)|p(x)dx

)
+

1
2

( ∫
Ω

∫
Ω

|v(x) − v(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy +

∫
Ω

V(x)
p(x)
|v(x)|p(x)dx

)
=

1
2

J(w) +
1
2

J(v).

Thus J is a convex functional on W s(·),p(·)
0 (Ω).

Because J ∈ C1(W s(·),p(·)
0 (Ω)), J′(u) is subgradient of J at point u ∈ W s(·),p(·)

0 (Ω) and by the definition
of a subgradient we have

J(un) − J(u) ≥ 〈J′(u), un − u〉.

Letting n→ ∞, we have
J(u) ≤ lim inf

n→∞
J(un),

i.e. J is weakly lower semi-continuous. �

Lemma 4.2. Suppose that (F1) and (F3) hold. Then H ∈ C1(W s(·),p(·)
0 (Ω)) and

〈H′(u), v〉 =

∫
Ω

f (x, u(x))v(x)dx (4.3)

for all u, v ∈ W s(·),p(·)
0 (Ω). Moreover H is weakly continuous on W s(·),p(·)

0 (Ω).

Proof. We can easily verify Gâteaux differentiability of H on W s(·),p(·)
0 (Ω) and (4.3) holds for all u, v ∈

W s(·),p(·)
0 (Ω).
Now consider H ∈ C1(W s(·),p(·)

0 (Ω)). For any {un} ⊂ W s(·),p(·)
0 (Ω) and un → u in W s(·),p(·)

0 (Ω) as
n→ ∞. By Theorem 3.2,

un → u in Lq(·)(Ω) as n→ ∞.

By (F1) and Theorem 1.16 in [21], from u ∈ Lq(·)(Ω) we have f (x, u) ∈ Lq′(·)(Ω). Since un → u in
Lq(·)(Ω), by [20] we get

f (x, un)→ f (x, u) in Lq′(·)(Ω).

Let v ∈ W s(·),p(·)
0 (Ω) with ‖v‖W s(·),p(·)

0 (Ω) = 1. By Therefore 3.2, v ∈ Lq(·)(Ω) and further by Hölder
inequality,

|〈H′(un), v − H′(u), v〉| ≤
∫

Ω

| f (x, un(x)) − f (x, u(x))||v(x)|dx

≤ C‖ f (x, un) − f (x, u)‖Lq′(·)(Ω)‖v‖Lq(·)(Ω)

≤ C‖ f (x, un) − f (x, u)‖Lq′(·)(Ω),

(4.4)
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so
‖H′(un), v − H′(u)‖(W s(·),p(·)

0 (Ω))′ ≤ C‖ f (x, un) − f (x, u)‖Lq′(·)(Ω) → 0

as n→ ∞. Therefore H ∈ C1(W s(·),p(·)
0 (Ω)).

At last we prove that H is weakly continuous on W s(·),p(·)
0 (Ω). Let un ⇀ u weakly in W s(·),p(·)

0 (Ω). By
Theorem 3.2, we have un → u in Lq(·)(Ω). Then similar to [9] we can get the conclusion. �

Lemma 4.3. G ∈ C1(W s(·),p(·)
0 (Ω)) and

〈G′(u), v〉 =

∫
Ω

g(x)v(x)dx (4.5)

for all u, v ∈ W s(·),p(·)
0 (Ω). Moreover G is weakly continuous on W s(·),p(·)

0 (Ω).

Proof. We can easily prove that G ∈ C1(W s(·),p(·)
0 (Ω)) and (4.5).

Let un ⇀ u weakly in W s(·),p(·)
0 (Ω). By Theorem (3.2), we have un → u in Lq(·)(Ω). By Hölder

inequality,

|G(un) −G(u)| ≤
∫

Ω

|g(x)(un(x) − u(x)|dx

≤ C‖g‖Lq′(·)(Ω)‖un − u‖Lq(·)(Ω)

→0,

as n→ ∞. Thus G is weakly continuous on W s(·),p(·)
0 (Ω). �

By Lemmas (4.1)–(4.3), we get the following conclusion.

