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Abstract: Interactive dynamics between effector-tumor-normal cells in a mathematical model related 

to the growth of cancer in presence of immunotherapy has been discussed in the present paper. 

Adoptive immunotherapy has been added to the original model proposed by De Pillis et al. [1]. This 

has been done to get rid of the tumor cells. Different dynamical behaviours of the modified systems 

have been studied. The existence of the solution and global stability conditions of the healthy 

equilibrium point is addressed. Corresponding optimal control problem has been formulated to find 

the best possible way of administration of adoptive immunotherapy by which cancer cells can be 

eradicated without putting the patient at any health-related risk. To achieve this purpose, the quadratic 

control principle has been adopted. The dynamical behaviour of the effector-tumor-normal cells model 

with control is also numerically verified and demonstrated. Through numerical simulations, it is 

formally shown that the optimal regimens eradicate the tumor load in less time without putting the 

patients’ health at any risk. 
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1. Introduction 

Cancer is still considered as one of the dreaded diseases among the human population. The 

majority of types of cancer precipitate through the growth of malignant tumor cells. So, special care is 

needed to control the growth of malignant tumors [2]. Effective treatments for cancer patients include 

surgery, chemotherapy, immunotherapy, and radiation therapy. There are a variety of 

immunosuppressive therapies including cell transfer, dendritic cells, vaccines, monoclonal antibodies, 

cytokines, and adjuvant therapy to name a few [3–5]. In cancer, an increase in the number of growing 

tumor cells kills the tissues of our body [6]. The response of a tumor to treatment depends on several 

factors including the severity of the tumor, the patient’s response to treatment, and the location of the 

tumor, etc. In some cases, immunotherapy is very effective and such a treatment stimulates the immune 

system to fight the tumor cells and to have fewer side effects than other therapies [3, 4, 7, 8]. Therefore, 

our goal is not only to stop cancer but also to explore effective treatment strategies to eradicate cancer 

without putting the patients’ health condition to further risk. 

Adoptive immunotherapy targets the growth and development of antibodies by increasing the 

number of effectors or immune cells that help our immune system to fight cancer and other diseases. 

It is made up of white blood cells, tissues, and the lymphatic system. Adoptive immunotherapy, which 

acquires implants in the immune system to fight cancer, enhances the body’s natural ability to fight 

tumor cells. This treatment consists of tumor antigens on cancer cells, whose molecules are identified 

on the face and bound with antibody proteins. Tumor antigens are usually proteins or other 

macronutrients (e.g., carbohydrates) and common antibodies that bind to foreign viruses, but anti-

immunotherapy antibodies bind to antigen markers and target cancer cells so that the immune system 

blocks or kills tumors [9]. The mathematical model of tumor-immune interactions is discussed by 

Qomlaqi et al. [5] which can be used to develop a systematic approach to immunotherapy treatment. 

Interested readers are referred to the papers [8, 10–15] to have more information about the use of 

adoptive immunotherapy in cancer treatment. 

Mathematical modeling and optimal control theory have played an important role in answering 

such important research questions which are found generally through experimentation, but the 

performance of the required experiments becomes too costly or otherwise difficult to perform. 

Kuznetsov et al. [16] described the cytotoxic 𝑇 -lymphocyte response to tumor development. 

Kuznetsov and Knott [7] discussed the methods of tumor growth, its suppression, and regeneration. 

De Pillis and Raduskaya [1] presented the competition between normal cells and tumor cells in a model 

considering the role of chemotherapy into account. De Pillis et al. [17] introduced a mathematical 

model in tumor development using combined immunotherapy and chemotherapy. Nagata et al. [18] 

discussed the dynamical behaviours of 𝑇 cell tumor response under the support of dendritic cells. 

Many researchers have worked on tumor growth models with optimal control strategies. Optimal 

control strategies are very helpful in finding effective treatment strategies so that the dose of the drug 

can be controlled with time to lessen different side effects which otherwise may put the patients’ health 

under threat. Interested readers are referred to the papers [2, 5, 6, 9, 19–21]. 

In modern times, a variety of optimal control methods have been introduced to find the best 

treatment strategy which can cure cancer, inflicting minimum side effects [6, 22–25]. Khajanchi and 

Ghosh [6] demonstrated the method of combined optimal control and developed strategies that could 

increase the number of effector cells and minimize the overall dose of the drug that could eradicate 

tumor cell load. Nastitie and Khusnul Arif [22] discussed the cancer treatment process through a 

https://link.springer.com/article/10.1007/s13160-015-0193-5#auth-Mizuho-Nagata
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combination of radiotherapy and anti-angiogenic therapy aimed at reducing cancer size by adding 

control doses of radiotherapy and anti-angiogenic. Glick and Mastroberradino [23] used anti-

angiogenesis doses at the end of two weeks of treatment to determine the optimal dose to reduce tumor 

size and reduce toxicity to the patient. Bukkuri [24] carried out optimal control analysis of combined 

chemotherapy-immunotherapy in the case of a cancer model. Irana Ira et al. [25] discussed the 

dynamics of tumor cell growth and its optimal control. It is important to note the fact that the 

application of appropriate control theory requires a variety of populations which ultimately increases 

the number of equations in the mathematical model under consideration making it a difficult problem 

to handle with. To have an idea in this context, interested readers are referred to the papers [26–29]. 

In the present paper, we have discussed about a mathematical model having a cancerous cell in 

the form of tumors and have adopted the method of adoptive immunotherapy to get rid of the cancerous 

tumor cells. To make the treatment strategy a better one in which the patient’s health condition does 

not come under threat due to different side effects, we have converted it to an optimal control problem 

and solved it. 

The rest of this paper is as follows: In Section 2, we illustrate the model formulation. Positiveness 

and boundedness of the solutions of the model are verified in Section 3. The existence of equilibrium 

points and the local stability of those are discussed in Sections 4 and 5, respectively. In Section 6, the 

Lyapunov function is constructed to investigate the global stability of a locally stable healthy 

equilibrium point. In Section 7, we discuss the problem of optimal control concerning the model using 

Pontryagin’s minimum principle and the Hamiltonian function. Numerical simulations and 

corresponding discussions are presented in Section 8. Finally, the paper ends with a detailed review in 

Section 9. 

2. Model formulation 

Our considered model in this paper is a slight modification of the model proposed by De Pillis et 

al. [1]. Modifications are done in the first and second equations of the model due to the incorporation 

of adoptive immunotherapy. In the considered model, 𝐸(𝑡), 𝑇(𝑡), and 𝐻(𝑡) denote the total density 

of effector or immune cells, tumor cells, and healthy or normal cells at any time 𝑡 > 0, respectively. 

The system of differential equations describing the growth, death, and interactions of this population 

is given by 

𝑑𝐸

𝑑𝑡
= 𝜇 +

𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 + 𝑣1, 

𝑑𝑇

𝑑𝑡
= 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑣2𝑇, (2.1) 

𝑑𝐻

𝑑𝑡
= 𝑟2𝐻(1 − 𝐻) − 𝑐4𝐻𝑇, 

with initial conditions 𝐸(0) = 𝐸0, 𝑇(0) = 𝑇0, and 𝐻(0) = 𝐻0 where each initial value is positive. 

