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weak solution of the considered nonlinear problem.

Keywords: fractional differential equation; boundary integral condition; singular initial boundary
value problem; well posedness; iterative process; bessel operator
Mathematics Subject Classification: 35D35, 35L.20

1. Introduction

Initial boundary value problems with non local and non-classical boundary conditions for integer
and fractional order linear and nonlinear evolution partial differential equations, have gained great
attention during the last three decades. Especially problems with boundary conditions of integral
type (the so called energy specification) which are important from the point of view of their practical
application to modelling and investigating various physical phenomena in the context of chemical
engineering, thermoelasticity, population dynamics, polymer rheology, aerodynamics, heat conduction
processes, plasma physics, underground-water flow, transmission theory, chemical engineering, control
theory, fluid flow and many physical and biological processes and systems and so forth, see [19-31].
We should mention that most local phenomena can be examined and modeled in terms of integer
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order differential equations, while fractional order differential equations model non local phenomena.
Accordingly, fractional order partial differential equations describe real world phenomena that cannot
be described by classical mathematics literature. This is due to the fact that many models depend
on the present and historical states. For integer order case (see for example [1-11] and references
therein. For the fractional order case see for example [15-18, 35-37] and references therein. However,
the investigation of initial boundary value problems for nonlinear fractional order partial differential
equations still needs too much exploration and investigation.

For the proof of the existence and the uniqueness of the solution of the posed problem, we use the
energy inequality method based mainly on some a priori estimates and on the density of the range of the
operator generated by the considered problem. In the literature, there are few articles using the method
of energy inequalities for the proof of existence and uniqueness of fractional initial-boundary value
problems in the fractional case (see [12—14, 32-34]). This work, can be considered as a continuation,
improvement and generalization of previous works. Many difficulties are encountered while applying
the functional analysis method for the posed problem. These difficulties are mainly due to the fact that
the considered equation is nonlinear, singular, with fractional order in a two-dimensional space setting,
and supplemented with nonlocal conditions.

The outline of this paper is as follows. In section 2, we set the problem and give some preliminaries.
In section 3, we pose the associated linear problem and introduce some function spaces used in the
sequel. Section 4 is devoted to the uniqueness results for the associated linear problem. The existence
of solution of the associated linear problem is considered in section 5. The main results of this paper are
given in section 6, it is consecrated to the proof of the existence, uniqueness and continuous dependence
of the solution on the data of the nonlinear problem.

2. Problem setting and some preliminaries

In the bounded domain Q7 = Qx (0, T), where Q = (0, a) x (0, b) € R?, we consider the two dimen-
sional singular nonlinear fractional partial differential equation in Caputo sense with Bessel operator

1
L(0) = 8°0 — —div(xyV0) = H(x,y,1,6,6,,6,), 2.1)
Xy

where 8% denotes the time fractional Caputo derivative operator of order 6 € (1, 2], the symbols div and
V, denote respectively the divergence and the gradient operators. 6, stands for the x—derivative of the
function 6. Equation (2.1), is supplemented by the initial conditions

€10 =60(x,y,0) = F(x,y), 6,0 = 0,(x,y,0) = G(x,y), (2.2)
Neumann boundary conditions
O.(a,y,1) =0, 6,(x,b,1) =0, (2.3)

and the non local weighted boundary integral conditions

a

b
f x0(x,y,t)dx =0, f yO(x,y, t)dx = 0, 2.4)
0

0
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where the functions F, and G are given functions which will be specified later on. We shall assume
that the function H is a Lipshitzian function, that is there exists a positive constant A such that for all

(x,y,) € Q"

H(x,y,t,6,vi,w)) — H(x,y,t,0,,v2,Wy) (2.5)

< A6 = 6| + [vi = vo| + [ —wa)).

In equation (2.1), the fractional derivative 8°E of order 6 = 8+ 1, where 0 < B < 1 (see [17]) for a
function & is defined by

Cos 1 " Ess(x, 8)
0)8(x, 1) = Fa=8) ) (-s¢ ds, Ytel0,T], (2.6)

where I'(.) is the Gamma function.

We begin by giving some important lemmas needed throughout the sequel.

Lemma 2.1 [38]. Let R(s) be nonnegative and absolutely continuous on [0, T'], and suppose that for
almost all s € [0, T'], R satisfies the inequality

dR
I S A1(9)R(1) + Bi(s), (2.7)
Ry
where the functions A;(s) and B;(s) are summable and nonnegative on [0, T']. Then

fAl(t)dt[ S ]
R(s) < e0 R(0) + fBl(t)dt . (2.8)

0

Lemma 2.2. [14] Let be M(¢) a nonnegative absolutely continuous function, such that
CO'M(t) < biM(t) + by(t), 0<aA<1, (2.9)

for almost all # € [0, T'], where b, is a positive constant and b,(f) is an integrable nonnegative function
on [0, T']. Then

M(t) < M(0)E (btY) + T()E (b1 tY)D;by(1), (2.10)
where
x" = x"
E(x)= ) —n+1and E =) -
(%) 2t ) and E,,(x) ;mnﬂo’

t
are the Mlttag-Leffler functions, and D;*v(r) = ﬁ f ( ,_vgl)_l dt is the Riemann-Liouville integral of
0

order0 < 4 < 1.

Lemma 2.3. [14] For any absolutely continuous function J(¢) on the interval [0, T'], the following
inequality holds

NORALOE % CPrm 0<p<l 2.11)

AIMS Mathematics Volume 6, Issue 9, 9786-9812.



9789

3. Statement of the associated linear problem

In this section, we set the associated linear problem and introduce different function spaces needed
to investigate this problem. We consider the differential equation

L6) =86 - xiydiv(xyve) = H(x,y,1), (3.1)

supplemented by conditions (2.2)—(2.4). The used method is essentially based on the construction
of suitable multipliers for each specific given problem, which provides the a priori estimate from
which it is possible to establish the solvability of the posed problem. More precisely, the proofs of
uniqueness of the solution is based on an energy inequality and on the density of the range of the
operator generated by the abstract formulation of the stated problem.

