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Abstract: In this paper, we mainly discuss the embedding theory of variable exponent fractional
Sobolev space W*?0(Q), and apply this theory to study the s(x)-p(x)-Laplacian equation:

(=) + VOl = f(x,u) + g(x)

where x € Q Cc R”, (—A);(('.)) is s(x)-p(x)-Laplacian operator with 0 < s(x) < 1 < p(x) < oo and
p(x)s(x) < n, the nonlinear term f : Q X R — R is a Carathéodory function, V : R* — R is a potential

function and g : R" — R is a perturbation term.
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1. Introduction

Variable exponent Lebesgue spaces were first studied by Orlicz in 1931 (see [33]). Since the
1990s, variable exponent Lebesgue spaces and variable exponent Sobolev spaces have been used in
a variety of fields, the most important of which is the mathematical modeling of electrorheological
fluids. In 1997, the variable exponent Lebesgue spaces were applied to the study of image processing:
In image reconstruction, the variable exponent interpolation technique can be used to obtain a smoother
image. For the theory and applications of variable exponent Lebesgue spaces and variable exponent
Sobolev spaces, see [10,12,15,21,28] and the references therein.

As a part of the theory of variable exponent function spaces, variable exponent fractional Sobolev
spacea are also developing vigorously. In [27], Kaufmann et al gave a class of variable exponent
fractional Sobolev spaces:

— p(x.y)
WA () = {u € LI9(Q) : f f 0 = w1y < oo for some A > o}, (1.1)
QJQ
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where s € (0,1), Q C R" is a bounded domain with Lipschitz boundary, g : Q — (1,00) and p :
Q x Q — (1, 00) are two continuous functions bounded away from 1 and co. Assume further that p is
symmetric, i.e. p(x,y) = p(y, x).

Afterwards some scholars did further research on theory and applications of this kind of spaces
(see [3,5-7,13,25,32] and the references therein). In [31], we considered the case that the index s is
a function s(x), p(x,y) is w, q(x) is p(x), established the so called variable exponent fractional
Sobolev spaces W*O-*0(Q) and gave some basic properties and an application. In this paper, we will
further study basic properties of this kind of spaces, for example: Embedding.

Embedding is always a classical topic in functional analysis, partial differential equations and other
fields. The first task of this paper is to give embedding theorems for W*©-*0)(QQ). Related to embedding
theorems, we refer to [14, 18,24, 35] and the references therein.

In recent years, mathematicians have made some achievements in the study of fractional partial
differential equations with variable growth. In [7], Bahrouni and Rédulescu extended the classical
fractional Laplacian to a class of fractional p(x, y)-Laplacian defined as

Lu(x) = PV, f Ju(x) = I 2((x) = u(y))
Q

|)C _ y|n+sp(x,y)

dy,

where Q C R", 0 < s < 1 and p : Q x Q — R is continuous satisfing

l<p = min_p(x,y) <plx,y)<p"= max_p(x,y) < oo,
(x,)eQxQ (x,y)eQxQ

p((x,y) = (z,2) = p(x,y), (x,y), (z,2) € QX Q.

Under certain conditions, they established the existence of solutions to the following problems by
means of the Ekeland variational principle:

(1.2)

Lu(x) + w9 u(x) = Aux)™ u(x), xeQ,
u(x) =0, x € 0Q.

In [32] Nguyen further discussed the problem (1.2) to show the existence of the eigenvalues of the
following fractional p(x,y)-Laplacian operator:

(1.3)

Lu(x) + [u(0))"92u(x) = AV ()" 2u(x), x€Q,
u(x) =0, x € 0Q).

In [27], Kaufmann et al considered the existence and uniqueness of the solution of fractional p(x, y)-
Laplacian equation as follows:

{ Lu(x) + [u(x)[192u(x) = f(x), xeQ, (L4)

u(x) =0, x € 0Q.

In [6], comparison and sub-supersolution principles for the fractional p(x,y)-Laplacian are given.
In [4], Azroul et al studied the existence of nontrivial weak solutions for fractional p(x, y)-Kirchhoff
type problems. In [3], the existence of eigenvalues of fractional p(x,y)-Laplacian is studied by means
of Ekeland variational principle. These problems are considered under the condition that the exponent s
is constant.
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In [34], Xiang et al used the mountain pass theorem and Ekeland variational principle to study the
elliptic problems of Laplacian with variable exponent s and constant pc under appropriate assumptions:

(=A)Ou + AV(x)u = alul/u + Blul?u, x € Q,
u(x) =0, x € R"\ Q.

where
u(x) — u(y)
|X _ y|n+23(x,y) Y-

(-A)*Vu(x) = 2P.V. f
Rn

It is proved that there are at least two different solutions to the above problems. Furthermore, the
existence of infinite many solutions for the limit problems is obtained.

In [11], Cheng et al further studied the existence of weak solutions for nonlinear elliptic equations
where the exponents s and p are of variable forms, i.e.

(—AYsou + alulP™2u = f(Oh(u), x€Q,

u(x) =0, x e R\ Q.

where the fractional a(-)-k(-)-Laplacian (—A)ﬁ(('.)) is defined by

w =)

_ 170 _ . _ a(x,y)-2
(=) "u(x) = 2 lim lu(x) — u(y)| Ix — y|n+a(x,y)k(x,y) ’

o0 20 Jrn\B,(y

As we know that when people studied nonlinear problems of fractional Laplace operators with
variable exponents, they mainly focus on the case that the exponent s is constant and p is variable. For
the cases that the exponent s is variable and p is constant or both the exponents s and p are variables,
there are still few results.

Under the quantum mechanics background, in [29,30] Laskin expanded the Feynman way integrals
from the kind of Braun quantum mechanics way to the kind of Lévy quantum mechanics way, proposed
the nonlinear fractional Schrodinger equation. Subsequently, results on the fractional Schrodinger
equation gradually appeared

(-A)’u+VxXu = f(x,u), xeQ

where

(=A)Y’u:= PV. f Mdy
Q

|)C _ y|n+2s

and f satisfies some conditions, which are stated in details in [17,22].