Lemma 4.4. Suppose that (F1)–(F3) and (V) hold, then I ∈ C1(W s(·),p(·)
0 (Ω)) and I is weakly lower

semi-continuous on W s(·),p(·)
0 (Ω).

Lemma 4.5. Suppose that (F1), (F3) and (V) hold. Then there exist constants 0 < ρ0 < 1, α0, δ0 > 0
such that I(u) ≥ α0 for all u ∈ W s(·),p(·)

0 (Ω) with ‖u‖W s(·),p(·)
0 (Ω) = ρ0 and all g ∈ Lp′(·)(Ω) with ‖g‖Lp′(·)(Ω) ≤

δ0.

Proof. By (F1) and (F3), we can get

|F(x, t)| ≤ |t|p(x) +
1

q(x)
(a1 +

a1

δq(x)−1 )|t|q(x)

≤ |t|p(x) +
1
q−

(a1 +
a1

δq+−1 )|t|q(x)

for all x ∈ Ω and t ∈ R.
By Hölder inequalities, Proposition 2.1 and Theorem 3.2, in the case that ‖u‖W s(·),p(·)

0 (Ω) is small
enough, we have

I(u) ≥
min{1,V0}

p+
|||u|||p

+

W s(·),p(·)
0 (Ω)

− ‖u‖p−

Lp(·)(Ω) −
1
q−

(a1 +
a1

δq+−1 )‖u‖q
−

Lq(·)(Ω)

−C‖g‖Lp′(·)(Ω)‖u‖Lp(·)(Ω)

≥ ‖u‖W s(·),p(·)
0 (Ω)

(min{1,V0}

2p+ p+
‖u‖p+−1

W s(·),p(·)
0 (Ω)

− ‖u‖p−−1

W s(·),p(·)
0 (Ω)

−
1
q−

(a1 +
a1

δq+−1 )Cq‖u‖
q−−1

W s(·),p(·)
0 (Ω)

−Cp‖g‖Lp′(·)(Ω)

)
.
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For all t ∈ R, let

η(t) =
min{1,V0}

2p+ p+
|t|p

+−1 − |t|p
−−1 −

1
q−

(a1 +
a1

δq+−1 )Cq|t|q
−−1,

then there exists ρ0 > 0 such that max
t∈R

η(t) = η(ρ0) > 0. Taking δ0 := η(ρ0)
2Cp

, we have I(u) ≥ α0 =

ρ0η(ρ0)/2 > 0 for all u in W s(·),p(·)
0 (Ω) with ‖u‖W s(·),p(·)

0 (Ω) = ρ0 and for all g ∈ Lp′(·)(Ω) with ‖g‖Lp′(·)(Ω) ≤

δ0. �

Lemma 4.6. Suppose that (F1)–(F3), (V) hold, then there exists a function v ∈ C∞0 (Ω) such that
I(v) < 0 and ‖v‖W s(·),p(·)

0 (Ω) > ρ0, where ρ0 > 0 is the one in Lemma 4.5.

Proof. From condition (F2), we have

F(x, t) ≥ a|t|µ − a1|t|p(x) all (x, t) ∈ Ω × R, (4.6)

where a, a1 are constants. Thus by (4.6) and (F2), for u ∈ C∞0 (Ω) with ‖u‖W s(·),p(·)
0 (Ω) = 1, we have as

t → +∞

I(tu) =

∫
Ω

∫
Ω

|tu(x) − tu(y)|
p(x)+p(y)

2

p(x)+p(y)
2 |x − y|n+

s(x)p(x)+s(y)p(y)
2

dxdy

+

∫
Ω

V(x)
p(x)
|tu(x)|p(x)dx −

∫
Ω

F(x, tu(x))dx − t
∫

Ω

g(x)u(x)dx

≤
tp+

p−
[u]p+

W s(·),p(·)
0 (Ω)