In the first equation of model (2.1), the effector cells have a constant source rate 𝜇, while the 

density of effector cells is proportional to death using the term 𝑑1𝐸 . Response of tumor-specific 

effector cells is regulated by the Michaelis-Menten form 𝜌𝐸𝑇 (𝜎 + 𝑇)⁄   which gives a saturation 

effect. The third term 𝑐1𝐸𝑇 represents the decomposing rate of effector cells by tumor cells. The last 
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term 𝑣1 represents the external source of adoptive cellular immunotherapy. This last term has not 

been applied in the model proposed by De Pillis et al. [1]. 

In the second equation of model (2.1), the tumor cell population is logistically increasing, as 

justified in [6–9], and is killed by the immune cells and normal cells through a mass-action dynamics 

which are represented by the terms 𝑐2𝐸𝑇  and 𝑐3𝑇𝐻 . Tumor cell growth rate is 𝑟1  and 𝑏1  is the 

maximum carrying capacity of tumor cells. The final term 𝑣2𝑇  refers to tumor cells killed by an 

external injection of adoptive immunotherapy. This last term has not been used in the model introduced 

by De Pillis et al. [1]. 

In the third equation of model (2.1), the normal cell population is also growing logistically, 𝑟2 is 

representing the growth rates of normal cells, and the maximum carrying capacities of normal cells is 

one [1]. The second term 𝑐4𝑇𝐻 refers to the rate of normal cell death owing to tumor cells. 

3. Positive invariance and boundedness 

Before we proceed with the mathematical analysis, we must show that the model is biologically 

feasible and that the values of all parameters are non-negative. According to the standard comparison 

theory, it follows 

𝑑𝐸

𝑑𝑡
= 𝜇 +

𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 + 𝑣1 ≤ 𝜇 + 𝑣1 − 𝑑1𝐸. 

Integration of the above leads to 

𝐸(𝑡) ≤
𝜇 + 𝑣1
𝑑1

+ 𝐸(0)𝑒−𝑑1𝑡 ⟹ lim
𝑡→∞

sup(𝐸(𝑡)) ≤
𝜇 + 𝑣1
𝑑1

. 

Again 

𝑑𝑇

𝑑𝑡
= 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑣2𝑇 ≤ 𝑟1𝑇(1 − 𝑏1𝑇). 

Proceeding as above, we have 

𝑇(𝑡) ≤
1

𝑏1 + 𝑇(0)𝑒
−𝑟1𝑡

⟹ lim
𝑡→∞

sup(𝑇(𝑡)) ≤
1

𝑏1
, 

and similarly, we find 

𝐻(𝑡) ≤
1

1 + 𝐻(0)𝑒−𝑟2𝑡
⟹ lim

𝑡→∞
sup(𝐻(𝑡)) ≤ 1. 

Thus, the feasible region for model (2.1) to be realistic is defined as 𝜓 = {(𝐸, 𝑇, 𝐻) ∈ 𝑅+
3}. 

We further assume that the initial values are positive i.e. 𝐸(0) ≥ 0, 𝑇(0) ≥ 0, and 𝐻(0) ≥ 0, 

then 𝐸(𝑡) ≥ 0 , 𝑇(𝑡) ≥ 0 , and 𝐻(𝑡) ≥ 0  for all 𝑡 ≥ 0 . The trajectories evolve in the attracting 

regions 

𝜓 = {(𝐸, 𝑇, 𝐻) ∈ 𝑅+
3 |0 ≤ 𝐸(𝑡) ≤

𝜇 + 𝑣1
𝑑1

, 0 ≤ 𝑇(𝑡) ≤
1

𝑏1
, 0 ≤ 𝐻(𝑡) ≤ 1}. 

The domain 𝜓 is positive invariant for model (2.1) and thus biologically meaningful for the cell 
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densities. We will analyze the model quantitative behaviour in the domain 𝜓 [30]. This verifies that 

model (2.1) is biologically feasible. 

4. Existing of equilibrium points 

We consider a case where the external source of adoptive cellular immunotherapy and tumor cells 

killed by an external injection of adoptive immunotherapy per day is a constant parameter [6]. 

Equilibrium points are found by 

𝑑𝐸

𝑑𝑡
= 0 ⟹ 𝜇 +

𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 + 𝑣1 = 0, 

𝑑𝑇

𝑑𝑡
= 0 ⟹ 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑣2𝑇 = 0, 

𝑑𝐻

𝑑𝑡
= 0 ⟹ 𝑟2𝐻(1 − 𝐻) − 𝑐4𝑇𝐻 = 0. 

The simplification of the above results shows that 

(i) 𝑆1(𝐸1, 𝑇1, 𝐻1) is a healthy equilibrium (where there is no existence of tumor) point where 𝐸1 =

(𝜇 + 𝑣1) 𝑑1⁄ , 𝑇1 = 0, and 𝐻1 = 1. 

(ii) 𝑆2(𝐸2, 𝑇2, 𝐻2) is a co-existing or unhealthy equilibrium point (where there is the existence of tumor) 

where 

𝐸2 =
(𝜇 + 𝑣1)(𝜎 + 𝑇2)

(𝑑1 + 𝑐1𝑇2)(𝜎 + 𝑇2) − 𝜌𝑇2
, 𝐻2 = 1 −

𝑐4𝑇2
𝑟2
, 

and 𝑇2 can be found from the solution of the equation 

𝑇2 =
1

𝑏1
−
𝑐2𝐸2
𝑟1𝑏1

−
𝑐3𝐻2
𝑟1𝑏1

−
𝑣2
𝑟1𝑏1

=
1

𝑏1
−

𝑐2
𝑟1𝑏1

(
(𝜇 + 𝑣1)(𝜎 + 𝑇2)

(𝑑1 + 𝑐1𝑇2)(𝜎 + 𝑇2) − 𝜌𝑇2
) −

𝑐3
𝑟1𝑏1

(1 −
𝑐4𝑇2
𝑟2
) −

𝑣2
𝑟1𝑏1

, 

or 

𝐴1𝑇2
3 + 𝐴2𝑇2

2 + 𝐴3𝑇2 + 𝐴4 = 0, 

where 

𝐴1 = 𝑐1(𝑐3𝑐4 − 𝑟1𝑟2𝑏1), 

𝐴2 = (𝑟1𝑟2𝑏1 − 𝑐3𝑐4)(𝜌 − 𝑑1 − 𝜎𝑐1) + 𝑐1𝑟2(𝑟1 − 𝑣2 − 𝑐3), 

𝐴3 = −𝑟2𝑐2(𝜇 + 𝑣1) − 𝑑1𝜎(𝑟1𝑟2𝑏1 − 𝑐3𝑐4) − 𝑟2(𝑟1 − 𝑣2 − 𝑐3)(𝜌 − 𝑑1 − 𝜎𝑐1), 

𝐴4 = 𝑑1𝜎𝑟2(𝑟1 − 𝑣2 − 𝑐3) − 𝑟2𝑐2(𝜇 + 𝑣1)𝜎. 