As a direct application of embedding theorems for W*“*0(Q), the second task of this paper is
to study the existence of multiple solutions for Dirichlet boundary value problem of the s(x)-p(x)-
Laplacian equations in W*©»0(Q):

1)

(=) u + VOO 2u = f(x,u) + g(x), x€Q, (15)
u(x) =0, x € 09, ’

where 0 < s(x) < 1 < p(x) < oo with p(x)s(x) < n, (=4,,))*" is the s(x)-p(x)-Laplacian operator
defined as

Ju(x) — u()| "7 2 u(x) - u(y))

(=)} u(x) := PV. f dy, xeQ.
Q

lx =yl
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When p(x) = 2 and s(x) = s(constant), Eq (1.5) becomes a fractional Laplacian equation
(=D’u+V(x)u = f(x,u) + g(x), xeQ.
This can be seen as fractional form of the following classic stationary Schrodinger equation
—Au+ V(x)u = f(x,u) + g(x), x€ Q.

Therefore, we think it is meaningful to study problem (1.5), and further, it is very necessary to study
the application of s(x)-p(x)-Laplace equation in W*O-*0(Q).

2. Preliminaries

First we provide some basic concepts and related notations. Suppose that QO be a Lebesgue
measurable subset of R” with positive measure. Let B;(0), B;(0) denote the open and close ball centered
at 0 with radius k, respectively. Let $(Q) denote the family of all Lebesgue measurable functions
p : Q — [1,00] and S(Q) denote the family of all Lebesgue measurable functions s : Q — (0, 1).
Denote

pt =esssup p(x), p~ =essinf p(x),
xeQ xeQ

T =esssup s(x), s =essinf s(x).
xeQ xeQ

For a Lebesgue measurable function u : Q — R, define
Ppera() = f ()P Pdx + ull =),
O\

The space W*-*(Q) is defined as the set of functions
lu(x) — u(y)l
|x _ y s(x);—f(»)

When the exponent s is constant, it is the space W**(€2) mentioned in [1,26]. The norm can be
defined as

{u € [2(Q) : € L™(Q X Q)}.

lellwsoo) = llullz=@) + lulcoso),

where the Holder semi-norm is defined by

‘ |s(x) — u(y)l
lulcosr = sup ———
2

xyeQ | x —
Xy | y

Define

PXO)+p(y) pO)

lu(x) — u(y)|
@se)per.aU) = f f | o+ PO Ps0) dxdy + ||ullwso=@q.,),
Qs Jana, x — ypr

where Q,, = {x € Q : p(x) = oo}. The variable exponent Lebesgue space L’(Q) is defined by

L'(Q) := {u 131> 0, st pp<->,sz(%) < °°}-
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We define a norm, so called Luxembourg norm, for this space by

||u||Lp()(Q) 1nf{/1 >0: pp()g( ) < 1}

The variable exponent fractional Sobolev space W*-?0(Q) is defined by
WOPO(Q) 1= {u € (@) : 3> 0, st pyp0a(3) < oo}.

Let
. u
[u]wsor00 @) = Inf {/1 >0 g poal7) < 1}

be the corresponding variable exponent Gagliardo semi-norm. The norm is equipped as

lutllwsoro) = llullro@) + [Hlwsorog)-

It is easy to verify that under this norm this space is a Banach space.
For the sake of convenience, we give some notations. For the variable exponent p : QX Q — [1, co]
which is symmetric, i.e. p(x,y) = p(y, x) on Q X Q, denote

pt = esssup p(x,y), p = essinf p(x,y),
(x,)EQXQ (x.y)eQxQ

(QX Q) =1{(x,y) € QX Q: p(x,y) = co}.

In view of p,, and L?V(Q), we can define modular p,., and variable exponent Lebesgue spaces
LP“) on Q x Q. The conclusions on LF®(Q) can be moved to LP*)(Q x Q). Here we give another
modular and norm in W*©0-*0(Q). In this case, we only consider the case of p* < co. Modular is
defined as:

P(¥)+P0)

R |u(x) — u(y)l .
ps(‘)»[’(')sg(u) = L |n+P(x)s(r)+p())r(x) dxdy + |u(x)|17( )d-x

Q|x -

According to this modular, we define the norm as:

. . u
lllulllyyser0) = inf {/1 > 0 Psop00(7) < 1}-
The following conclusions are what we will use later.
Proposition 2.1. Let p(-) € P(Q) with p* < co. Then |||ulllwsor0q) is equivalent to |[ullysc..oq), i.e.
§||u||Wx<->,p<->(g) < lleelllwsorrorq) < F|lu|lwav(->.1><»)(g).
[7+
PVOOf By the definition of ﬁs(.)’p(.)’g, Pp),.Qs Ps(),p(-).Q> WE have

u <5 u <1
Pyl ) =PsoOp0\ o )= L
|||u|||WS(‘)v1’(‘>(Q) |||u|||WS(‘)v1’(‘)(Q)

u A u
9‘)‘?(')717(')’9( _) < Ps(-),p(-),g(—) <1,
”lulllws(,),p(-)(g) ”lul”W-‘(‘)sI’(')(Q)
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SO
el < Mellwsorroeys Tty < llllysoro,
and further
§||u||wx(-),p<~>(g) < lulllwserro)-
On the other hand,

1

27 u 20 u 1
pp(-),Q(l—) < pp(-),Q(l—) < 5’

letllwser.000 ) |l ooy

1 L
2,y < 2,y < 1
CsOrpO AN T )= PsoHp00l T 1= 5
lleellwsorr0) [l wsorror ) 2

so by the definition of |||ul[|yso.r0(q),

[lleellTwsop00 ) < et lwso0.p0 () -

T
2rF

The equivalence between |[|u|||ys0..0 ) and [|ullyso.r0q) 18 proved. O

Just like the relationship between norm || - ||.»0(q) and module p,) o(+) in LPO(Q) space (see [12,15,
21]), norm |||ul|lyso.r0 ) and module Py p).0 have similar results.

Proposition 2.2. Let Q be a open set in R" and p(-) € P(Q) with p* < oo. Then next statements
are correct

il g M i} S P 20) < XU, M b 0F Wty <
+o00.