To investigate the posed problem, we introduce the needed function spaces. We denote by Lf,(Q)
the Hilbert space of weighted square integrable functions where p = xy and with inner product

(U, V)L/%(Q) = (oU, Vi) = fxyﬂvdxdy,
Q

and with associated norm
1

|nm¢@>:{jiwiﬂdmw]-

Q

Let X be Banach space with norm ||U||x, and let U : (0,7) — X be an abstract function. By U(., ., ?)||x
we denote the norm of U(., .,t) € X for fixed . Let L*(0, T; X) be the set of all measurable abstract
functions U : (0, T) — X such that

T
U= [ U0t <
0
If X is a Hilbert space, then L*(0, T'; X) is also a Hilbert space. Let C(0, T'; X) be the set of all continuous
functions U : (0, T) — X such that

1Ullco.r:x) = max [[U(., ., D)llx < oo,
1€0.T]

and denote by H [1, (Q2) the weighted Sobolev space with norm

U ) = U ) + I o, + D417

Hy(Q) 71(9)) Li(©) LH©)

The given problem (3.1), (2.2)—~(2.4) can be viewed as the problem of solving the operator equation
A0 = W = (H,F,G), where A0 = (L6, ¢,0,,0), YO € D(A) where A is the operator given by A =
(L, (1, 6;) and D(A) is the set of all functions 6 € L2(Q") : 876, 0y, 0., 6, 6,y,6, € L2(Q") and 6 satisfies
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conditions (2.2)—(2.4). The operator A acts from B into Y , where B is the Banach space obtained by
enclosing D(A) with respect to the finite norm

16115 = sup 116(x, y, DIl o, = 165, Y, DI (3.2)
B 0<ng HY(Q) CO,T.H)(Q)"

Functions 6 € B are continuous on [0, 7] with values in Lz(Q). Hence the mappings
610 € B— 0 = 0(x,y,0) € LX(Q),

6,0 € B— 0 = 6,(x,y,0) € L)(Q),

are defined and continuous on B. And Y is the Hilbert space L*(0, T, L} () x H)(€) x L>(Q) consisting
of vector valued functions W = (H, F, G) for which the norm

Wl = IHII; +IF1I31 0, + IGII7

L2(0,T;L3() HY(Q) L2(Q)’

is finite. Let A be the closure of the operator A with domain of definition D(A).
Definition 3. We call a strong solution of problem (3.1), (2.2)-2.4), the solution of the operator
equation
A9 =W, V8e D).

4. Main result of uniqueness of solution for the linear problem

We will establish an a priori estimate for the operator A from which we deduce the uniqueness and
continuous dependence of the solution upon the initial conditions (2.2).
Theorem 4.1 For any function § € D(A) we have the a priori estimate

2
< (||H||L2(OTL2(Q» +IFIE g, + 1G1Es ) @.1)
where C is a positive constant independent of the function 6 given by

C = (C3¢%TT + 1),

with
G = Czr(ﬂ)Eﬁﬁ(CzTﬁ)(ﬁr(ﬂ))+C2,
Tl -8B a3b3
C, = maX{Cl,l,(1 ~ AT = ,3)(1+ T )},
2b2 aZ b2
C, = max{Z (T ? )}
Proof.
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LetB+ 1 =06, where 0 < g < 1, then (3.1) takes the form
1 1
016 =~ = Z08), = Hx ). 4.2)

Taking the scalar product in Lﬁ(Q) of the partial differential equation (4.2) and the integro-differential
operator M6 = 6, + 37 (én6,), where

x )y
5%én6) = f f &noy(&, mdndg,
0 0

then we have

(5€ 6y, xyet)LZ(Q) - (ex’yet)Lz(Q) — (Oxxs Xyez)LZ(Q)
= (0, X0)12(0) — (Oyy, X¥0) 1202 + ((f 6;, xy3 iy(‘f n0:)) 2 )
= (00T, EM9))20) = s xYTL(ENO)) 200
- (Qy, xJ )zcy(f 779t))L2(Q) - (ny, Xy J )zcy(f 779t))L2(Q)
= (H.xy0)120) + (H xy T3, (En0) 0. (4.3)

The standard integration by parts of each term in equation (4.3) leads to

(@761, xy0) 120 = (861, 0) 20 (4.4)
(76, xy3%,(EnO)) 20y = (0 (T (N0, T (M) 2y (4.5)
a b
_(ex,ygt)Lz(Q):_ffyexgtdxdya (4.6)
0 0
a b
= 0y, X0) 2 = — f f x0,0,dxdy, 4.7)
0 0
a b 0
= (O, Y0120 = f f yObhdxdy + 2o (0.3 g (4.8)
0 0
a b
0 2
— (O, Y0 202) = Xy thdxdy + ||9y||L5 @ (4.9)
0 0
a b
~ (00 YOO 120 = ~ f f Y0, 33, (Enb))dxxdy, (4.10)
0 0
a b
- @@ = [ [ 0.5 E0dnas @11
0 0
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a b
- OB @00 = [ [ 00T @ity + 0.3 000, @12)
0 0
a b
- @@ = [ [ a3 @0y + 0.3, 5 ez (G13)
0 0

Substitution of equation (4.4)—(4.13) into equation (4.3) yields

(@89” Qr)Lg(Q) + (‘f(gxy(fﬂet), Sxy(fﬂgt))Lg(g)
0 ) 0 2

20t Hexlng(Q) + 26t ||9>’||Lg(g)

= f xy0,Hdxdy + f xyH 3iy(§n0,)dxdy

Q Q

— (0. B.I3ENO)) 30 — 0y, T, TI3ENOD) 13

(4.14)

Using Cauchy e- inequality (AB < %Az + ZLSBZ), Poincare’ type inequalities (||, (fv)”iZ(o,n <

2
Sl s 73 @) 200y < 31172 €072 1) [7] and Lemma 2.3, we transform (4.14) to

2
L2(Q)

FNON o + 0 || T Enb))|

1)

+ 0/0t110:12. o, + 0/0t||6)]|

Li(Q)

2
J7100)

1
2 2
€] ||0t||L’2(Q) + (6_ + 62) ||H||L127(Q)
’ 1

IA

2

+ &b, + & ||9y||Lg(Q)

L2(Q)
bt &3 b? 2
+ (—262 Gy 2—63) ||5xy(§779r)||Lg(g>'

Leteg =1, i=1,2,3,4,1n (4.15), then it follows that
FNO ) + N o ENOI 2

R

9012 902

IA

C (9 2, o+ HI?
2 2 2
+||9x”L%(Q) + ||9y||L%(Q) + ||Sx}’(§n91)||L%(Q)) ’

where - ) )
ab a b

= 2 — — —_— .