Note: Equilibrium points are valid if 𝑟2 > 𝑐4𝑇2 and (𝑑1 + 𝑐1𝑇2)(𝜎 + 𝑇2) > 𝜌𝑇2 which can be seen 

easily from the above equations. 
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5. Local stability analysis 

Without treatment case (𝒗𝟏 = 𝒗2 = 𝟎) : In this section, we study the nature of stability of the 

equilibrium points 𝑆1 and 𝑆2 by considering 𝑣1 = 0 and 𝑣2 = 0; these equilibrium points are 

𝑆1
∗ (𝐸1

∗ =
𝜇

𝑑1
, 𝑇1 = 0,𝐻1 = 1), 

and 

𝑆2
∗ (𝐸2

∗ =
𝜇(𝜎 + 𝑇2

∗)

(𝑑1 + 𝑐1𝑇2
∗)(𝜎 + 𝑇2

∗) − 𝜌𝑇2
∗ , 𝑇2

∗ =
1

𝑟1𝑏1
(𝑟1 − 𝑐2𝐸2

∗ − 𝑐3𝐻2
∗), 𝐻2

∗ = 1 −
𝑐4𝑇2

∗

𝑟2
). 

The Jacobian matrix of the system (2.1) is 

𝐽𝑆∗ = (
𝐴 𝐷 − 𝑐1𝐸 0

−𝑐2𝑇 𝐵 −𝑐3𝑇
0 −𝑐4𝐻 𝐶

), 

where 

𝐴 =
𝜌𝑇

𝜎+𝑇
− 𝑐1𝑇 − 𝑑1, 𝐵 = 𝑟1 − 2𝑟1𝑏1𝑇 − 𝑐2𝐸 − 𝑐3𝐻, 𝐶 = 𝑟2 − 2𝑟2𝐻 − 𝑐4𝑇, 𝐷 =

𝜎𝜌𝐸

(𝜎+𝑇)2
. 

(i) At the first equilibrium point, the eigenvalues of the Jacobian matrix 𝐽𝑆∗ are 

𝜆1
1 =

𝜌𝑇1
𝜎 + 𝑇1

− 𝑐1𝑇1 − 𝑑1 = −𝑑1 < 0, 

𝜆2
1 = 𝑟1 − 2𝑟1𝑏1𝑇1 − 𝑐2𝐸1

∗ − 𝑐3𝐻1 = 𝑟1 −
𝑐2𝜇

𝑑1
− 𝑐3, 

𝜆3
1 = 𝑟2 − 2𝑟2𝐻1 − 𝑐4𝑇1 = −𝑟2 < 0. 

By applying the condition of stability, the necessary condition for asymptotic stability of 

equilibrium point 𝑆1
∗ is found to be 

𝑟1 <
𝑐2𝜇

𝑑1
+ 𝑐3, 

and it will be unstable when 𝑟1 >
𝑐2𝜇

𝑑1
+ 𝑐3. 

(ii) The eigenvalues associated with co-existing equilibrium point 𝑆2
∗(𝐸2

∗, 𝑇2
∗, 𝐻2

∗) are derived from 

the Jacobian matrix 𝐽𝑆∗. The characteristic equation is 

𝜆3 + 𝐴11𝜆
2 + 𝐴12𝜆 + 𝐴13 = 0, (5.1) 

where (in (5.1)) 

𝐴11 = −(𝐴 + 𝐵 + 𝐶), 

𝐴12 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 + 𝑐2𝐷𝑇2
∗ − 𝑐1𝑐2𝐸2

∗𝑇2
∗ − 𝑐3𝑐4𝐻2

∗𝑇2
∗, 
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𝐴13 = 𝑐1𝑐2𝐶𝐸2
∗𝑇2

∗ + 𝑐3𝑐4𝐴𝐻2
∗𝑇2

∗ − 𝐴𝐵𝐶 − 𝑐2𝐶𝐷𝑇2
∗, 

and 

𝐸2
∗ =

𝜇(𝜎 + 𝑇2
∗)

(𝑑1 + 𝑐1𝑇2
∗)(𝜎 + 𝑇2

∗) − 𝜌𝑇2
∗, 

𝑇2
∗ =

1

𝑟1𝑏1
(𝑟1 − 𝑐2𝐸2

∗ − 𝑐3𝐻2
∗), 

𝐻2
∗ = 1 −

𝑐4𝑇2
∗

𝑟2
, 

𝐴 =
𝜌𝑇2

∗

𝜎 + 𝑇2
∗ − 𝑐1𝑇2

∗ − 𝑑1, 

𝐵 = 𝑟1 − 2𝑟1𝑏1𝑇2
∗ − 𝑐2𝐸2

∗ − 𝑐3𝐻2
∗ = −𝑟1 + 𝑐2𝐸2

∗ + 𝑐3𝐻2
∗, (Substituting the value of 𝑇2

∗), 

𝐶 = 𝑟2 − 2𝑟2𝐻2
∗ − 𝑐4𝑇2

∗ = −𝑟2 + 𝑐4𝑇2
∗, (Substituting the value of 𝐻2

∗), 

𝐷 =
𝜎𝜌𝐸2

∗

(𝜎 + 𝑇2
∗)2
. 

From here, we get 

𝐴11 = 𝑟1 + 𝑟2 + 𝑑1 + 𝑐1𝑇2
∗ − 𝑐2𝐸2

∗ − 𝑐3𝐻2
∗ − 𝑐4𝑇2

∗–
𝜌𝑇2

∗

𝜎+𝑇2
∗, (5.2) 

and 

𝐴11𝐴12 − 𝐴13 = (𝑟1 + 𝑟2 + 𝑑1 + 𝑐1𝑇2
∗ − 𝑐2𝐸2

∗ − 𝑐3𝐻2
∗ − 𝑐4𝑇2

∗–
𝜌𝑇2

∗

𝜎 + 𝑇2
∗)((−𝑟2

+ 𝑐4𝑇2
∗) ((−𝑟1 + 𝑐2𝐸2

∗ + 𝑐3𝐻2
∗) − (𝑑1 + 𝑐1𝑇2

∗ −
𝜌𝑇2

∗

𝜎 + 𝑇2
∗))

− (𝑑1 + 𝑐1𝑇2
∗ −

𝜌𝑇2
∗

𝜎 + 𝑇2
∗) (−𝑟1 + 𝑐2𝐸2

∗ + 𝑐3𝐻2
∗) + 𝑐2𝑇2

∗
𝜎𝜌𝐸2

∗

(𝜎 + 𝑇2
∗)2

− 𝑐1𝑐2𝐸2
∗𝑇2

∗

− 𝑐3𝑐4𝐻2
∗𝑇2

∗) − (−𝑟2 + 𝑐4𝑇2
∗)(−𝑟1 + 𝑐2𝐸2

∗ + 𝑐3𝐻2
∗) (𝑑1 + 𝑐1𝑇2

∗ −
𝜌𝑇2

∗

𝜎 + 𝑇2
∗)

+ 𝑐3𝑐4𝐻2
∗𝑇2

∗ (𝑑1 + 𝑐1𝑇2
∗ −

𝜌𝑇2
∗

𝜎 + 𝑇2
∗) − (−𝑟2 + 𝑐4𝑇2

∗)𝑐2𝑇2
∗ (𝑐1𝐸2

∗ −
𝜎𝜌𝐸2

∗

(𝜎 + 𝑇2
∗)2
). 