+
V1tp+

p−
‖u‖p+

Lp(·)(Ω) − atµ‖u‖µLµ(Ω) + a1tp+

‖u‖p+

Lp(·)(Ω) − t
∫

Ω

g(x)u(x)dx

≤

(
1 + V1

p−
+ a1

)
tp+

‖u‖p+

W s(·),p(·)
0 (Ω)

− atµ‖u‖µLµ(Ω) + a1 − t
∫

Ω

g(x)u(x)dx

→ −∞,

(4.7)

where V1 = supx∈Ω̄ V(x). We conclude the lemma by taking v = t0u with t0 > 0 large enough. �

Lemma 4.7. Suppose that (F1)–(F3), (V) hold. Then there exists a function w ∈ W s(·),p(·)
0 (Ω) such that

I(w) < 0 and ‖w‖W s(·),p(·)
0 (Ω) < ρ0, where ρ0 > 0 is the one in Lemma 4.5.

Proof. The proof is similar to that of Lemma 4.6 with minor changes in the proof of inequality (4.7).
Let t ∈ (0, 1) be small enough, then inequality (4.7) becomes

I(tu) ≤
(
1 + V1

p−
+ a1

)
tp−‖u‖p−

W s(·),p(·)
0 (Ω)

− atµ‖u‖µLµ(Ω) − t
∫

Ω

g(x)u(x)dx. (4.8)

In order to ensure that the right side of inequality (4.8) is less than zero, we just have to make∫
Ω

g(x)u(x)dx > 0. Since C∞0 (Ω) is dense in Lp(·)(Ω) and |g|p
′(·)−2g ∈ Lp(·)(Ω), there exists gn0 > 0

such that gn0 ∈ C∞0 (Ω) and

‖gn0 − |g|
p′(·)−2g‖Lp(·)(Ω) ≤

1
8‖g‖Lp′(·)(Ω)

∫
Ω

|g(x)|p
′(x)dx.

So ∫
Ω

gn0(x)g(x)dx ≥ −4‖gn0 − |g|
p′(·)−2g‖Lp(·)(Ω)‖g‖Lp′(·)(Ω) +

∫
Ω

|g(x)|p
′(x)dx > 0.
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Take u = gn0 ∈ W s(·),p(·)
0 (Ω) and θ = min

{
1, ρ0
‖gn0 ‖Ws(·),p(·)

0 (Ω)

}
and choose t0 ∈ (0, θ) such that I(t0u) < 0. Let

w = t0u, then w is the one we expect. �

Definition 4.2. [2] Let X be Banach space. I is a functional on X. We say that I satisfies PS condition
in X, if any PS sequence {un}n ⊂ X, i.e. {I(un)}n is bounded and I′(un)→ 0 as n→ ∞, admits a strongly
convergent subsequence in X.

Lemma 4.8. Let (F1)–(F3) and (V) hold, then I satisfies the PS condition.

Proof. Let {un} be a PS sequence in W s(·),p(·)
0 (Ω). Then there exists C > 0 such that |〈I′(un), un〉| ≤

C‖un‖W s(·),p(·)
0 (Ω) and |I(un)| ≤ C. Thus by (F2), Proposition 2.2 and Theorem 3.2, we get

C + C‖un‖W s(·),p(·)
0 (Ω)

≥ I(un) −
1
µ
〈I
′

(un), un〉

≥
1
2

(
1
p+
−

1
µ

) min{1,V0}min{‖un‖
p+

W s(·),p(·)
0 (Ω)

, ‖un‖
p−

W s(·),p(·)
0 (Ω)

}

−
1
µ

∫
Ω

µF(x, un(x)) − f (x, un(x))un(x)dx −Cp(1 −
1
µ

)‖g‖Lp′(·)(Ω)‖un‖W s(·),p(·)
0 (Ω)

≥
1
2

(
1
p+
−

1
µ

) min{1,V0}min{‖un‖
p+

W s(·),p(·)
0 (Ω)

, ‖un‖
p−

W s(·),p(·)
0 (Ω)

}

−Cp(1 −
1
µ

)‖g‖Lp′(·)(Ω)‖un‖W s(·),p(·)
0 (Ω).