C, max{,( > +2+2)}

We infer from (4.16) that

—1 2 -1 2 2 2
D65+ DF 135 EnBoI 2 gy + 163172 ) + 116411

(4.15)

(4.16)
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< ¢ [ f 10,12, g7 + f IR, g dr + f 19 o EnBIs g T

T+
‘ [
(1-AL(1-p)

By using a poincare type inequality, (4.17) becomes

19 NG E I g, + 161z g |-

D6 ) + D 135 Enb0l2 ) + 16,117 ) + 1631173,
< G [ f 16175 7 + f 194 (EnBI72 0, dT
0
t
where s .
T a
C, = Cy, 1, +
2 max{ Lo Tara-pt e )}

By dropping the last two terms from left side of (4.18), and applying Lemma 2.2 by taking

¢ t
h(t) = f IIHTIIi,%m)d”f 19 (En00)l5 7
0

Fh) = DFN0)2, o, + D 11T (oI

LZ(Q)a

t t
2 2
f 10,17 7 + f I g 7

IFII7,

LA(Q)
and 2(0) = 0, we have

h(r)

IA

C.T(B)E, B(CITB)D_ﬁ

+

+

+Gll

HY(Q) LZ(Q))

Since

t B t
T
Dt_ﬁfllJ(x,y,T)lliz dTS—fIIJ(x,y,T)Ilzz dr,
2@ T @
X BrB) )

(4.17)

(4.18)

(4.19)
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then

h(t)

IA

Czr(B)Eﬁ,ﬁ(CzTﬁ)(IBF—(IB)) f 16,12, o

t
2 2

IFIIZ,

+

+

+Gl|

HY(Q) LQ(Q))

Hence (4.18) becomes
D6,
+16, 112

Loy + D 13 EndI;
LA

L2(Q)

S ZT(0))

t
2 2 2
S C3 f”ex”LZ(Q)dT + f”gyllLZ(Q)dT + f”H”LZ(Q)dT
P P P
0 0

+[Gll

L3

HIFIP o)

HA(Q)
where

,3
ﬁF(/o’)) TG

Now discard the first two terms from left hand side in (4.21) and use lemma 2.1 with

t t
) = f 16,2 gy + f 16,12, o .
0 0

Cs = CT(B)Eps(C2TF)(

S(O) =
we see that
D! ||et||Lz(Q) + D} 13 (Eno)l g,
2 2 2
c( f I 0,07 + IF Iz ) + 1G]z g ):
where

C = (C3¢TT +1).

(4.20)

(4.21)

(4.22)

Now if we omit the first two terms from the left-hand side of (4.22) and use the fact that (see Lemma

6.3)
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then we get after passing to the supremum over (0, 7")

2
sup {161
OSIST{ H‘I)(Q)}
2 2 2
< C(IHIG: g 7.g20 * IF 0 + G120 ) (4.23)

Since the only information we have about the range of the operator A, is that R(A) C Y, we must
extend A so that the estimate (4.23) holds for the extension and its range is the hole space Y. To this
end, we establish the following proposition.

Proposition 4.2 The operator A : B — Y admits a closure.

Proof. The proof can be done as in [7]

Let A be the closure of the operator A, and D(A) be its domain. The inequality (4.1) can be extended
to strong solutions after passing to limit, that is we have

1611z < CllA6lly, V6 € D(A),

from which we deduce that R(A) is closed in Y and that R(A) = R(A).
Definition 4.3. A solution of the equation

A6 = (L6,6,6,6,0) = (H, F,G)
is called a strong solution of problem (3.1), (2.2)-2.4).

5. Solvability of the posed associated linear problem

___Theorem 5.1. Problem (3.1), (2.2)-2.4), has a unique strong solution 6 = LY (H,F,.G) =
L~\(H, F,G), that depends continuously on the data, for all H € L*0,T;L;(Q) , G € Ly(Q) and
F e le(Q).

Proof. To prove that problem (3.1), (2.2)-2.4) has unique strong solution for all W = (H,F,G) € Y,
it suffices to prove that the range R(A) of the operator A is dense in Y. For this we need to prove the
following proposition.

Proposition 5.2. If for some function g(x,y,7) € L>(Q") and for all k(x,y,7) € D(A) satisfies
homogeneous initial conditions we have

(Lk, g)LI%(QT) = 0, (5.1)

then g =0a.ein Q7.
Proof. Equation (5.1) implies
1 1
(afk - )_Ckx — ke — ;ky - kyy’ g)L%(QT) =0, (5.2)

Let P(x,y,t) be a function satisfying conditions (2.2)-2.4) and such that P, P,, P,, 3 tﬁﬁyP, J,P,,
g,P,, "' P are all in L>(Q"), then we set

t N
k(x,y,t) = S%P = ffP(x, y,z)dzds,
0 0
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and let
g(x,y, 1) = 3,P + 33 (én3,P),

then equation (5.2) becomes

(@7 (S2P) = 3P = (SiP) ~ (TP
~(I7Pyy), 3P + TL(EnT.P)) g
= 0,
that is
(@7 (T7P), 3Pz + (0] (I7P), T (€3 P) 21
SRS ~ (TP, T EnS P
— (3P, 3P — (F7P), T2 (EnTiP)) )
- GO Pge ~ GO T @D Pl

- ((Szzpyy)’ SIP)L,%(Q) - ((Stzpyy)a Siy(fnﬁzP))Lg(m
= 0.

(5.3)

Put in mind that the function P verifies the given boundary and initial conditions (2.2)—(2.4), then all

terms in (5.3) can be computed as

@7 (37P), 3,P) ) = (07(3,P), 3iP) 2
@' (37P), 2, (n3iP) 3 = (I (3.P), I7,(EnT P 3
= (BT 4En3 PN (NI P) ),
1
- (;(S?Px)’ sjtP)Lg(Q) = —()’S?Px, S:‘tP)LZ(Q),
1
- (;(mzpy), SzP)Lg(Q) = _(xﬁtzpy, 8zP)Lg(Q),

(P S Py = - [ (SRS Py

Q

10
= (3P, 3:P)r) + 3 ||3t2Px

L)

_(S?Pyya 5zP)L§(Q) == fxy(S[zPyy)(S[P)dXdy

Q

10
PSP+ 2 [5R

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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- L 920, 52 (€n8,P) 0y = - (93P, T2, (5, P)

L)’

-G L(92P,), 32,3, P) 30y = - (x32P,, 2, 5, P)

2Q)°

~(O7P, B2 (EnTiP)) ) = - f xy(37P)T3(€nT, P)dxdy
Q

= (y9?P. B @3,P) , . +(I7P.. 3, 5%EnT.P,))

L2(Q) L2’