 (5.3) 

By Routh-Hurwitz stability criteria, if 𝐴11 > 0 and 𝐴11𝐴12 − 𝐴13 > 0, then 𝑆2
∗ is stable and 

becomes unstable when conditions are not satisfied. Validity of (5.2) and (5.3) are verified by putting 

the parameter values from Table 1. 
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With treatment case (𝒗𝟏 ≠ 𝟎 and 𝒗𝟐 ≠ 𝟎): In this section, we study the nature of stability of the 

equilibrium points 𝑆1 and 𝑆2 of the system and here 𝑣1 ≠ 0 and 𝑣2 ≠ 0. 

The Jacobian matrix of the system (2.1) is 

𝐽𝑆 = (
𝐴 𝐷 − 𝑐1𝐸 0

−𝑐2𝑇 𝐵1 −𝑐3𝑇
0 −𝑐4𝐻 𝐶

), 

where 

𝐴 =
𝜌𝑇

𝜎+𝑇
− 𝑐1𝑇 − 𝑑1, 𝐵1 = 𝑟1 − 2𝑟1𝑏1𝑇 − 𝑐2𝐸 − 𝑐3𝐻 − 𝑣2, 𝐶 = 𝑟2 − 2𝑟2𝐻 − 𝑐4𝑇, 𝐷 =

𝜎𝜌𝐸

(𝜎+𝑇)2
. 

(i) At the first equilibrium point, the eigenvalues of the Jacobian matrix 𝐽𝑆 are 

𝜆1
1 =

𝜌𝑇1
𝜎 + 𝑇1

− 𝑐1𝑇1 − 𝑑1 = −𝑑1 < 0, 

𝜆2
1 = 𝑟1 − 2𝑟1𝑏1𝑇1 − 𝑐2𝐸1 − 𝑐3𝐻1 − 𝑣2 = 𝑟1 −

𝑐2(𝜇 + 𝑣1)

𝑑1
− 𝑐3 − 𝑣2, 

𝜆3
1 = −𝑟2 < 0. 

By applying the condition of stability, the necessary condition for asymptotic stability of 

equilibrium point 𝑆1 is found to be 

𝑟1 <
𝑐2(𝜇 + 𝑣1)

𝑑1
+ 𝑐3 + 𝑣2, 

and it will be unstable when 𝑟1 >
𝑐2(𝜇+𝑣1)

𝑑1
+ 𝑐3 + 𝑣2. 

(ii) The eigenvalues associated with co-existing equilibrium point 𝑆2(𝐸2, 𝑇2, 𝐻2) are derived from the 

Jacobian matrix 𝐽𝑆. The characteristic equation is 

𝜆3 + 𝐵11𝜆
2 + 𝐵12𝜆 + 𝐵13 = 0, (5.4) 

where (in (5.4)) 

𝐵11 = −(𝐴 + 𝐵1 + 𝐶), 

𝐵12 = 𝐴𝐵1 + 𝐴𝐶 + 𝐵1𝐶 + 𝑐2𝐷𝑇2 − 𝑐1𝑐2𝐸2𝑇2 − 𝑐3𝑐4𝐻2𝑇2, 

𝐵13 = 𝑐1𝑐2𝐶𝐸2𝑇2 + 𝑐3𝑐4𝐴𝐻2𝑇2 − 𝐴𝐵1𝐶 − 𝑐2𝐶𝐷𝑇2, 

and 

𝐸2 =
(𝜇 + 𝑣1)(𝜎 + 𝑇2)

(𝑑1 + 𝑐1𝑇2)(𝜎 + 𝑇2) − 𝜌𝑇2
, 

𝑇2 =
1

𝑟1𝑏1
(𝑟1 − 𝑐2𝐸2 − 𝑐3𝐻2 − 𝑣2), 

𝐻2 = 1 −
𝑐4𝑇2
𝑟2
, 
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𝐴 =
𝜌𝑇2
𝜎 + 𝑇2

− 𝑐1𝑇2 − 𝑑1, 

𝐵1 = 𝑟1 − 2𝑟1𝑏1𝑇2 − 𝑐2𝐸2 − 𝑐3𝐻2 − 𝑣2 = −𝑟1 + 𝑐2𝐸2 + 𝑐3𝐻2 + 𝑣2, (Substituting the value of 𝑇2), 

𝐶 = 𝑟2 − 2𝑟2𝐻2 − 𝑐4𝑇2 = −𝑟2 + 𝑐4𝑇2, (Substituting the value of 𝐻2), 

𝐷 =
𝜎𝜌𝐸2

(𝜎 + 𝑇2)
2
. 

From here, we get 

𝐵11 = 𝑟1 + 𝑟2 + 𝑑1 − 𝑣2 + 𝑐1𝑇2 − 𝑐2𝐸2 − 𝑐3𝐻2 − 𝑐4𝑇2 −
𝜌𝑇2

𝜎+𝑇2
, (5.5) 

and 

𝐵11𝐵12 − 𝐵13 = (𝑟1 + 𝑟2 + 𝑑1 − 𝑣2 + 𝑐1𝑇2 − 𝑐2𝐸2 − 𝑐3𝐻2 − 𝑐4𝑇2

−
𝜌𝑇2
𝜎 + 𝑇2

) ((−𝑟2 + 𝑐4𝑇2) ((−𝑟1 + 𝑐2𝐸2 + 𝑐3𝐻2 + 𝑣2) − (𝑑1 + 𝑐1𝑇2 −
𝜌𝑇2
𝜎 + 𝑇2

))

− (𝑑1 + 𝑐1𝑇2 −
𝜌𝑇2
𝜎 + 𝑇2

) (−𝑟1 + 𝑐2𝐸2 + 𝑐3𝐻2 + 𝑣2) + 𝑐2𝑇2
𝜎𝜌𝐸2

(𝜎 + 𝑇2)
2
− 𝑐1𝑐2𝐸2𝑇2

− 𝑐3𝑐4𝐻2𝑇2) − (−𝑟2 + 𝑐4𝑇2)(−𝑟1 + 𝑐2𝐸2 + 𝑐3𝐻2 + 𝑣2) (𝑑1 + 𝑐1𝑇2 −
𝜌𝑇2
𝜎 + 𝑇2

)

+ 𝑐3𝑐4𝐻2𝑇2 (𝑑1 + 𝑐1𝑇2 −
𝜌𝑇2
𝜎 + 𝑇2

) − (−𝑟2 + 𝑐4𝑇2)𝑐2𝑇2 (𝑐1𝐸2 −
𝜎𝜌𝐸2

(𝜎 + 𝑇2)
2
). 