. Al/p” Al/ Al/p~ A1/p* PN
2. mln{ps(.l)’,p(.)’g(u) ps(!)’p()g(u)} < ”lul”W“')»I’(‘)(Q) < max{ps(.[;p(.),g(u) ps()p()g(u)}’ lfps(-),p(),Q(u) < +00.

Proposition 2.3. ( [12,21]) Let Q C R", p(-) € P(Q) with p* < oo and ug,u € LPO(Q). The following
are equivalent:

1. hm oty — u”LP()(Q) 0,

2. hm p(uk —u) =

3. uk — u in measure and ]}im o(yuy) = p(yu) for some y > 0.

Proposition 2.4. [31] Let Q C R”, p(-) € P(Q) with p*™ < co and uy, u € W*PO(Q). Then ]}im o(uy —
u) = 0 if and only if I}im[uk — ulysoroq) = 0.

Proposition 2.5. [31] If|Q| < +o0 and p* < oo, then for u € WOPO(Q) and {u) € WOPO(Q), the

following statements are equivalent:

(Il
1. u, — u.

2. uki uanduki u.
3. uy — u in measure and p(yuy) — p(yu), (0uy) — @(ou) for some y,6 > 0.

Proposition 2.6. Suppose that Q c R”", s(-) € S(R"), p(-) € PR"), p" <ooand 0 < s~ < s(x) < 57 <
1. Then Cy(Q) € WOPO(Q).
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Proof. Letu € C(£2) with suppu C Q, we already know u € LPY(Q). Now we prove:

PX)+p(y) Y)+17(y)

u(x) = u)|
f f |n+ T(X)p(x)+y(y)p(y) dxdy < 00,

Suppose that suppu C B,(0) N Q, then

P(X)"'P())

Ju(x) — u(y)|
f!; n+ M dXdy

Q|x -yl

P+ p(v) p(x)+p()>

ulx) —u ux)—u
:f |u(x) f¥)| dxdy+f f lu(x) = u(y)| dxdy
+ PP o SOPRZS0IPO)
B(0)nQ JQ |x — y|* Q\B(0) JB,0)NQ |x — Y| 2

I’(X)+l7())

u(x) —uy)l 7

< 2 f n+ $(Op()+s(p() dXdy

B, (0) JQ |x — Y| 2

p(\)+p()) p(\)+p(w
|u(x) — u(y)| lu(x) — u(y)l

S f f n+ S0PO+SQIPY) Y(Y)IJ(X)+Y(\)P(\) dXdy + 2 n+ s(X)p(x)+sy)p(y) dXdy

B (0) VB (0) |x — | B (0) JQ\By(0) [x — Y™z
=21 +21,.

Now we estimate /; and I>. Since u € C;(£2), we have

u(x) —u(y) = Vu(x + (1 - 0)y) - (x - y)

for x € B,(0),y € B».(0),0 <6 < 1. So

P+ p())

|u(x) = u(y)|
h= f f g 2P E0)p() dxdy
B,(0) JB,(0) |x — | i

PXO+p() r)+p())

|Vu(9x +(1-0)y)| 7
+ WD) Do) dxdy
By (0) JB,(0) |x —

||ullcl(Q) + ||ullcl(9) d d
4 8O=Dp@)+Hsm)=pG) l)p(x)+(s()) Dp») xay
By (0) Y By, (0) |x — Y|

1
SCf (f sz)dx,
5,0 Vo RITETTP
2 2

where constant C depends on ||ullc1q), ¥, p~ and p*. Since n — (1 — s*)p~ < n, we know that

fBl © Wdz is finite and further /; is also finite.

Next

(X)+p<>)

|u(x) — u(y)|
L= f f e SOPDES0Ip0) dxdy
B (0) JO\B,(0) |x — Y|

1’(X)+p())

Iu(X)I
f f + 5P +0IpG) dxdy
B(0) JO\B,,(0) |x — 2
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MP + MP”
B,(0) JR"\B,,(0) |x _ yl :

1
<C f ( f — dz)dx
B1(0) \ Jrm\By(0) [2MFP

where M = max |u(x)| and constant C depends on M, r, p~ and p*. Since n + s”p~ > n, we have

Xesuppu

1 . . . .
fRn\ B0 T dz is finite and further 7, is also finite.

Based on the discussion above, we arrive at the conclusion. m]

In view of Proposition 2.6, it is reasonable to define Wg(')’p (')(Q) as the closure of Ci'(€2) in
WsO,0(Q). According to Remark 3.2 on the trace theorem of in [13], we know that under the condition
s~ p~ > 1, the trace of a function in WS(')’p “(Q) can be guaranteed to be zero.

Next, we list the theorems will use.

Theorem 2.1. ( [12,15]) Give r(-), q(:) € P(Q). Define p(-) € P(Q) by

1 1 1
= +—.
p(x)  q(x)  r(x)

Then there exists a constant C such that for all u € L19(Q) and v € L'(Q), uv € L’(Q) and

||MV||LP(')(Q) < C||M||Lq<->(Q)||V||Lr<->(Q)-

At the end of this section, we consider the s(x)-p(x)-Laplacian operator (—A)‘;(('.)) on WS(')”’ © (Q).
Here, we denote by (Wg(')’p Q)Y the space dual to WS(')”’ (), and by (-, -} denote the scalar product
on the pair [(W;""(Q))", W, (Q)].

The operator (—A);(('.)) can be thought of as a mapping from WS(')’p “(Q) into (WS(')’p Q)Y by

P(0)+p()

— 2 -2 — —
(=AY 0, v) = f f |u(x) — u(y)l @) — u@))OX) =vy) , dy 2.1
QJo

p() SEP)+5IPQ)
|x _ y|n+ >

for u,v € Wg(')”’ (')(Q) and this definition makes sense. Indeed, we can use Theorem 2.1 to get the
desired result very easily.