~(I3Pyy, B, ENT P2y = f xy3} P, 32, (03, Pydxdy
Q

+(x37P,, 33, én3, P)) (S?Py, 9,3%&n3,Py))

L@’
Insertion of equations (5.4)—(5.13) into (5.3), yields
2(07(3,P), 3,P) 20y + 2(0/(31,én3,P)) 3 (0T P 2o

0 0
L A

LX) L Q)

= -2(9%P,.9,9%&n3.P,))

L3 Q)

~2(3?P,, 3,3%n3,Py))

IH(ON
Applying Lemma 2.3 and Poincare’ type inequality to (5.14), we obtain

ﬂwm| +¥mﬂﬁﬁmu

LX(Q) L2(Q)

+E ”Stsz”Lf,(Q)

”StzPX“Lg(Q) + ||St2Py||

+(ab3 +a’b)
4

@ ||§t2Py||Lg(Q)
L2(©)

”Sxy(fng P)“LZ(Q)

We infer from (5.15) that

D9, P|I?
+ [|92P,P

Loy + D7 I35 En3 P,
+1137P,I12

@

LX) L3(Q)

t t
< f 1803 P+ [ ISP+ [ NP, o
0 0 0

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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where
ab® + a’b
—
By omitting the first two terms from the left-hand side of (5.16) and applying Lemma 2.1 by letting

C= max{l,

t t
S0 = f 192P,J g + f 192,12, o
0 0

ds (1)

o = 1T PG, + 1IT7 P17

() L2(Q)

S$0) =0,

then

S(2)

t t
2 2 2 2
f”STPx”LZ(Q)dT + f”STPy”LZ(Q)dT
0 0
t

IA

TeCT f 19, EnPIEs g (5.17)
0

By inserting (5.17) into (5.16), we obtain

DS (én3, PRy, + DPIT,PIP

L2Q) L2
2 2 2 2
t
< C(1+7Te) f 19 43Pl or . (5.18)
0

if we drop the last three terms on the left hand side of (5.18) and apply Lemma 2.2 by taking

t
() = fllsxyé:nSTPHZZ(QT)dT’
0

&2(0) = D3 o @nI. Pl
z(0) = 0,

it follows that

t
f 19 503 Pllj or\dT < 0. (5.19)
0

Consequently, inequality (5.19) implies that g is zero a.e in Q7.

AIMS Mathematics Volume 6, Issue 9, 9786-9812.



9799

To complete the proof of Theorem 5.1 , we suppose that for some element W = (H, F,G) € R(A)*,
we have
(L0, H) 20 71200 + (610, Fpi o) + (66, G) 20 = 0. (5.20)
We must prove that W = 0. If we put § € D(A) satisfying homogeneous conditions into (5.20), we
have
(L0, H) 20,1120 = 0 (5.21)
Applying Proposition 5.2 to (5.21), it follows from that H = 0.
Thus (5.20) takes the form
(616, F)H;(Q) + (6, G = 0. (5.22)
But since the range of the operators ¢, ¢, are dense in the spaces H;(Q), Lf,(Q) respectively then
relation (5.22) implies G = F = 0. Consequently W = 0 and Theorem 5.1 follows.

6. The nonlinear problem

This section is consecrated to the proof of the existence, uniqueness and continuous dependence of
the solution on the data of the problem (2.1)—(2.4). Let us consider the following auxiliary problem
with homogeneous equation

1

L) = F'U - —div(xyVU) = 0, (6.1)

Xy
6HU =U(x,y,0) = F(x,y), &LU = Ux,y,0) = G(x,y), (6.2)
Uda,y,t)=0, Uy(x,b,t) =0, (6.3)

a b

fo(x, y,t)ydx =0, fyU(x, y,t)dx =0, (6.4)

0 0

If 6 is a solution of problem (2.1)-(2.4) and U is a solution of problem (6.1)-(6.4), thenw = 60 — U
satisfies

1 ~
@BHW - x—ydiv(xwa) = H(x,y,t,w,wy, wy), (6.5)
w(x,y,0) =0, wi(x,y,0)=0, (6.6)
we(a,y,t) =0, wy(x,b,1) =0, (6.7)
a b
fxw(x, v, Hdx =0, fyw(x, y,Hdx = 0, (6.8)
0 0
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where
A(x,y. tw,weowy) = H(x,y,6,0 - U,(0 - U),. (0 - U),).
The function H satisfies the Lipshitz condition

H(x9y9 taWbWZ’WS) _Fl(x5ya t’v17v29v3)
< A(wy =il + lwy = ol + [ws —va), (6.9)

for all (x,y,1) € QT = (0,a) X (0,b) x (0,T). According to Theorem (5.1) problem (6.1)—(6.4) has a
unique solution depending continuously on F € H)(Q) and G € L(Q). It remains to solve problem
(6.5)—(6.8). We shall prove that problem (6.5)-(6.8) has a unique weak solution. Suppose that v and

w belong to C'(QT) such that v(x,T) = 0, w(x,y,0) = 0, w,(x,y,0) = 0, fxwdx =0, fywdx =

0, fxvdx =0, fyva’x = 0. Forv e C'(Q7), we have
0 0

(Lw, I (¢ UV))LZ(O,T;L},(Q)) = ((f Wi, I (€ UV))L2<0,T;L3,(Q))

1
- (;Wx, 3 o€ UV))LZ(O,T;Lg(Q)) — Wy, I o€ UV))LZ(O,T;Lg(Q))

1
(;Wy, Sxy(é: UV))LZ(O,T;Lg(Q)) — (Wyy, 8xy(f UV))LZ(O,T;Lg(Q))

(I:I ) Sxy(‘f UV))LZ(O,T;Lg(Q))- (6.10)

By using conditions on w and v, a quick computation of each term on the right and left-hand side of (
6.10), gives

GRS EMN)2o.rz2@) = ¥, af(sxy(é:nwt)))Lz(O Ti2(Q) (6.11)
- ( Wx’ xy(fﬂv))LZ(o TiL2(Q) = (w, 8y(77V))L2(0 T;L2(Q))> (6.12)
(Wi, 8xy(‘f‘;:’W))LZ(O,T;L%(Q)) = —(w, Sy(UV))Lz(o,T;Lg(g))

+ (xwy, Sy(77V))L2(o,T;Lg(Q))’ (6.13)

—(Wyy, I chy(é: TIV))LZ(O,T;L,%(Q)) = (wy, (& V))LZ(O,T;Lg(Q))
- (w, Sx(fv))y(o,T;Lg(Q)), (6.14)

1

- (;Wy’ Sxy('fﬂv))LZ(o,T;Lg(g)) = (w, Sx(fv))y(o,T;Lg(g)), (6.15)
(FI ) Sxy(f ’IV))L2(0,T;L,§(Q)) = (Sxy(f 77[:1 )s V)U(O,T;Lﬁ(ﬁ)), (6.16)

Insertion of (5.11)-(5.16)into (5.10) yields
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M(w,v) = (Sxy(fﬂﬁ), V)LZ(O,T;Lg(Q)), (6.17)

where

Mw,v) = (0,8/(T( MWD 2.z + OWe, Iy 2071200
+ Owy, Sx(fv))y(o,T;L},(Q))- (6.18)

Definition 6.1. A function w € L*(0,T; H,;(Q)) is called weak solution of problem (6.5)-(6.8) if
(6.7) and (6.17) hold.