 (5.6) 

By Routh-Hurwitz stability criteria, if 𝐵11 > 0 and 𝐵11𝐵12 − 𝐵13 > 0, then 𝑆2 is stable and 

becomes unstable when conditions are not satisfied. Validity of (5.5) and (5.6) are verified by putting 

the parameter values from Table 1. 

Now, we conclude that 𝑆1  and 𝑆2  as equilibrium points are biologically feasible and stable 

under the condition of biological existence. 

6. Global stability analysis of the healthy equilibrium point 𝑺𝟏 in treatment case 

For the behaviour of the system (2.1) far away from the equilibrium point 𝑆1, we analyze the 

global stability of 𝑆1 in this section. Let’s define the Lyapunov function of the model (2.1) as 

𝐿(𝐸, 𝑇, 𝐻) = (𝐸 − 𝐸1 − 𝐸1 ln
𝐸

𝐸1
) + (𝑇 − 𝑇1) + (𝐻 − 𝐻1 − 𝐻1 ln

𝐻

𝐻1
). 

Now, we differentiate w.r.t. time to obtain 
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𝑑𝐿

𝑑𝑡
= (1 −

𝐸1
𝐸
)
𝑑𝐸

𝑑𝑡
+
𝑑𝑇

𝑑𝑡
+ (1 −

𝐻1
𝐻
)
𝑑𝐻

𝑑𝑡

= (1 −
𝐸1
𝐸
) (𝜇 +

𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 + 𝑣1)

+ (𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑣2𝑇) + (1 −
𝐻1
𝐻
) (𝑟2𝐻(1 − 𝐻) − 𝑐4𝐻𝑇)

= −𝑑1
(𝐸 − 𝐸1)

2

𝐸
− 𝑟2(𝐻 − 𝐻1)

2 − 𝑟1𝑏1𝑇
2 − (𝑐3 + 𝑐4)𝑇𝐻

+ (
𝜌

𝜎 + 𝑇
− 𝑐1) (𝐸 − 𝐸1)𝑇 + (𝑟1 − 𝑣2)𝑇 − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑐4𝑇(𝐻 − 𝐻1)

= −𝑑1
(𝐸 − 𝐸1)

2

𝐸
− 𝑟2(𝐻 − 𝐻1)

2 − 𝑟1𝑏1𝑇
2 − (𝑐3 + 𝑐4)𝑇(𝐻 − 𝐻1)

+ (
𝜌

𝜎 + 𝑇
− 𝑐1 − 𝑐2) (𝐸 − 𝐸1) + [𝑟1 − 𝑣2 − 𝑐2𝐸1 − 𝑐3𝐻1]𝑇 = −𝑌

𝑇𝑀𝑌 − 𝑉𝑇𝑌, 

(6.1) 

where 

𝑌𝑇 = [𝐸 − 𝐸1, 𝑇, 𝐻 − 𝐻1], 

𝑀 =

(

 
 
 

𝑑1
𝐸

1

2
(𝑐1 + 𝑐2 −

𝜌

𝜎 + 𝑇
) 0

1

2
(𝑐1 + 𝑐2 −

𝜌

𝜎 + 𝑇
) 𝑟1𝑏1

1

2
(𝑐3 + 𝑐4)

0
1

2
(𝑐3 + 𝑐4) 𝑟2 )

 
 
 

, 

𝑉𝑇 = [0, 𝑣2 − 𝑟1 + 𝑐2𝐸1 + 𝑐3𝐻1, 0]. 

By noting the second component of the vector 𝑉 in (6.1), we must have: 

𝑐2(𝜇+𝑣1)

𝑑1
+ 𝑐3 + 𝑣2 > 𝑟1, (6.2) 

where such a condition, namely (6.2), results in 𝑉𝑇𝑌 > 0. Furthermore, by considering the values of 

parameters from Table 1, if 𝐸 = (𝜇 + 𝑣1) 𝑑1⁄  and 𝑇 = 1 𝑏1⁄ , then all minors of the matrix 𝑀 are 

positive (all eigenvalues of 𝑀 are also positive) and so 𝑌𝑇𝑀𝑌 > 0. Now, it is clear that 

𝑑𝐿

𝑑𝑡
< 0. 

Therefore, the healthy equilibrium point 𝑆1 is globally asymptotically stable if 

𝑐2(𝜇 + 𝑣1)

𝑑1
+ 𝑐3 + 𝑣2 > 𝑟1, 𝐸 =

𝜇 + 𝑣1
𝑑1

, 𝑇 =
1

𝑏1
. 

In biological terms, it means that the tumor cells will be killed by an external injection of the 

adoptive immunotherapy if 
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𝑐2(𝜇 + 𝑣1)

𝑑1
+ 𝑐3 + 𝑣2 > 𝑟1, 𝐸 =

𝜇 + 𝑣1
𝑑1

, 𝑇 =
1

𝑏1
. 

The vector field plot along with four trajectories with different initial points (with the same set of 

parameter values taken in Table 1) and the equilibrium point 𝑆1 has been shown in Figure 1. 

 

Figure 1. The vector field plot (The initial conditions of effector-tumor-normal cells are 

Blue [1, 0.1, 0.5], Red [0.2, 0.1, 0.6], Yellow [0.15, 0.05, 0.4], and Green [0.3, 0.04, 0.7]). 

From the vector field plot, it is seen that any trajectory starting from any starting point in the basin 

of attraction converges to the tumor-free equilibrium point 𝑆1 (indicated by the black dot) indicating 

that it is a globally stable point for the system. Biologically, this indicates the fact that the body is 

recovering from the tumor regardless of the initial condition which contains tumor growth. 

7. Optimal control 

This section is devoted to the study of the model after we administer adoptive immunotherapy 

treatment at a specific time. From a biomedical perspective, we have used the concept of optimal 

control in the model. In the earlier discussed case, the amount of injected adoptive immunotherapy 

remains the same even when the tumor size gets reduced. This in turn might infuse detrimental effects 

to the patients’ immune system and other diseases may attack the patient. So, practically, the amount 

of injected immunotherapy should be decreased when the size of the tumor gets smaller. For this 

purpose, we should look into the problem with a control strategy that can lessen the health hazard for 

the patient. Therefore, we propose and analyze the optimal control problem applicable to model (2.1) 

to determine the optimal dose of adoptive immunotherapy to control the tumor. We determine control 

inputs 𝑣1 and 𝑣2 of cellular immunotherapy which are included in the first and second equations of 

the model (2.1); to be supplied from an external source at different times. 