3. Embedding theorems for W*©-*0)(Q)

Theorem 3.1. Let Q be a bounded open set in R" and p € P(Q), p* < oo. 51,8, € S(Q) and
$2(x) > s1(x) a.e. on Q, then there exists a positive constant C = C(p, s1, 52, Q) such that, for any
u € W2Or0(Q), we have

lleellwsi000( ) < Clltllyysaorror gy
i.e. the space WPO(Q) is continuously embedded in W* "0 (Q).
Proof. For convenience, let [u]y0.0q) = 1 and
P52 (=51 () +pO) 52 (0)=51 ()

C= sup [x—) PEPO)
(x,y)eQxQ
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then
lu(x) —u(y)|™ 2 el
o Jo CPUE |y BEALEND Y
3 |M(.X') _ I/l(y)| !’(x);p(\)) |x _ yl p(x)(xz(x)—xl(x));;;(y)(sz()-)_sl(y)) d d
- Q Q|x_y|n+w‘ Cw xay
- () — u(y)| "=
B QJo |x_y|n+w
<1,
therefore

[u] WS1OPO(Q) < C[M]Wsz(-),p(‘)(g)
and further
lleellyysi000(y < Cllutllyszorroqy-

O

Theorem 3.2. Let Q C R" be a bounded Lipschitz domain. p, s are continuous on Q with 1 > s(x) >
s~ > 0and p(x) > 1, s(x)p(x) < nfor x € Q. Assume that q : Q — [1, ) is a continuous function with

np(x)

q(x) < p*(x) := = sp)

for x € Q, then there exists a constant C = C(n, s, p,q, Q) such that for every u € WOrO(Q),
there holds

llull oo @) < Cllullwsorro ),
i.e. the space W*OPO(Q) is continuously embedded in L1(Q). Moreover, this embedding is compact.

The embedding theorem given in [11] (the space involved is X*»¢))_ the exponent a(-) is restricted
by the exponent p;(-) in the space L' under the condition: a(z,s) < pi(z) for (z,5) € Q x Q, but
the conclusion of our theorem does not require such a requirement. In addition, in the statement of
the embedding theorem in this paper, the case that the variable exponent p and ¢ are equal to 1 is
considered, which is not mentioned in references [8,11].

In order to prove this embedding theorem, we will use embedding theorem for constant exponent
fractional Sobolev space. In order to make the proof more clear, we list this theorem here.

Theorem 3.3. [16] (Embedding theorem for constant exponent fractional Sobolev space) Let s € (0, 1)

and p € [1, +00) be constants and satisfy sp < n. Denote p* = % Let Q C R" be an extension domain

for W5P(Q). Then there exists a positive constant C = C(n, p, s,Q) such that for any u € W*P(Q),
we have

llulla) < Cllullwsrq)

forany q € [p, p*l. i.e. the space W*P(Q) is continuously embedded in L1(QY) for any q € [p, p*].
If in addition Q is bounded, then the space W*P(Q) is continuously embedded in L1(Q) for any
q € [1, p*l. Moreover; this embedding is compact for g € [1, p*).
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With these preparations, we will now prove the Theorem 3.2.

Proof. Since p, s, g are continuous on Q and Q is bounded, there exists a positive constant & such that

np(x)

P stoply I =0

for every x € Q.

3.1

In view of the continuity of p and (3.1), we can find a constant € = &(n, p, g, s, 2) and a fnite family

of disjoint Lipschitz sets O; such that

Q:UO,-

N
i=1

and
sup |p(x) —pl<e, sup [s(x)-s()|<e
(x,y)€0i><0,- (x,y)EO,»XO,»
such that ) ¢
n
n—s2)p(y) 2

for every x,y,z € O;.
We can choose constant p; and ¢;, with p; = inOf pOy), 0<t;<s;:= inOf s(y), such that
yeli yeli

for each x € O;.
By Theoremn 3.3, there exists a constant C = C(n, &, t;, p;, O;), such that

||u||LPj(01) S C(Hu”LPl(O,) + [M]W[i‘pi(Oi))

Now, we prove the following inequalities.
(a) There exists a constant ¢; such that

N
edll z ., = Crllullzaor )
L% (0y)
p

(b) There exists a constant ¢, such that

N
ca[ulwsoroq) 2 Z[M] WiiPi(0;)-
i=1
where §(x) 1= s;x0,(x), x € Q.
(c) There exists a constant c¢3 such that

N

Z lullzricoy < csllullro)-
P

(3.2)

(3.3)
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If the above three inequalities hold, a conclusion can be drawn by combining (3.3) and Theorem 3.1
as the following:

N
lrllzooey < € Y Ml
i=1

N
<C Z(HMHM(O,-) + [ulwirico)) (3.4)
i=1 '

< C(”””LP(‘)(Q) + [M]Wf(-)vp(‘)(g))
= Cllullwsoro)

< Cllullwsorroq-
First prove (a). We have
N
()l = > ko,
i=1
i.e.
N
lrlzooney < ) Moo,
i=1
Since for each i, p? > g(x) for x € O;, these exists @; such that

1
CYi(X).

1
— = — +

D;
According to Theorem 2.1, we have

lullzaoo, < Cllul 5z o Il z2i000

In this way, (a) is proved.
Next prove (b). Set
|u(x) — u(y)|
Fi(x,y) := Ix——ylsy

then

W) —uG
[u]WfivPi(Oi) = (f f PR — _dxdy)
0; JO,; |X - )’|n iPitSiPi=SiPi

ju(x) — u(y)| )”" 1 )p'i
= dxd
( f,. fa,. ( =y ) = s

= ”Fi”Ll’i(O,-xO,-)

=< C||Fi||LP(X);PO'> (/J,O,-xo,-)”lllLﬁ"(x’”(‘"O"XO")

< C||Fill peyspod
L 2 (1,0;x0;)
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where
1 1 1

— = +
Pi w Bi(x,y)

and
dxdy

dﬂ(x’ y) - lx — y|"+(1i—Si)Pi
is a measure on O; X O,.