Our main purpose is to construct an iteration sequence (w"),ex Which converges to a certain function
w € L*(0,T; H)(€)) which solves problem (6.5)—(6.8). Starting with w® = 0, the sequence (W")en is
defined as follows: given the element w"~V, then for n = 1,2, ... we solve the iterated problems:

1 1 -
6fw§n) — _WEC”) - ngc) — _W;") _ W;’;) = H(x,y,t, W(n)’ Wgcn)’ W;n)), (6.19)
X y
w?(x,5,0) =0, w"(x,y,0)=0, (6.20)
W (a,y,0) =0, w’(x,b,1) =0, (6.21)
a b
f aw™(x, v,Hdx =0, f yw(”)(x, vy, H)dx = 0, (6.22)
0 0

Theorem (5.1) asserts that for fixed n, each problem (6.19)-(6.22) has unique solution w'(x, y, ). If
we set Z™(x,y,1) = w(x,y,1) — w(x,y,1), then we have the new problem

n 1 n n 1 n n n—

02 =120 -Z0 =320 -2 ="y, (6.23)
Z"(x,,00=0, Z"(x,y,0)=0, (6.24)
ZP(a,y,0)=0, Z"(x,b,)=0, (6.25)

a b
f xZ™(x,y,0dx = 0, f yZ"(x,y,ndx = 0, (6.26)
0 0

where

a" Dx,y,0)=H (x, v, t, w™ W, wi")) -H (x, y, t, WD D, w§"‘1)) .

Theorem 6.2. Assume that condition (6.9) holds, then for the linearized problem (6.23)—(6.26),
we have the a priori estimate

-1
||Z(n)||L2(o,T;Hg(Q)) < K|IZ" )||L2(0,T;H,}(Q)), (6.27)
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where K is positive constant given by

Proof.Taking the inner product in L*(0, T;

differential operator

we have

—+

2 2
K:TC4(a b +1).
8
MZ =Z" - 32 &nZ")

(n) (1) (1)
@Z". ZM s - < Z(") Zroxzo)
(Z0,Z2") - (—z<"> )
xx 2%t L2071 L(Q) y %t )205L2Q)
(1) (n) ¢72
(Z;;), Z 8 )LZ(O,T;LZ(Q)) (aBZ " 5 (é:n.z ))LZ(O T LZ(Q))

( Z(n) 32 (f’?z ))LZ(OTLZ(Q)) + (Zggc)’ 52 (fUZ ))Lz(OTLZ(Q))

< Z\, 33EnZ N oz + (Z0 I0ENZN om0

-1 1 2
(0'(" ),z )Lz(o,T;Lg(Q))—(O'(" ), 32 (fUZ ))LZ(OTLZ(Q))

L’(Q)),with 0 < 7 < T of equation (6.23) and integro-

(6.28)

In the light of conditions (6.25) and (6.26), Cauchy € inequality, Lemma 2.2, Lemma 2.3 and successive
integrations by parts of each term of (6.28) leads to

AIMS Mathematics

1
(n) —(n) - (1)
(20,2 e 2 3 f NZI gt

0
1
= DB I1Z7Cx 3. D73
1
(n) ) — (n) )
- (—an < ) - (ny” < )L2(0 nL2(Q)°
X L2(07L2(Q) o

1
) _ o
- (§Z§'n)’ ZMeors@) = - (xZ0.Z")

L2200, L2(Q)

(n) _ (n)
- ('ch’jc) > 'Ztn )L2<0,T;Lg(g)) = (}’chn), Ztn )

L0 L2(Q)

1
|17 2
+ 2||Zx (X,y,T)l|Lg(Q),

(n) (n)
- (Z§’§), Zzn )LZ(O,T;Lg(Q)) = ( -Z(n) Zzn)

L2(0,13L2()

1
|7 2

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)
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1 n
(;Z(n) 32 (f’]z(n ))LZ(OTLZ(Q)) = (}’Z(") g2 (fﬂz( )))

1
(yZ(n) 52 (fﬂz(n ))LZ(OTLZ(Q)) = ( o 32 (§nZ(’”))

- (", 3 (EnZ) ))Lz(oTLZ(Q»

1
EfatB”Sxy(‘fnzgn)) ’
0

\%

|L3,(Q)

('S n

L20712(Q)

L2(0,13L2(Q)

(Zi’?, 93 (f Uz(n)))Lz(o T L2(Q))

— (n) 2 (n)

- ( 5 (§nZ ))LZ(O,T;LZ(Q»
—(ZSC"), ngi(fﬂzgn ))LZ(O,T;L,%(Q))’

(Z33), S EnZ{ Nz mazc0)

_ (n) 42 @)

= —(xZ. T EZ™) e
~(Z". 3,3UENZ N 02000

Combination of (6.28)—(6.38) yields

DENZY 6,y D g + DA I8 0 (EnZ) 3, Dl
HIZL 0y Dz gy + 12573 Dl

= Z(chn)’ SxS§(§UZ§H)))L2(O,T;L§(Q)) + Z(Z(n), N} SZ(EUZ(”)))LzmT LX)
+2(0 "V, Zgn))Lz(O,T;Lg(Q)) +2(c" ™V, 53 (fﬂz ))LZ(OTLZ(Q))

Estimation of the right-hand side of (6.39) gives

AIMS Mathematics

<

-1 (n)
2(0 =b .2 0.7;L3()

()2 (n—1)
S ||~Z ||L2(0T LZ(Q)) + ||O- ||L2(OT LZ(Q))

3
(n))2 12 (n—1)112
S ”Z[ ||L2(0,T;L%(Q)) + 2/1 (”Z ”LZ(O,T;L/Z,(Q))