So, let us assume that the time-dependent form of our considered model has the following form: 

𝑑𝐸

𝑑𝑡
= 𝜇 +

𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 + 𝑣1(𝑡), 

0.4

0.6

0.8

1.0

Normal Cells

0.00

0.05
0.10

0.15

Tumor Cells

0.4
0.6 0.8 1.0 1.2
Immune Cells

S1(0.75,0,1) 
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𝑑𝑇

𝑑𝑡
= 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑣2(𝑡)𝑇, (7.1) 

𝑑𝐻

𝑑𝑡
= 𝑟2𝐻(1 − 𝐻) − 𝑐4𝐻𝑇, 

with the initial conditions 

𝐸(0) = 𝐸0, 𝑇(0) = 𝑇0, 𝐻(0) = 𝐻0. (7.2) 

The objective function which is to be minimized is defined as: 

𝛺(𝑣1, 𝑣2) = ∫ (𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑣1
2 + 𝛽2𝑣2

2)
𝑡𝑓
0

𝑑𝑡, (7.3) 

where 𝛼1   𝛼2   𝛽1 , and 𝛽2  are non-negative constants. It should be mentioned that  𝛽1  and  𝛽2 

represent the weight factors of the objective function and are used for balancing the size of the terms. 

The optimal combination of control variables 𝑣1  and 𝑣2  will be adequate to minimize the tumor 

density and negative side effects over a fixed time. The first two terms of the integrand function are 

the total number of tumor cells and immune cells. The third and fourth terms of the integrand show the 

effect of adoptive immunotherapy on the body. Here, we have used the problem of optimal control for 

the model to reduce the burden of tumor cells, to reduce the time period for recovery of the patient, to 

reduce side effects due to immunotherapy, and also to increase the effectiveness of immunotherapy to 

strengthen the immune system. 

Here, we establish an optimal control 𝑣1
∗ and 𝑣2

∗ such that 

𝛺(𝑣1
∗, 𝑣2

∗) = min{𝛺(𝑣1, 𝑣2): 𝑣1, 𝑣2 ∈ ∆}, 

where ∆= {𝑣1, 𝑣2: measurable, 0 ≤ 𝑣1, 𝑣2 ≤ 1, 𝑡 ∈ [0, 𝑡𝑓]} is the admissible control set. 

7.1. Existence of optimal control 

In this sub-section, the existence of optimal control of the system (7.1) is discussed. The property 

of supersolutions �̅�, �̅�, and �̅� of the model (7.1) is that trajectories are given by 

𝑑�̅�

𝑑𝑡
= 𝜇 + 𝜌�̅�, 

𝑑�̅�

𝑑𝑡
= 𝑟1�̅�, (7.4) 

𝑑�̅�

𝑑𝑡
= 𝑟2�̅�, 

are bounded [9]. We rewrite (7.4) as follows: 

(
�̅�
�̅�
�̅�

)

′

= (

𝜌 0 0
0 𝑟1 0
0 0 𝑟2

)(
�̅�
�̅�
�̅�

) + (
𝜇
0
0
). (7.5) 
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Since it is a linear system with bounded coefficients and the time limit is limited, we conclude 

that supersolutions �̅� , �̅� , and �̅�  of the above system are uniformly bounded. Using the theorem 

proposed by Lukes [31], we found that the admissible control class and the corresponding state 

equations are nonempty with initial conditions given in (7.2). Also, by the definition of the set ∆, the 

control set ∆ is convex and closed. Since the state solutions are bounded, hence, the continuity of 

R.H.S of the state system (7.1) holds and is bounded above by a sum of the bounded control and state. 

Now, we have to show that the convexity of the integrand of 𝛺(𝑣1, 𝑣2) on ∆ and bounded below 

by 𝜏1(𝑣1
2 + 𝑣2

2) − 𝜏2 with 𝜏1, 𝜏2 > 0. 

Let 𝑢 and 𝑤 are distinct elements of 𝛺 and 0 ≤ 𝑝 ≤ 1. We have to show 

(1 − 𝑝)𝛺(𝑡, 𝑌, 𝑢) + 𝑝𝛺(𝑡, 𝑌, 𝑤) ≥ 𝛺(𝑡, 𝑌, (1 − 𝑝)𝑢 + 𝑝𝑤), (7.6) 

where 

𝛺(𝑡, 𝑌, 𝑢) = 𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑣1
2 + 𝛽2𝑣2

2, (7.7) 

and 𝑢 and 𝑤 are two control vectors and 𝑝 ∈ (0,1). 

By substituting (7.7) into (7.6), we get 

(1 − 𝑝)𝛺(𝑡, 𝑌, 𝑢) + 𝑝𝛺(𝑡, 𝑌, 𝑤) − 𝛺(𝑡, 𝑌, (1 − 𝑝)𝑢 + 𝑝𝑤) 

= (1 − 𝑝)(𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑢1
2 + 𝛽2𝑢2

2) + 𝑝(𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑤1
2 + 𝛽2𝑤2

2)

− (𝛼1𝑇 − 𝛼2𝐸 +∑𝛽𝑖((1 − 𝑝)𝑢𝑖 + 𝑝𝑤𝑖)
2

2

𝑖=1

) 

= 𝑝(1 − 𝑝)(𝛽1(𝑢1 − 𝑤1)
2 + 𝛽2(𝑢2 − 𝑤2)

2) ≥ 0,   [since(1 − 𝑝) > 0 and (𝑢𝑖 − 𝑤𝑖)
2 ≥ 0], 

which implies that 

(1 − 𝑝)𝛺(𝑡, 𝑌, 𝑢) + 𝑝𝛺(𝑡, 𝑌, 𝑤) ≥ 𝛺(𝑡, 𝑌, (1 − 𝑝)𝑢 + 𝑝𝑤), 

and 

𝛺(𝑡, 𝑌, 𝑣) = 𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑣1
2 + 𝛽2𝑣2

2 ≥∑𝛽𝑖(𝑣𝑖)
2

2

𝑖=1

≥ 𝜏1(𝑣1
2 + 𝑣2

2) ≥ 𝜏1(𝑣1
2 + 𝑣2

2) − 𝜏2. 

This shows that 𝜏1(𝑣1
2 + 𝑣2

2) − 𝜏2 is a lower bound of 𝛺(𝑣1, 𝑣2). 

Therefore, there exists an optimal control 𝑣1 
∗  and 𝑣2 

∗ for which 𝛺(𝑣1, 𝑣2) is minimized. From 

the above analysis, we establish the following theorem. 

Theorem 7.1. For given objective functional 

𝛺(𝑣1, 𝑣2) = ∫ (𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑣1
2 + 𝛽2𝑣2

2)
𝑡𝑓
0

𝑑𝑡, (7.8) 

where 

∆= {𝑣1, 𝑣2: measurable, 0 ≤ 𝑣1, 𝑣2 ≤ 1, 𝑡 ∈ [0, 𝑡𝑓]} 

is subject to the system (7.1) with the initial conditions 𝐸(0) = 𝐸0, T(0) = T0, and H(0) = H0, there 
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exists an optimal control 𝑣1 
∗ and 𝑣2

∗ such that 𝛺(𝑣1
∗, 𝑣2

∗) = min{𝛺(𝑣1, 𝑣2): 𝑣1, 𝑣2 ∈ ∆}. 