2pi(si—t;)
Set A = [u]ysiro0,) and k = max{ sup {|x — y| e+ }} We have
! (x,y)€0;:X0;

p(X)+p0>

- 1
f f |M(X) M(Y)|) dndy
;. JO; kA|x — YP' |lx — y|"+(fi—bi)l?i

Vs (xX)+p(y)
_ e = S () — ()2
- p(X)+p(V> (x)+p0) si(p()+p(y)
k s

A lx — y[**

(l)+p(V)

| (x) — u(y)l
f f p<r>+po> oy PO dxdy

dxdy

Therefore

”Fi”Lﬂ()f);p(r) (1.0XO0) < k[u]Wfiv”(')(Oi)

< k[ulwsoro @)
and further
[ulwirioy < Clulwsoroq)
In this way, (b) is proved.

By the same way to prove (a), we can prove (c).

Finally, prove the compactness of this embedding. Let {u;} be a sequence in W*-*0)(Q) with
llutrellwsoro ) < M. According to (3.4), for any i, ||ukllwirio,) < M. By Theorem 3.3 and (3.2), {u}
has a subsequence {u, } such that {u;|o, } converges in LP=5(0)) to some u! € LPi=5(0,). Similarly, {u}
has a subsequence {u;} such that {u;|o,} converges in L%~5(0,) to some 1 € L%5(0,). And so on,
{u "'} has a subsequence {u} } such that {« |y, } converges in LPv=5(0y) to some uV € LPv"5(Oy). Set

N

u(x) = > W (x)xo,

i=1

then
N
i) = ullpogy < € ) eflo, =l ¢ = Oask > co. (3.5)
i=1 ’
Now the proof is finished. O
Remark.

1. We can reduce the condition that g is continuous in the Theorem 3.2 to ess inf(p* — g) > 0;
2. Theorem 3.2 remains true if we replace WO*0(Q) by Wg(')’p Q).
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4. An application

For problem (1.5), we make the following assumptions.

Let Q) be a bounded Lipschitz domain in R" and

(PQS) p,g,s € C(Q),0 < s(x) < 1, s(x)p(x) <n, 1 <s7p~ < p(x) < p* < g~ < qx) < p(x) :=
np(x) for all x € Q,

7~ s(0p(x) , . .
(F) f : QxR — R is a Carathéodory function and there exist constant a; > 0, r > 0, u > p*

such that
(F1) |f(x,0)| < ai(1 + [#}9971) for a.e. x € Q and for each € R,
(F2) 0 < uF(x,1) < f(x,t)t for a.e. x € Q and for each ¢, |t| > r, where

t
F(x,0 = f f(x,7)dr fora.e.x e Q andforeachteR,
0

(F3) f(x,0) = o(jf"™") as t — 0, uniformly for x € Q.

V)V eC(Q)and Vj := min V(x) > 0,
xeQ

/ . 1 _
(G) g € L"(Q), where p'(-) defined by equality — + —— = 1forall x € Q.
px)  p'(x)
Definition 4.1. We say that u € W(‘;(')’p(')(Q) is a weak solution of problem (1.5) if for all v € Wg(')’p(')(Q)

we have
P)+p(y)

f f u(0) = w2 2(ux) — u())) = () dxdy
QJQ

s(0p()+s(G)p(y)
2

|x — yI"™*
+ f V(O u(x) PO 2 u(x)v(x)dx = f f(x, u)v(x)dx + f g(x)v(x)dx.
Q Q Q
Theorem 4.1. Let (PQS), (F), (F1)—(F3) and (V) hold and suppose that 0 £ g € L"'(Q). Then there

exists a constant 6y > 0 such that problem (1.5) admits at least two nontrivial solutions in Wg(')’p Q)
provided that ||g|| . q) < do-

Corresponding to the problem (1.2), consider the energy functional 7 : Wé(')’p Q) - R defined by
I(u) = J(u) — H(u) — G(u),

where

P)+p(y)

) () = u(y)| 2 V),
7= fgfg PODPO) e 20000 Pyt o O

Hu) = f F(x,u(x))dx,
Q

Gu) = f g(x)u(x)dx.
Q

We know that a critical point of / is a weak solution to the problem (1.2). To prove Theorem 4.1,
we give some lemmas.
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Lemma 4.1. Suppose that (V) hold. Then J € C I(WS(')”’ Q) and

wawiffWm_mwwm”Wm—mmMM—mm

s()P)+sp(y)
| X — |n+

+ f VO u()|PO 2 u(x)v(x)dx
Q

4.1)

forallu,v e Wg(”’ Q). Moreover; J is weakly lower semi-continuous on W:""(Q)

Proof. We can easily verify the Gateaux differentiability of J on WS(')’p (')(Q) and (4.1) holds for all
u,v € W,"0(Q).

Now prove J € C (WS(')”’ “(Q)). For any {u,} C WS(')”’ V(@) and u, — uin WQ) as n — oo
we have

p(X) Py P(X)+p() )+p0)
. |t (x) — u, ()] fu(x) —u@)l
lim - dxdy = 0. (4.2)
P(X)+5(3)p(y) s(x)p(wﬂ(»)p(x)
n—oo 0 Q |x _ yl 5 |x _ |n+

Without loss of generality, we further assume that

u, = ua.e.inQasn — oo,

By (4.2),

{MM)umW”W%%m—%@q

yl(n+ Y(X)p(w;rr(v)p(y) )(p(X)+p0) 2)

|)C — P+p(y)

is bounded in Lﬂm;g% (Q2) and by Brezis-Lieb Lemma in [23] we have

lim f f |Mn(x) - un(y)|p() pot Iu(x) _ u(y)|p(x)+p0)

Sm PO ) A dxdy = 0.