(n=1))2 (n-1))12
+||Zx ||L2(0,T;L/2)(Q)) + ||'Zy ||L2(0,T;L/2,(Q))) >

2", 32 (f’?z ))LZ(OTLZ(Q))
a’b’ 5 N 3., (=112
T” xy(fnzt )”LZ(O,T,L‘%(Q)) + E/l (”Z ||L2(0,T;L,(2,(Q))

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)
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(n—=1)2 (n—1)112
+||Zx ”LZ(O,T;L%(Q)) + ”'Z)’ ”LZ(O,T;L%(Q))) 9

2ZY, 3.33ENZ N oo

(n))2 2 (n)y12
S ||Zx ||L2(O,T;L5(Q)) + b ”Sxy(fnzt )”LZ(O,T;LIZ)(Q))’

22, 8,5 rosso

)2 2 (n)y12
< ”Zy ”LZ(O,T;L%(Q)) t+a ”Sxy(é:nZ; )”LZ(O,T;L,%(Q)).

Upon substitution of (6.40)—(6.43) into (6.39), we obtain

DINZ (xy, Dl ) + D180 EnZ) e, . DI
+ 1Z0 . Dl 0, + 127063 Dl g

CIZ sz * 12 M iz

+1ZE sz + 128 oz

()2 n)(12
+||Zx ”LZ(O,T;LIZ,(Q)) + ”Zy ||L2(0,T;L%(Q))

((ONTVA
+||5xy(§77ztn )”LZ(O,T;Lg(Q)))’

IA

where
3 2 a’b?

2 1.2
$9b'
SRRRVERLELE

C; = max{l,

Now by discarding the first two terms from left hand side of (6.44) and using Lemma 2.1 with

— (m))|2 (m2 —
P(T) - ”Zx ||L2(0,T;LI2,(Q)) + ”Zy ”LZ(O,T;L%(Q))’ P(0) - 0’

we obtain

()2 )12
||Zx ”LZ(O,T;Lf,(Q)) + ”Zy ||L2(0,T;L§(Q))

(n—1)(2 (n=1))12
CZ(”Z ”LZ(O,T;L%(Q)) + ”Zx ||L2(0,T;L%(Q))

IA

—+

(n=1)y2 (n)12
”Zy ||L2(0,T;L%(Q)) + ”Zt ”LZ(O,T;LKZ,(Q))

(my2
HIB@EZ N )
where C, = C,Te“'T. Hence, inequality (6.44) becomes

DFNZP(x, y, )P, + DS o (EnZ) (x, y, DI

L;(©) ((0)
(n) 2 (n) 2

(n=1)12 (n—1))2
< G2 Mz + 1280z

171(9))

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
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(=112 )12
*IZy ||L2(o,r;L3(Q)) + 1< ”LZ(o,r;Lg(Q»
(ONTY
HI9EnZI M0 12 (6.46)

where C; = Cl(l + Cg)
We now need to eliminate the last two terms on the right-hand side of (6.46) by using Lemma 2.2
and setting

K@) = 12z + 150EnZN 0 2
RK() = DINZ" @y 0l + D8 EZ )00y Dl
KO) = 0,
then we have
122 0z + 199N 202
< K(0)E4(C37®) + T(B)Eg5(C57°) D! (||z<"‘”||i2(0,,m»
(n=1)112 (n-1)112
HIZ Bz + 120 o i) (6.47)
Inequality (6.47) implies
1Z 20 ez + 130 E1Z Mg 2
< TBEC) (DA 1Z0 1,
—B—1{| ~(n—-1)|;2 —B—1{| ~(n—1)|;2
+DT ||Zx ||L2(O,T;LI2,(Q)) + D‘r ”Zy ||L2(0,T;L,2,(Q))) . (648)
It is obvious that .
DN, <L [z, e (6.49)
i L@ TR+ 1) L@" '
0

If we discard the first two terms on the left-hand side of (6.46) and combine with (6.48) and (6.49), we
obtain

IVZ™(x,y, T)”iﬁ(g) = C4”Z(n_1)HEZ(O,T;H;})(Q))’ (6.50)
where T
Cy = C3[1 +T(B)Ez5(C5TP) ’ (6.51)
= . .
4 3 (L3 TG+ 1)

a b
Lemma 6.3 For 6 € H,(Q) satisfying [x6dx =0, [y8dy =0, we have
0 0

22
5 a +b 5

Now by using the above lemma and equivalence of norms
VOl 2) ~ 101l )5 (6.53)
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which comes from ) )
a+b

we infer from (6.50) and (6.53) that
|2 (n=1)12
”Z( ”LZ(O,T;HA(Q)) S K”Z ”LZ(O,T;H})(Q))’ (654)

where

2 2
K= Tc4(“ ;b + 1). (6.55)

From the criteria of convergence of series, we see from (6.54) that the series Yo, Z® convergence
if K < 1. Since Z™(x,y,t) = w"D(x,y,t) — w"(x,y,1), then it follows that the sequence (W™),cy
defined by

w?(x,y,1) = Z(w(””)(x, v, 1) —w®(x,y,0) + wO(x,y,0),
n-1
= Z Z® +wOx,y,1), n=1,2,3,.. (6.56)
k=0

converges tow € L*(0,T; H ; (€2)). Now to prove that this limit function w is a solution of problem under
consideration (6.5)—(6.8), we should show that w satisfies (6.7) and (6.17) as mentioned in Definition
6.1. For problem (6.19)—(6.22), we have

ow=D gy )
0¢ an [2(0,T;12(Q)

MW", v) = (v, I (EnH(x,y, t, ", (6.57)

From (6.57), we have

MW™ —w,v) + M(w,v)

N ow=b gwrb
] S)C H L bR (n_l)’ ’

)

ow ow
I EnH(E n,t,w, 3" an ——=N20.1129)

ow ow
+ (O, Sx)fUH(f n,tw, 8& on )LZ(O,T;Lg(Q)), (6.58)

From the partial differential equation (6.19), we have
g ) _
(v 8" S (w ))LZ(O,T;sz(Q))
(n)
(V 3 x}”( W ))LZ(O,T;LZP(Q))

(V Sxyf( ) - ))L2(0 T:L2p(Q))

(V S’C)gn( Wee — Wff))y(o TiL20(Q))
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_ (n) _
(V, 3 xyf n (Wrm W’V?))LZ (0,T;L%p(2))

Inner products in (6.59) can be evaluated by using conditions on functions v and w, and this leads to