Hence {un} is bounded in W s(·),p(·)
0 (Ω). By Theorem 3.2, take a subsequence if necessary, then we get

un ⇀ u in W s(·),p(·)
0 (Ω),

un → u a.e. in Ω,

un → u in Lq(·)(Ω).

(4.9)

Now we want to prove that {un} converges to u in W s(·),p(·)
0 (Ω). For ψ ∈ W s(·),p(·)

0 (Ω), define a linear
functional Bψ on W s(·),p(·)

0 (Ω) as

Bψ(v) =

∫
Ω

∫
Ω

|ψ(x) − ψ(y)|
p(x)+p(y)

2 −2(ψ(x) − ψ(y))(v(x) − v(y))

|x − y|n+
s(x)p(x)+s(y)p(y)

2

dxdy.

By Hölder inequality,

|Bψ(v)| ≤ max{‖ψ‖p+−1

W s(·),p(·)
0 (Ω)

, ‖ψ‖
p−−1

W s(·),p(·)
0 (Ω)

}‖v‖W s(·),p(·)
0 (Ω),

hence Bψ is continuous.
By (F1) and (F3), there exists a constant C > 0 such that

| f (x, t)| ≤ |t|p(x)−1 + C|t|q(x)−1
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for all x ∈ Ω and t ∈ R. By Hölder inequality,∫
Ω

|( f (x, un) − f (x, u))(un − u)|dx

≤

∫
Ω

(|un|
p(x)−1 + |u|p(x)−1 + C(|un|

q(x)−1 + |u|q(x)−1)|un − u|dx

≤ (‖un‖
p+−1
Lp(·)(Ω) + ‖un‖

p−−1
Lp(·)(Ω) + ‖u‖p+−1

Lp(·)(Ω) + ‖u‖p−−1
Lp(·)(Ω))‖un − u‖Lp(·)(Ω)

+ C(‖un‖
q+−1
Lq(·)(Ω) + ‖un‖

q−−1
Lq(·)(Ω) + ‖u‖q

+−1
Lq(·)(Ω) + ‖u‖q

−−1
Lq(·)(Ω))‖un − u‖Lq(·)(Ω),

then

lim
n→∞

∫
Ω

|( f (x, un) − f (x, u))(un − u)|dx = 0. (4.10)

The fact that I satisfies PS condition in W s(·),p(·)
0 (Ω) and (4.9) imply

lim
n→∞
〈I′(un) − I′(u), un − u〉 = 0, (4.11)

so by (4.9)–(4.11),

o(1) = 〈I′(un) − I′(u), un − u〉

= Bun(un − u) − Bu(un − u) +

∫
Ω

V(x)(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx

−

∫
Ω

( f (x, un) − f (x, u))(un − u)dx

= Bun(un − u) − Bu(un − u) +

∫
Ω

V(x)(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx + o(1)

i.e.

Bun(un − u) − Bu(un − u) +

∫
Ω

V(x)(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx→ 0

as n→ ∞. By Simon Inequality, we can get

Bun(un − u) − Bu(un − u) ≥ 0,∫
Ω

V(x)(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx ≥ 0,

and further

lim
n→∞

(
Bun(un − u) − Bu(un − u)

)
= 0,

lim
n→∞

∫
Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx = 0.