Similarly,
pﬁi?;ﬁ*(ﬁz
lim f V()| |, OO 1, (x) = ()PP u(x) dx = 0.
n—00 Q
By Holder inequality,

”J/(un) - J/(u)”(wg(')ﬂl’(')(g))f = sup
vew: PO )
IIVIIWS(»,p(-)(Q):l

KJ" () = J' (), v)| = 0

as n — co. Hence J € C'(W,""(Q)).
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Next we prove J is weakly lower semi-continuous on WS(')”’ Q). Let {u,} C Wg(')”’ Q) and u, — u
weakly in Wg(')”’ “(Q) as n — 0. Notice that for w,v € Wg(')’p O(Q),

p(ﬁw(;)
W tv |W(X)+V(X) W(mv(y)| dxd V(x) | w(x) + v(x)|P®
)= p(x>+p(y> TS xay + 5
lx — o P(x)
P(X)+[)(\)
|W(x) W(y)l V(x)
dxdy + | ——|w(x p(x)dx)
=3 ffg p(x)+p(y)| IR y 5 p(x)| (0l

ot
+ l( ) = v(y)l dxdy + 4E Iv(x)l”(")dx)
2 aJo p(x)+p(y) |X _ y|n+é(X)p(A);rs())P(y) Q p(x)
2

1 1
= EJ(W) + EJ(V)

Thus J is a convex functional on Wg(')’p Q).
Because J € CI(WS(')”’ “(Q)), J'(u) is subgradient of J at point u € Wg(')’p “(Q) and by the definition
of a subgradient we have
J(wn) = J(w) 2 (J'(w), u, — u).

Letting n — oo, we have
J(u) < liminf J(u,),

i.e. J is weakly lower semi-continuous. O

Lemma 4.2. Suppose that (F1) and (F3) hold. Then H € C'(W;""(Q)) and
(H'(w),v) = f SO, u(x)v(x)dx 4.3)
Q

forallu,v e Wg(')’p Q). Moreover H is weakly continuous on Wg(')’p Q).

Proof. We can easily verify Gateaux differentiability of H on WS(')”’ (')(Q) and (4.3) holds for all u,v €
WS('),P(')(Q)
5 .
Now consider H € C I(WS(')’p 9(Q)). For any {u,} C WS(')”’ Q) and u, — u in Wg(')’p Q) as
n — oo. By Theorem 3.2,
u, = u in LIO(Q) as n — oo.
By (F1) and Theorem 1.16 in [21], from u € LIV(Q) we have f(x,u) € LYO(Q). Since u, — u in
L1O(Q), by [20] we get
fGx,u,) = f(x,u) in LYOQ).
Letv € WS(')”’ “(Q) with [Vllys000q, = 1. By Therefore 3.2, v € L19(Q) and further by Holder
0
inequality,

KH' (un), v — H'(u), v)| < fg Lf e, un(x) = f(x, u(x)[[v(x)ldx

< Cllf G, un) = f(x, Wl pro@lIvliow)
< C“f(x» Uy) — f(xa u)”L‘I'(‘)(Q),

4.4)
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SO
|H' (), v — H'(u)II(WS(‘),,,@)(Q)), < Cllf(x, un) = f(x, u)”m’(-)(Q) -0

as n — oo. Therefore H € Cl(Wg(')’p(')(Q)).
At last we prove that H is weakly continuous on WS(')’p Q). Let u, — u weakly in WS(')”’ Q). By
Theorem 3.2, we have u, — u in L19(Q). Then similar to [9] we can get the conclusion. O

Lemma 4.3. G € C'(W,"""(Q)) and
(G'(w), vy = fQ g(x)v(x)dx (4.5)

forallu,v € Wg(')’p Q). Moreover G is weakly continuous on Wg(')’p Q).

Proof. We can easily prove that G € C 1(W5(')’p “(Q)) and (4.5).
Let u, — u weakly in Wg(')’p ©(Q). By Theorem (3.2), we have u, — u in L10(Q). By Holder
inequality,

1G(uy) = G| < fg |lg(x)(un(x) — ux)ldx

< Cligllro@llun — ullzso @)

—0

as n — oo. Thus G is weakly continuous on Wg(')’p Q). O

By Lemmas (4.1)—(4.3), we get the following conclusion.

Lemma 4.4. Suppose that (F1)—~(F3) and (V) hold, then I € C I(WS(')”’ (')(Q)) and I is weakly lower
semi-continuous on Wg(')’p Q).

Lemma 4.5. Suppose that (F1), (F3) and (V) hold. Then there exist constants 0 < py < 1, ag,9 > 0
such that I(u) > a for all u € WOS(')”’(')(Q) with ||u||W5<«>~v(-)(Q) = po and all g € L"'O(Q) with llgllro@ <
00-

Proof. By (F1) and (F3), we can get

1
IFCe, Dl < 117 + ——(ar + e

( ) 5q<x> [

< 7P + —(cn + —) |7
=

6‘47* 1
forall x e Qandr € R.

By Holder inequalities, Proposition 2.1 and Theorem 3.2, in the case that ||u||WA<> 70(Q) is small
enough, we have

min{l, Vol e
I(I/t) > p ”l ”l A()p()(Q) ||u||LP()(Q) _(al + 6q+ l)llulqu()(Q)
= Cligllro@llellirow)
min{1, V}
= Hu”WS(’)"’(')(Q)(+—+” ”p WO — llll? o, WO
0 2° @) Q)
1 q -
- q_—(al + 6q+ 1)CfI” ” A()p()(Q) p”g”LP’(')(Q) .
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For all r € R, let

_ min{l, Vp} bl o1 1 a, g1
n(n) = 2P+—p+|t| =" - q__(al + W)qutl ;
then there exists py > 0 such that max n() = n(py) > 0. Taking 6y := '72(‘6’,‘:), we have I(u) > =
te 4
po1(00)/2 > 0 for all u in W,P(Q) with lelly 000y = o and for all g € LPO(Q) with [lglliq) <
00. O

Lemma 4.6. Suppose that (F1)«(F3), (V) hold, then there exists a function v € Cy(Q) such that
I(v) < 0and ||v||Ws<~>.p<«>(Q) > po, where pg > 0 is the one in Lemma 4.5.
0

Proof. From condition (F2), we have
F(x,0) > alt} — a; |/’ all (x,1) € QX R, (4.6)

where a, a; are constants. Thus by (4.6) and (F2), for u € C;(L2) with IIMIIW(;(».po(Q) = 1, we have as
t — +o0

17(X)+p(y)

|tu(x) — tu(y)|
I(tu) = Lf (x)+p(})|x _ | +wdxciy

f 4C )ltu(x)lp(x)dx fF(x, tu(x))dx—tfg(x)u(x)dx
Q Q

A . 4.7)
< p—[ sy + ||u||u,0(g) atulfl g + art” Il ) — 1 | g(ou()dx
< ( )ﬂ’ ||u||1’ - aty““”/zlﬂ(g) +a; — tfg;g(x)u(x)dx
where V| = sup s V(x). We conclude the lemma by taking v = tyu with #, > 0 large enough. O
xeQ)