(3.1(Endy '), W™ = w))
+ (Synv, Sx(wg') - wf)

L2(0,T5L7p(2))
L2(0,T3L%p())

+ (Sva, I,we - w,,)

L2(0,T;L2p(€2))
+ (Synv, x(w' — wx))
B (Synv, (W = W))LZ(O,T;Lg(Q))
(9,60, 506 )
- (Sva’ W™ = W))U(O,T;L},(Q))

= MW" —w,v), (6.60)

L2(0,T;L2(Q))

L2(0,T;L2(Q))

We now estimate terms on the left-hand side of (6.60) to see that

(3Endy ), W™ = w))

L2(0,T5L%p(2))

+1
< |w - Wllzo,r;2200 X I3 o(End; RURIEPEEY
212
a*b +1
< W = Wiz 71300 X 107 V2020001 (oD
(n) _
(SynV, ijx("v‘f Wf))LZ(O,T;sz(Q))
()
< 8w = walllorizzen X I3yl
21.2
a“b
(1)
< Moz X W = wlzozma (©02
(n) _
(5x§ v, Sy(wn W’I)L2(0,T;L2p(9))
< 19,00 = wollporzzan X 136llzor @)
21,2
ab
S -[Vllz20,7:2200) X W™ — Wll20.7:81 @) (069

(3w, x(w = )

< all3ymllo.r2@) X W — Wall2.7:120)

L2(0,T;L3 ()
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ab?
< T”V”U(O,T;L};(m) X ||W(n) - W||L2(0,T;H,}(Q)),

_ m _
(5 w1V (W ))LZ(O,T;L,%(Q))

IA

||5y(77V)||L2(0,T;Lg(Q)) X ||W(") - W||L2(0,T;L,2,(Q))
b2

E”V”U(O,T;LZ(Q)) X [w™ — W”LZ(O,T;H),(Q))’

IA

(n) _
( &V, y(wy y))LZ(O,T;L,Z,(Q))

b||5x(§v)||L2(o,T;Lg(Q)) X ||W(,") - Wy”L%O,T;L,%(Q))

2
ab ®
N M2 sz X W™ = Wil s

IA

IA

- (ngv, (W™ —

||3x(§v)||L2<o,T;Lg(Q)) X [w — W||L2(o,T;Lg(Q))

612

?”V”LZ(O,T;L/%(Q)) X ||W(n) - W”LZ(O,T;H),(Q))'

))LZ(O,T;L%(Q))

IA

IA

If we combine equality (6.60) and inequalities (6.61)—(6.67), we obtain

MW™ —w,v)
< Gslvll 2, T-Lz(g))(HW(") - W||L2(0,T;H),(Q>)

+ ||6B+1"||L2<0 T; LZ(Q)) W - W”LZ(O,T;L%@D))

where
c {a2b2 ab ab* a* b?
=maxX\y——, = =~ T~ T~
: 427222
On the other side we have
ow=D - Gyr=b
oE ° On

ow
-3,énHE n,1,w, —)))
g ‘9‘5 0 L2(0,T;L2(Q))

)

(v, 3, énHE n,t, w" D,

3
(ab)2 1
< 3 ||V||L2(0,T;L3,(Q)) X ||W(n ) - W||L2(0,T;H},(Q)>'

Taking into account (6.68) and (6.69) and passing to the limit in (6.58) as n — oo to obtain

ow Ow

Mw,v) = (v IénH(E m, 1w, )) -
’ 3@7 8 L2(0,T;L§(Q))

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)
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Hence (6.17) holds. Now to conclude that problem (6.5)-(6.8) has weak solution, we show that (6.7)
t t

holds. Since w € L*(0, T; H,(2)), then [2(x,y,5)ds, [ ‘;—”yv(x, y, 8)ds € C(Q") and we conclude that
0 0

Pa,y,n=0,5(0xb10=0, ae O
Thus we have proved the following

Theorem 6.4. Suppose that condition (6.9) holds and that K < 1, then problem (6.5)-(6.8) has a
weak solution belonging to L*(0, T; H)()).

It remains to prove that problem (6.5)-(6.8) admits a unique solution.

Theorem 6.5 Assume that condition (6.9) holds, then problem (6.5)-(6.8) admits a unique solution.

Proof. Suppose that w, w; € L*(0, T; H)(£)) are two solutions of (6.5)-(6.8), then V = w; —w, €
L*(0,T; H)(Q)) and satisfies

1 1
8IBVI —=Vi=Vu- _Vy - Vyy = O'(X,y, 0, (6.71)
X y
V(xa y7 O) = O ’ Vt(x’ y’ 0) = 0 ’ (672)
Via,y,0) =0, Vy(x,b,1) =0, (6.73)
a b
fo(x, v,Hdx =0, ny(x, v, Hdx = 0, (6.74)
0 0
where
~ 8w1 0W1 ~ 3W2 8W2
s ’t:H s 7t’ s a0 q _H > ’ta s a2 a |- 675
o(x,y,1) (xy Wi, —= ay) (xy L (6.75)
Taking the inner product in L*(0, T; L>(Q)) of (6.71) and the integro-differential operator
MV =V, -3 énV, (6.76)
and following the same procedure done in establishing the proof of Theorem 6.2, we have
IVllizorm @) < KlVIizormi@y, (6.77)
where
2 + b2
K =TC, (“ — 1) . (6.78)
Since K < 1, it follows from (6.77) that
(- K)”V”LZ(O,T;H/',(Q)) =0. (6.79)

Consequently (6.79) implies that V = w; — w, = 0 and hence w; = w, € L*(0,T; H /1 (Q)).
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7. Conclusions

Here we studied a non local mixed problem for a two dimensional singular nonlinear fractional
order equation in the Caputo sense. We prove the existence, uniqueness and continuous dependence
of a strong solution of the posed problem. We first establish for the associated linear problem a priori
estimate and prove that the range of the operator generated by the considered problem is dense. The
technique of deriving the a priori estimate is based on constructing a suitable multiplier. From the
resulted energy estimate, it is possible to establish the solvability of the linear problem. Then, by
applying an iterative process based on the obtained results for the linear problem, we establish the
existence, uniqueness and continuous dependence of the weak solution of the nonlinear problem. The
main contribution is that we applied and developed the a priori estimate method for a two dimensional
singular nonlinear fractional order partial differential equation with Bessel operator that have never
been treated in the literature of integer and fractional differential equations.

Acknowledgement

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research
at King Saud University for its funding this Research group No. (RG-117).