7.2. Characterization of the optimal control 

Now, we implement the procedure of applying the Pontryagin minimum principle and 

Hamiltonian function. We introduce the three co-state variable 𝑝𝑠, 𝑠 = 1, 2, 3 and so the Hamiltonian 

function is given by 

𝑀 = 𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑣1
2 + 𝛽2𝑣2

2 + 𝑝1�̇� + 𝑝2�̇� + 𝑝3�̇�. (7.9) 

By substituting (7.1) and (7.2) into (7.9), we find 

𝑀 = 𝛼1𝑇 − 𝛼2𝐸 + 𝛽1𝑣1
2 + 𝛽2𝑣2

2 + 𝑝1 (𝜇 +
𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 + 𝑣1)

+ 𝑝2(𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 − 𝑣2𝑇) + 𝑝3(𝑟2𝐻(1 − 𝐻) − 𝑐4𝑇𝐻). 

 (7.10) 

The Hamiltonian equations are 

�̇�1 = −
𝜕𝑀

𝜕𝐸
, 

�̇�2 = −
𝜕𝑀

𝜕𝑇
, (7.11) 

 �̇�3 = −
𝜕𝑀

𝜕𝐻
. 

where 𝑝𝑠(𝑡), 𝑠 = 1, 2, 3 are the adjoint functions to be determined suitably. 

Adjoint equations and forms of transversality conditions are standard results from the Pontryagin 

minimum principle [32, 33]. In the case of our considered system, an adjoint system can be obtained 

in the form of: 

�̇�1 = 𝛼2 − 𝑝1 (
𝜌𝑇

𝜎 + 𝑇
− 𝑐1𝑇 − 𝑑1) + 𝑝2𝑐2𝑇, 

�̇�2 = −𝛼1 − 𝑝1 (
𝜎𝜌𝐸

(𝜎+𝑇)2
− 𝑐1𝐸) − 𝑝2(𝑟1 − 2𝑏1𝑟1𝑇 − 𝑐2𝐸 − 𝑐3𝐻 − 𝑣2) + 𝑝3𝑐4𝐻,  (7.12) 

�̇�3 = 𝑝2𝑐3𝑇 − 𝑝3(𝑟2 − 2𝑟2𝐻 − 𝑐4𝑇), 

where 𝑝𝑠(𝑡𝑓) = 0, 𝑠 = 1, 2,3 are the transversality conditions. 

The optimal control functions are determined by the circumstances 
𝜕𝑀

𝜕𝑣𝑖
= 0, 𝑖 = 1,2. Hence, we 

get 

𝑣1
∗(𝑡) = −

𝑝1

2𝛽1
, 𝑣1

∗ = 𝑣1
∗(𝑡); 𝑣2

∗(𝑡) =
𝑝2𝑇(𝑡)

2𝛽2
, 𝑣2

∗ = 𝑣2
∗(𝑡);  𝑇 = 𝑇(𝑡). (7.13) 

Using the bounds for the control variables 𝑣1 
∗ and 𝑣2

∗ from (7.13), we get 
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𝑣1 
∗ =

{
 
 

 
 −

𝑝1
2𝛽1

,   if 0 ≤ −
𝑝1
2𝛽1

≤ 1

0,           if −
𝑝1
2𝛽1

≤ 0

1,           if −
𝑝1
2𝛽1

≥ 1
}
 
 

 
 

, 𝑣2 
∗ =

{
  
 

  
 
𝑝2𝑇

2𝛽2
,   if 0 ≤

𝑝2𝑇

2𝛽2
≤ 1

0,         if 
𝑝2𝑇

2𝛽2
≤ 0

1,         if 
𝑝2𝑇

2𝛽2
≥ 1

}
  
 

  
 

. 

In the compact notation, let us consider  

𝑣1
∗ = min {max {0,−

𝑝1

2𝛽1
} , 1}, (7.14) 

and 

𝑣2
∗ = min {max {0,

𝑝2𝑇

2𝛽2
} , 1}. (7.15) 

From (2.1), (7.12), (7.14), and (7.15), we get the subsequent optimal system as 

𝑑𝐸

𝑑𝑡
= 𝜇 +

𝜌𝐸𝑇

𝜎 + 𝑇
− 𝑐1𝐸𝑇 − 𝑑1𝐸 +min {max {0,−

𝑝1
2𝛽1

} , 1}, 

𝑑𝑇

𝑑𝑡
= 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐸𝑇 − 𝑐3𝑇𝐻 −min {max {0,

𝑝2𝑇

2𝛽2
} , 1} 𝑇, 

𝑑𝐻

𝑑𝑡
= 𝑟2𝐻(1 − 𝐻) − 𝑐4𝐻𝑇, 

𝑑𝑝1
𝑑𝑡

= 𝛼2 − 𝑝1 (
𝜌𝑇

𝜎 + 𝑇
− 𝑐1𝑇 − 𝑑1) + 𝑝2𝑐2𝑇, 

𝑑𝑝2
𝑑𝑡

= −𝛼1 − 𝑝1 (
𝜎𝜌𝐸

(𝜎 + 𝑇)2
− 𝑐1𝐸) − 𝑝2(𝑟1 − 2𝑏1𝑟1𝑇 − 𝑐2𝐸 − 𝑐3𝐻 − 𝑣2) + 𝑝3𝑐4𝐻, 

𝑑𝑝3
𝑑𝑡

= 𝑝2𝑐3𝑇 − 𝑝3(𝑟2 − 2𝑟2𝐻 − 𝑐4𝑇), 

subject to the conditions 𝐸(0) = 𝐸0, 𝑇(0) = 𝑇0, and 𝐻(0) = 𝐻0 and 𝑝𝑠(𝑡𝑓) = 0, 𝑠 = 1,2,3. 

Theorem 7.2. Considering optimal control variables 𝑣1 
∗  and 𝑣2

∗  and corresponding state variables 

𝐸∗(𝑡), 𝑇∗(𝑡), and 𝐻∗(𝑡), there exist ongoing specific adjoint variables 𝑝𝑠(𝑡), 𝑠 = 1, 2, 3, satisfying 

the following system: 

𝑑𝑝1
𝑑𝑡

= 𝛼2 − 𝑝1 (
𝜌𝑇

𝜎 + 𝑇
− 𝑐1𝑇 − 𝑑1) + 𝑝2𝑐2𝑇, 

𝑑𝑝2

𝑑𝑡
= −𝛼2 − 𝑝1 (

𝜎𝜌𝐸

(𝜎+𝑇)2
− 𝑐1𝐸) − 𝑝2(𝑟1 − 2𝑏1𝑟1𝑇 − 𝑐2𝐸 − 𝑐3𝐻 − 𝑣2) + 𝑝3𝑐4𝐻,  (7.16) 

𝑑𝑝3
𝑑𝑡

= 𝑝2𝑐3𝑇 − 𝑝3(𝑟2 − 2𝑟2𝐻 − 𝑐4𝑇), 
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subject to the transversality conditions 𝑝𝑠(𝑡𝑓) = 0, 𝑠 = 1, 2, 3. 