Lemma 4.7. Suppose that (F1)—(F3), (V) hold. Then there exists a function w € Wg(')’p (')(Q) such that
I(w) <0 and ||W||W~\(-)<,/7(-)(Q) < po, where pg > 0 is the one in Lemma 4.5.
0

Proof. The proof is similar to that of Lemma 4.6 with minor changes in the proof of inequality (4.7).
Let ¢ € (0, 1) be small enough, then inequality (4.7) becomes

1+V,
I(tu) < ( + al)t" ||u||”

at“llullmg) L g(x)u(x)dx. (4.8)

In order to ensure that the right side of inequality (4.8) is less than zero, we just have to make
fQ g(xu(x)dx > 0. Since CZ(Q) is dense in LPO(Q) and |g]” " 2g € LPO(Q), there exists g,, > 0
such that g,, € C;(£2) and

7’ D— 1 , »
llgn, — |g|17() Zg“LP(«)(Q) L— f Ig(x)lp( ) dx.
8”g”LP’(-)(Q)

So
f 8o (0)g(X)dx > —4Ign, — 12”2 gll o llgll oy + f 81" Pdx > 0.
Q Q
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Take u = g, € WS(')”' “(Q) and 6 = min {1 p—o} and choose 1, € (0, #) such that I(zyu) < 0. Let

? ||gn0||W8(-),p(~)(Q>
w = fyu, then w is the one we expect. O

Definition 4.2. [2] Let X be Banach space. 1 is a functional on X. We say that I satisfies PS condition
in X, if any PS sequence {u,}, C X, i.e. {I(u,)}, is bounded and I'(u,) — 0 as n — oo, admits a strongly
convergent subsequence in X.

Lemma 4.8. Let (F1)—(F3) and (V) hold, then I satisfies the PS condition.
Proof. Let {u,} be a PS sequence in WS(')”’ “(Q). Then there exists C > 0 such that [{I'(u,), u,)| <
CIIu,,IIWs(»A,p(-)(Q) and |I(u,)| < C. Thus by (F2), Proposition 2.2 and Theorem 3.2, we get

0

cC+C ||un||Wé<-><,p(l>(Q)

1
I(un) - _<I (un)’ un>

W%

11 1
2 E(p_ - _)mln{l VO}mln{”un”p y()p()(Q) ” n”p r()p()(Q)}
1
y f HE e, un () = f(x, (X))t (x)dx — Cp(1 — ;)”g”Lﬁ/(«)(Q)||unllwg(')’P(')(Q)
Q
11
E(_ - ;)mln{l VO} mln{”un”p Y()p()(Q) ”un”p r()p()(Q)}

1
- Cp(l - /_l)l|g||L”/(‘)(Q)”u"”WS(‘)”’(')(Q)'

Hence {u,} is bounded in Wg(')’p (')(Q). By Theorem 3.2, take a subsequence if necessary, then we get

SO0
u, = u in Wy (Q),

U, = u a.e.in Q, 4.9)
u, — u in L1OQ).

Now we want to prove that {u,} converges to u in WS(')”’ Q). For y € Wg(')”’ O(Q), define a linear
functional B, on W,"""(Q) as

By(v) = f f W) — v W@ oW ~ve)
¥ oJa |x_y| S<X)p(x)+s0)p<))

By Holder inequality,

1B, ()| < max{||l” | 0711

}| |V| | WS'(')J’(‘)(Q) s

?()P()(Q) Y()p()(Q)

hence B, is continuous.
By (F1) and (F3), there exists a constant C > 0 such that

Dl < P07+ Clpet!
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for all x € Q and r € R. By Holder inequality,

f 1 Cr ) = fCx )ty — w)ldx

Q

< f Qa7 4+ PO 4+ Cat "+ 1l — uldx
Q

1 -1 - -1
< (”unllip(.)(g) + ||un”pu;(.)(g) + ”u”i!’(')(g) + ”u”ip(.)(g))”un - u”Ll’(')(Q)

-1 ——1 -1 ——1
 Cllunlll oty + el oty + Wl o)+ Wl Mty = s,

then
lim f |(fCx, uy) = f(x, u))(u, — w)ldx = 0.
n—oo Q

The fact that / satisfies PS condition in Wg(')’p O(Q) and (4.9) imply
r}i_{g(l'(un) - I'(u), u, — u) =0,
so by (4.9)-(4.11),
o(1) = (I'(u,) — I'(w), uy, — u)

= By, (uy —u) = B, (u, — u) + f V)t = [0l u0) (1 — u)dx
Q

- fg (f (x, ) = f(x, ), — w)dx
= B, (u, —u) — B,(u, — u) + f V() (P21, — 1P 2u)(u, — u)dx + o(1)
Q
i.e.

Bun(un - M) - Bu(un - I/t) + f V(x)(lunlp(X)_zun - |M|p(X)_2u)(un - M)d-x - 0
Q

as n — oo. By Simon Inequality, we can get

Bu,l(un - I/t) - Bu(”n - l/t) > O,
f V)l 2w, — [ul?u)(u, — uydx > 0,
Q
and further
lim (B, (u, — u) — B,(u, —u)) =0,

lim | (u, " 2u, — [ul”®2u)(u, — u)dx = 0.

—00
n Q

Next we apply Simon inequality again to prove u, — u in WS(')"’ O(Q)asn — . Let Q; =
p(x) = 2}and Q; = {x € Q: p(x) < 2}, then

proaln =) = |y —ul"Vdx + f Juy — ulPVdx
Q] QZ

=7+ 7.