(4.12)

Next we apply Simon inequality again to prove un → u in W s(·),p(·)
0 (Ω) as n → ∞. Let Ω1 = {x ∈ Ω :

p(x) ≥ 2} and Ω2 = {x ∈ Ω : p(x) < 2}, then

ρp(·),Ω(un − u) =

∫
Ω1

|un − u|p(x)dx +

∫
Ω2

|un − u|p(x)dx

= Z1 + Z2.
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Consider Z1 and Z2. First

Z1 ≤ C
∫

Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx→ 0.

By (4.9) and Theorem 1.3 in [21], there exists K > 0 such that ρp(·),Ω(un) + ρp(·),Ω(u) ≤ K. By Hölder
inequality

Z2 ≤ C
∫

Ω

[(|un|
p(x)−2un − |u|p(x)−2u)(un − u)]

p(x)
2 (|un|

p(x) + |u|p(x))
2−p(x)

2 dx

≤ C
[( ∫

Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx

) p+

2

+

( ∫
Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx)

p−
2

]
× [(ρp(·),Ω(un) + ρp(·),Ω(u))

2−p+

2 + (ρp(·),Ω(un) + ρp(·),Ω(u))
2−p−

2 ]

≤ C(K
2−p+

2 + K
2−p−

2 )
[( ∫

Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx

) p+

2

+

( ∫
Ω

(|un|
p(x)−2un − |u|p(x)−2u)(un − u)dx

) p−
2
]

→ 0

as n→ ∞. So ρp(·),Ω(un − u)→ 0 and further by Proposition (2.3),

‖un − u‖Lp(·)(Ω) → 0 (4.13)

as n→ ∞.
On the other hand. Let

(Ω ×Ω)1 = {(x, y) ∈ Ω ×Ω : p(x) + p(y) ≥ 4},

(Ω ×Ω)2 = {(x, y) ∈ Ω ×Ω : p(x) + p(y) < 4},

then

ϕs(·),p(·),Ω(un − u) =

"
(Ω×Ω)1

|un(x) − un(y) − u(x) + u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

+

"
(Ω×Ω)2

|un(x) − un(y) − u(x) + u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

= Φ1 + Φ2.
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We investigate Φ1 and Φ2. First

Φ1 =

"
(Ω×Ω)1

|un(x) − un(y) − u(x) + u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

≤ C
"

(Ω×Ω)1

|un(x) − un(y)|
p(x)+p(y)

2 −2(un(x) − un(y)) − |u(x) − u(y)|
p(x)+p(y)

2 −2(u(x) − u(y))

|x − y|n+
p(x)s(x)+p(y)s(y)

2

× (un(x) − un(y) − u(x) + u(y))dxdy

≤ C(Bun(un − u) − Bu(un − u))
→ 0

as n→ ∞. By Hölder inequality,

Φ2 =

"
(Ω×Ω)2

|un(x) − un(y) − u(x) + u(y)|
p(x)+p(y)

2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

dxdy

≤ C
"

(Ω×Ω)2

[
|un(x) − un(y)|

p(x)+p(y)
2 −2(un(x) − un(y)) − |u(x) − u(y)|

p(x)+p(y)
2 −2(u(x) − u(y))

|x − y|n+
p(x)s(x)+p(y)s(y)

2

× (un(x) − un(y) − u(x) + u(y))
] p(x)+p(y)

4

×

(
|un(x) − un(y)|

p(x)+p(y)
2 + |u(x) − u(y)|

p(x)+p(y)
2

|x − y|n+
p(x)s(x)+p(y)s(y)

2

) 4−p(x)−p(y)
4

dxdy

≤ C[(Bun(un − u) − Bu(un − u))
p+

2 + (Bun(un − u) − Bu(un − u))
p−
2 ]

× [(ϕs(·),p(·),Ω(un) + ϕs(·),p(·),Ω(u))
2−p+

2 + (ϕs(·),p(·),Ω(un) + ϕs(·),p(·),Ω(u))
2−p−

2 ].