In addition, the following properties hold: 

𝑣1
∗ = min {max {0 −

𝑝1
2𝛽1

} ,1} , 𝑣2
∗ = min {max {0 

𝑝2𝑇

2𝛽2
} ,1}. 

Next, we proceed to numerically solve the proposed model and the optimal control problem. 

8. Numerical simulation 

This section is devoted to numerical solutions of the system (2.1), first without drug 

administration, then with the introduction of external immunotherapy and ultimately optimal control 

model of (2.1) as defined in (7.1). We consider the parameter values in Table1. The numerical solutions 

of the model are found using MATLAB, while the optimal system was solved using a fourth-order 

Runge-Kutta method. 

The optimal system (7.1) is associated with the adjoint system (7.14) and (7.15) and separated 

boundary conditions at times 𝑡 = 0 and 𝑡 = 𝑡𝑓. The forward method is used to solve the optimal 

system (7.1) and the backward method is used to solve the respective adjoint system (7.16) for 𝑡𝑓 =

50. The variables associated with optimal systems and in the objective functions have different scales. 

Hence, they are balanced by choosing weight constants 𝛼1 = 2, 𝛼2 = 0.5, 𝛽1 = 0.5, and 𝛽2 = 5 in 

the objective function given in (7.3). 

Table 1. Parameter values considered for the model. 

Parameters Meaning Value Source 

𝜇 Constant source rate of effector cells 0.05 [1] 

𝑑1 Natural death rate of effector cells 0.2 [1] 

𝑟1 Intrinsic growth rate of tumor cells 0.35 [1] 

𝑟2 Intrinsic growth rate of normal cells 0.3 [1] 

1 𝑏1⁄  Tumor population carrying capacity 2/3 [1] 

𝑐1 Decay rate of effector cells owing to tumor cells 0.2 [1] 

𝑐2 Decay rate of tumor cells owing to effector cells 0.3 [1] 

𝑐3 Decay rate of tumor cells owing to normal cells 0.15 [1] 

𝑐4 Decay rate of normal cells owing to tumor cells 0.3 [1] 

𝜌 Maximum recruitment of effector cells by tumor cells 1 [1] 
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Parameters Meaning Value Source 

𝜎 Half saturation constant for the proliferation term 0.5 [1] 

𝑣1 External source of adoptive cellular immunotherapy 0.1 (Varied)  

𝑣2 Tumor cells killed by an external injection 0.01 (Estimated) [6] 

Case 1: In Figure 2, we have portrayed the dynamics of effector cells (a), tumor cells (b), and the 

normal cells (c) in (2.1) arising out of their mutual interaction, when no external therapy (𝑣1 = 𝑣2 =

0) is used. It gives us an insight into what happens to the system without treatment and from this we 

get an idea about designing various optimal control policies. 

 

Figure 2. Without treatment: The density of effector cells, tumor cells, and normal cells 

(The initial values of effector-tumor-normal cells are 𝐸(0) = 0.25, 0.5, 0.5 , 𝑇(0) =

0.05, 0.15, 0.25, and 𝐻(0) = 0.95, 0.85, 0.75). 

From Figure 2, we note that without treatment, the density of effector cells, tumor cells, and 
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normal cells goes up and down and achieves their stable state after some time interval. As the tumor 

cell load gradually increases, effector cells also increase and the normal cells decrease and after some 

oscillation attain their steady-state and reach the unhealthy equilibrium point 𝑆2
∗. It is also clear from 

this that removal of tumor cells is not possible without a treatment strategy such as adoptive 

immunotherapy. 

Case 2: In Figure 3, we have plotted the dynamics of the system (2.1) with adoptive immunotherapy 

treatment but without optimal control. 

 

Figure 3. With treatment but without optimal control (The initial values of effector cells, 

tumor cells, and normalcells are 𝐸(0) = 0.25, 0.5, 0.5 , 𝑇(0) = 0.05, 0.15, 0.25 , and 

𝐻(0) = 0.95, 0.85, 0.75). 

From Figure 3, it is seen that when treatment is started, though for a brief period, normal cells 

initially decrease and tumor cells grow, the pattern changes after that time period and the tumor cell 

load decrease, but the effector cells and normal cells grow and ultimately settle down at the steady-

state which is the tumor-free equilibrium point 𝑆1 . This shows that with the incorporation of 

therapeutic strategies such as adoptive immunotherapy, tumor cells can be eradicated from the body of 

the patient. 
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Case 3: In Figure 4, we have portrayed the dynamics of the system (2.1) with adoptive immunotherapy 

treatment when optimal control is used. 

 

Figure 4. With both treatment and optimal control: The density of effector cells, tumor 

cells, and normal cells in presence of optimal drug control with initial conditions 𝐸(0) =

0.25, 𝑇(0) = 0.05, and 𝐻(0) = 0.9. 

 

Figure 5. Components of the control inputs for the same parameter values in Table 1 with 

initial conditions 𝐸(0) = 0.25, 𝑇(0) = 0.05, and 𝐻(0) = 0.9. 
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From Figure 4, it is seen that the optimal treatment strategies reduce the burden of tumor cells 

and increase the number of effector cells without causing damage to normal cells after a certain time 

of introduction of treatment. From Figure 4(b), we can conclude that the incorporation of optimal 

control to eradicate the tumor cells is more effective as it makes the patients’ body tumor-free in less 

time without putting the patients’ health at any risk. From this perspective, we can deduce from the 

optimal control diagram (Figures 4 and 5) that all efforts at the onset of the disease to reduce the 

proliferation of tumor cells should be kept under optimal control. Figures 5(a) and 5(b) further show 

that control inputs 𝑣1 and 𝑣2 of drugs can be reduced rather than keeping those constant with the 

decrease in the number of tumor cells. 

9. Conclusions 

In this paper, we have considered a basic model related to cancer which was proposed by De Pillis 

et al. showing interactions between effector-tumors-normal cells in the human body. Mathematical 

analysis of the model demonstrated that if the system is left to itself, cancerous tumor cells cannot be 

eradicated. Such a result tempted the authors to incorporate external immunotherapy in the form of 

injection showing that the tumorous cells can be wiped out after a certain interval of timekeeping 

external immunotherapy input constant throughout the time. Of course, this work suffers the drawback 

that an unreasonable amount of external immunotherapy may put the patients’ health at risk. Generally, 

it is expected that after the introduction of immunotherapy, when tumor cells decrease in number after 

a certain time, the amount of immunotherapy should also be lessened accordingly instead of keeping it 

fixed. Another important issue that should be kept in mind is that “can we wipe out the cancerous cells 

in a lesser interval of time?’’ To answer these issues we implemented an optimal treatment strategy 

with the introduction of adoptive immunotherapy. Satisfactory answers were found with regard to the 

above-mentioned important issues. Appropriate numerical simulations were incorporated to justify our 

conclusions. 
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