Conflict of interest

The authors declare no conflict of interest.

References

1. J. R. Cannon, J. Van der Hoek, The existence and the continuous dependence for the solution of
the heat equation subject to the specification of energy, Boll. Uni. Math. Ital. Suppl., 1 (1981),
253-282.

2. J. R. Cannon, The solution of heat equation subject to the specification of energy, Quart. Appl.
Math., 21 (1963), 155-160.

3. J.R.Canon, S. P. Esteva, J. Van der Hoek, A Galerkin procedure for the diffusion equation subject
to the specification of mass, SIAM Numer. Anal., 24 (1987), 499-515.

4. V. 1. Korzyuk, V. Dainyak, A weak solution of a Dirichlet type problem for a third order nonclassi-
cal linear differential equation, Differentsial’ nye Uravneniya, 28 (1992), 1056—1066.

5. S. Mesloub, A. Bouziani, Mixed problem with integral conditions for a certain class of hyperbolic
equations, J. Appl. Math., 1 (2001), 107-116.

6. S. Mesloub, N. Lekrine, On a nonlocal hyperbolic mixed problem, Acta Sci. Math., 70 (2004),
65-75.

7. S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math.
Anal. Appl., 316 (2006), 189-209.

8. S. Mesloub, On a singular two dimensional nonlinear evolution equation with non local conditions,
Nonlinear Anal., 68 (2008), 2594-2607.

AIMS Mathematics Volume 6, Issue 9, 9786-9812.



9811

0.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electron. J.
Diff. Egns., 45 (1999), 1-6.

L. S. Pulkina, On solvability in L? of nonlocal problem with integral conditions for a hyperbolic
equation, Differents. Uravn., 2 (2000).

P. Shi, Weak solution to an evolution problem with a nonlocal constraint, Siam. J. Math. Anal., 24
(1993), 46-58.

S. Mesloub, F. Aldosari, Even higher order fractional initial boundary value problem with nonlocal
constraints of purely integral type, Symmetry, 11 (2019), 305.

S. Mesloub, Existence and uniqueness results for a fractional two-times evolution problem with
constraints of purely integral type, Math. Methods Appl. Sci., 39 (2016), 1558-1567.

A. A. A. Alikhanov, Priori estimates for solutions of boundary value problems for fractional order
equations, Partial Differential Equations, 46 (2010), 660-666.

A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations,
Elsevier, Amsterdam, 2006.

F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wavephenomena, Chaos
Solitons Fractals, 7 (1996), 1461-1477.

I. Podlubny, Fractional DifferentialEquations: An Introduction to Fractional Derivatives, Fractional
Differential Equations, to Methods of Their Solution and Some of Their Applications, vol.198.
Elsevier, Amsterdam, 1998.

A. Giusti, F. Mainardi, A dynamic viscoelastic analogy for fluid filled elastic tubes, Meccanica, 51
(2016), 2321-2330.

S. Ladaci, J. J. Loiseau, A. Charef, Fractional order adaptive high-gain controllers for a class of
linear systems, Commun. Nonlinear Sci., 13 (2008), 707-714.

B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional inte-
grodifferential equations with integral boundary conditions, Boundary Value Probl., 2009 (2009),
11.

. V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reactiondiffusion

systems, J. Comput. Appl. Math., 220 (2008), 215-225.

J. Allison, N. Kosmatov, Multi-point boundary value problems of fractional order, Commun. Appl.
Anal., 12 (2008), 451-458.

R. W. Ibrahim, M. Darus, Subordination and superordination for univalent solutions for fractional
differential equations, J. Math. Anal. Appl., 345 (2008), 871-879.

K. V. Chukbar, The stochastic transfer and fractional derivatives, Zh. Eksp. Teor. Fiz., 108 (1995),
1875-1884.

V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Yu. I. Yurkov, Direct problems of nonclassical
radionuclide transfer in geological formations, Izv. Ross. Akad. Nauk, Energ., 4 (2004), 121-130.

S. Mesloub, On a mixed nonlinear one point boundary value problem for an integrodifferential
equation, Boundary Value Probl., 2008 (2008), 8, Article ID 814947.

L. Magin Richard, Fractional calculus in bioengineering, Begell House Redding, 2006.

AIMS Mathematics Volume 6, Issue 9, 9786-9812.



9812

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

@ AIMS Press

A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear
Anal-Theor., 70 (2009), 364-371.

Y. K. Chang, J. J. Nieto, W. S. Li, Controllability of semilinear differential systems with nonlocal
initial conditions in Banach spaces, to appear in Journal of Optimization Theory and Applications,
142 (2009), 267-273.

A. Bachir, J. J. Nieto, Existence Results for Nonlinear Boundary Value Problems of Fractional In-
tegrodifferential Equations with Integral Boundary Conditions, Boundary Value Problems volume
2009, Article number: 708576 (2009).

A. Bachir, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing
equation with integral boundary conditions, Nonlinear Anal.: Real World Appl., 9 (2008), 1727—
1740.

L. Kasmi, A. Guerfi, S. Mesloub, Existence of solution for 2-D time-fractional differential equa-
tions with a boundary integral condition, Adv. Differ. Equ., 2019 (2019), 511.

A. Akilandeeswari, K. Balachandran, N. Annapoorani, Solvability of hyperbolic fractional partial
differential equations, J. Appl. Anal. Comput.,7 (2017), 1570-1585.

S. Mesloub, I. Bachar, On a nonlocal 1-d initial value problem for a singular fractional-order
parabolic equation with Bessel operator, Adv. Differ. Equ., 2019 (2019), 254.

X. Liu, L. Liu, Y. Wu, Existence of positive solutions for a singular nonlinear fractional differen-
tial equation with integral boundary conditions involving fractional derivatives, Boundary Value
Probl., 2018 (2018), 24.

H. Li, L. Liu, Y. Wu, Positive solutions for singular nonlinear fractional differential equation with
integral boundary conditions, Boundary Value Probl., 2015 (2015), 232.

A. Bashir, M. M. Matar, R. P. Agarwal, Existence results for fractional differential equations of
arbitrary order with nonlocal integral boundary conditions, Boundary Value Probl., 2015 (2015),
220.

O. L. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer-Verlag,
New York, 1985.

©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 9, 9786-9812.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem setting and some preliminaries
	Statement of the associated linear problem
	Main result of uniqueness of solution for the linear problem
	Solvability of the posed associated linear problem
	The nonlinear problem
	Conclusions