By (4.9) and Proposition 2.3 in [31], there exists M > 0 such that ϕs(·),p(·),Ω(un) +ϕs(·),p(·),Ω(u) ≤ M, then

Φ2 ≤ C(M
2−p+

2 + M
2−p−

2 )[(Bun(un − u) − Bu(un − u))
p+

2 + (Bun(un − u) − Bu(un − u))
p−
2 ]

→ 0

as n→ ∞. So ϕs(·),p(·),Ω(un − u)→ 0 and further by Proposition (2.4),

[un − u]W s(·),p(·)(Ω) → 0 (4.14)

as n → ∞. By (4.13) and (4.14), we have ‖un − u‖W s(·),p(·)(Ω) → 0 as n → ∞. Therefore I satisfies PS
condition. �

In the proof of Theorem 4.1, we will apply Mountain Pass Theorem and Ekeland variational
principle. In order to make the proof more clear, we first state the two theorems:

Theorem 4.2. [2] (Mountain Pass Theorem) Let X be a Banach space. f ∈ C1(X,R) satisfies the
following conditions

(1) f (0) = 0 and there exists a constant ρ > 0 such that f |∂Bρ(0) ≥ α > 0;
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(2) there exists x0 ∈ X \ B̄ρ(0) such that f (x0) ≤ 0. Let

Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = x0},

C = inf
g∈Γ

max
t∈[0,1]

f (g(t)),

then C ≥ α. If f satisfies PS conditions, then C is a critical value of f .

Theorem 4.3. [19] (Ekeland Variational Principle) Let (X, d) be a complete metric space. f : X →
R ∪ {+∞} is bounded from below and lower semi-continuous. If for any ε > 0, δ > 0 there exists
u = u(ε, δ) ∈ X such that

f (u) ≤ inf
x∈X

f (x) + ε,

then there exists some point v = v(ε, δ) ∈ X satisfies

f (v) ≤ f (u),

d(u, v) ≤ δ,

f (v) < f (x) +
ε

δ
d(v, x), for all x , v.

Proof of Theorem 4.1. By Lemma 4.5, Lemma 4.6 and Lemma 4.8, I has mountain pass structure.
By Mountain Pass Theorem, there exists a critical value C1 ≥ α0 > 0 and a corresponding critical point
u1 ∈ W s(·),p(·)(Ω) such that I(u1) = C1, where α0 is the one in Lemma 4.5.

On the other hand, by Lemma 4.7, we have

C2 = inf{I(u) : u ∈ B̄ρ0} < 0.

Since I is lower semi-continuous, by Ekeland variational principle and Lemma 4.5, there exists a
sequence {un} ⊂ Bρ0 such that

C2 ≤ I(un) ≤ C2 +
1
n

and I(v) ≥ I(un) −
1
n
‖v − un‖W s(·),p(·)(Ω)

for all v ∈ Bρ0 . Then we can infer that {un} is a PS sequence. By Lemma 4.5 and Lemma 4.8, there
exists a critical point u2 ∈ Bρ0 such that I(u2) = C2 < 0 and u1 , u2 , 0. �

5. Conclusions

We obtain embedding theorems for variable exponent fractional Sobolev space W s(·),p(·)(Ω): In the
case that Ω is a bounded open set, if s2(x) ≥ s1(x), space W s2(·),p(·)(Ω) can be continuously embedded
into W s1(·),p(·)(Ω). In the case that Ω is a Lipschitz bounded domain, if s(x)p(x) < n, for continuous
function q with 1 < q(x) < p∗(x), W s(·),p(·)(Ω) can not only be continuously embedded, but also be
compactly embedded into Lq(·)(Ω). As an application of the embedding theorems, we obtain that the
problem (1.5) of s(x)-p(x)-Laplacian equations has at least two nontrivial weak solutions when the
nonlinear function f satisfies conditions (F1)–(F3), the potential function V satisfies condition (V), the
exponen p, q, s satisfies condition (PQS) and g satisfies condition (G).
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