(4.10)

(4.11)

(4.12)

{(xeQ:
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Consider Z; and Z,. First
Z, <C f ("0, — [uPP~2u)(u,, — u)dx — 0.
Q

By (4.9) and Theorem 1.3 in [21], there exists K > O such that p,.) o(u,) + pp)o(u) < K. By Holder
inequality

-2 -2 ) 2-px)
Z < Cf[(lunlp(x) g = |2 u) 1ty — )] (P + l?) > dxe
Q

Tl

SCwaMW%meHmw—mmy
Q
-%fﬁmwﬂ%—wmﬂmw—mMﬂ]
Q

X opoalun) + pP@)»ﬂ(”))% + (Oprttn) + Ppoa@) T ]

Jal

saﬁf+K7{(ﬂmMW%rmWHmw—wmy
Q

|

-%jhmmﬂw—wmﬂmw—mmy
Q

-0
as n — 00. SO Py, —u) — 0 and further by Proposition (2.3),

lltn = ullro@) = 0 (4.13)

as n — o9,

On the other hand. Let

(QxQ) ={(x,y) € QX Q: p(x)+ p(y) = 4},

(QXQ), ={(x,y) € QX Q: p(x) + p(y) <4},

then
p(X)+p(y)
1a(0) = () — () + w7
G5y, pr0(Uy — u) = o PSR +p()s) A4y
(QxQ); lx — 2
P(X)+p() )+p(>)
|uan(X) = un(y) — u(x) + u@)l dxd
g PO +p()s0) ey
(@xQ) lx =yl 2

=0 + D,.
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We investigate @; and ®,. First

I’(X)+17(\)

O, = ff |un(X) = un(y) — u(x) + u(y)| dxdy
©@xQ)

w
|x — |n+

(X)+P(\) (X)+p())

< Cff | (x) — u, ()| (%) = uy()) = |u(x) = u(y)| “2(u(x) — u(y))
(Qx€Q) |x

oy + PO +p0))
X (U (x) = up(y) — u(x) + u(y))dxdy
< C(Bu,,(un - I/t) - Bu(un - Lt))
-0
as n — oo. By Holder inequality,
(xX)+p(y)
1, (%) = () = u(x) + u)|” 2
D, = f [ o) X — y" 4 PESI0)0) dxdy
2

PX+pQ) )+P0)

“2(u(x) — u(y))

()+p()
< ff |un<x) =~ I () — () — () — u(y)
= PX)s()+p(n)s(y)
(QxQ)2 |x — y|"™* 2
P(X)Zp(y)

X (10(X) = Un(y) — 1(x) + u(y))]

Px) ﬁ() p(x)+p()) 4- p(X) Jub)]
+ u(x) —u(y)l| 7

|n+ p(X>v(\)+p())V(x)

(lun(x) = u,(y)| dxdy

|lx —
< C[(Bun(un - Lt) - Bu(un - u))T + (Bun(un - Lt) - Bu(un - u))%]
X [(@50).p0).(Un) + SDS(-),p(-),Q(u))% + (@s0)p0.0W) + %(-),p(-),(z(u))%]-
By (4.9) and Proposition 2.3 in [31], there exists M > 0 such that @) »).0(Un) + @50, p) (@) < M, then

(DZ < C(M + M 2 )[(Bun(un M) - Bu(un - l/t))% + (Bu,,(un - l/[) - Bu(”n - M))%]

-0
as n — 00. SO Yy p(y.o(t, — u) — 0 and further by Proposition (2.4),
[I/tn - M]W.r(-),p(-)(g) -0 (414)

as n — oo. By (4.13) and (4.14), we have ||lu, — ullysor0) — 0 as n — oco. Therefore [ satisfies PS
condition. O

In the proof of Theorem 4.1, we will apply Mountain Pass Theorem and Ekeland variational
principle. In order to make the proof more clear, we first state the two theorems:

Theorem 4.2. [2] (Mountain Pass Theorem) Let X be a Banach space. f € C'(X,R) satisfies the
following conditions
(1) f(0) = 0 and there exists a constant p > 0 such that flsp, ) = @ > 0;
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(2) there exists xy € X \ Bp(O) such that f(xy) < 0. Let
I'={g € C([0,1],X) : g(0) = 0, g(1) = xo},
C = inf max f(g(1)),

gerl r€[0,1]

then C > a. If f satisfies PS conditions, then C is a critical value of f.

Theorem 4.3. [19] (Ekeland Variational Principle) Let (X, d) be a complete metric space. f : X —
R U {400} is bounded from below and lower semi-continuous. If for any € > 0,6 > 0 there exists
u = u(e,0) € X such that

f) <inf f(x) + &,

then there exists some point v = v(g, 0) € X satisfies

F) < flw),
d(u,v) <0,
) < f0) + gd(v, x), for all x # v.

Proof of Theorem 4.1. By Lemma 4.5, Lemma 4.6 and Lemma 4.8, [ has mountain pass structure.
By Mountain Pass Theorem, there exists a critical value C; > @y > 0 and a corresponding critical point
u; € WOrO(Q) such that I(4;) = C,, where «y is the one in Lemma 4.5.

On the other hand, by Lemma 4.7, we have

C, = inf{l(u) : u € B,,} <0.

Since I is lower semi-continuous, by Ekeland variational principle and Lemma 4.5, there exists a
sequence {u,} C B,, such that

1 1
Cy <I(u) <Cr+ p and I(v) > I(u,) — ;llv — Upllwsor0(0)

for all v € B,,. Then we can infer that {u,} is a PS sequence. By Lemma 4.5 and Lemma 4.8, there
exists a critical point u, € B, such that I(u;) = C, < 0 and u; # u, # 0. O

5. Conclusions

We obtain embedding theorems for variable exponent fractional Sobolev space W*-?0(Q): In the
case that Q is a bounded open set, if s,(x) > s;(x), space W20*0)(Q) can be continuously embedded
into WS0O-*0(Q). In the case that Q is a Lipschitz bounded domain, if s(x)p(x) < n, for continuous
function ¢ with 1 < g(x) < p*(x), WO20(Q) can not only be continuously embedded, but also be
compactly embedded into L/”(€). As an application of the embedding theorems, we obtain that the
problem (1.5) of s(x)-p(x)-Laplacian equations has at least two nontrivial weak solutions when the
nonlinear function f satisfies conditions (F1)—(F3), the potential function V satisfies condition (V), the
exponen p, g, s satisfies condition (PQS) and g satisfies condition (G).
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