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Abstract: In this paper, the question of inference of the reliability parameter of fuzzy stress strength 

           is attached to the difference between stress and strength values when   and   are 

independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-

strength interference enables researchers to make more sensitive and precise analyses about the 

underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress 

intensity inference has been introduced. As classical estimation methods and Bayesian estimation 

methods are used to estimate the reliability parameter   , the maximum product of spacing and 

maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy 

reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is 

used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse 

Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation 

analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, 

for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.  

Keywords: fuzzy set; inverse Rayleigh distribution; reliability stress-strength; maximum likelihood; 

maximum product of spacing; Bayesian 
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1. Introduction 

The stress-strength reliability model is significant in reliability literature, medical, economic, and 

engineering applications where systems or specialized units may be exposed to randomly occurring 

environmental stresses such as pressure, temperature, and humidity. In this case, the survival of the 

system depends on its resistance. During World War II, it was found that some of the equipment such as 

radar and communication systems failed to work efficiently when they were used in an environment 

different from the environment for which they were designed. For that, experts started to consider the 

effects of environmental conditions while evaluating the reliability of equipment.  

The computations of fuzzy reliability have been addressed by [1], where if   and   are independent 

but not identical random variables in distribution. The idea behind fuzzy reliability is that including 

fuzziness in the stress-strength interference enables researchers to make more sensitive and precise 

analyses about the underlying systems of life reliability and the system becomes more stable and reliable 

when the difference       gets larger. The advantages of the fuzzy stress-strength reliability model 

over the traditional stress-strength reliability model are in considering the randomness in reliability 

engineering and the fuzziness of operating time. For more information see [1–5]. 

The fuzzy reliability            is defined as 

                   

 

   

        (1) 

where              is a fuzzy set and          is an appropriate membership function on      ; 

that is assumed increasing on the difference       (readers are encouraged to read [5,6] who used the 

definition of the fuzzy stress-strength model to estimate         , when   and   were independent 

inverse exponential random variables).  

The probability that the system is strong enough to overcome the stress imposed on it is defined as 

system reliability. Traditional reliability           may be equally explained as the region under 

the receiver operating characteristic (ROC) for diagnostic test or biomarkers, see reference [7]. The 

ROC curve is exceedingly used in medical, biological, economic, and health service research, to 

evaluate the reliability and distinguish between two groups of subjects, generally non-satisfied and 

satisfied subjects. The research conducted on the traditional stress-strength reliability model focuses on 

computing, calculating, and estimating the reliability of different stress and strength distributions. For 

example, reference [8] estimated the traditional reliability of the stress-strength model for a generalized 

exponential distribution with three parameters. Confidence intervals estimation of traditional reliability 

of stress-strength model for generalized Pareto distribution has been discussed by [9]. The stress-

strength model of a generalized logistic distribution has been studied by [10]. Reference [11] estimated 

the   when   and   independent Lindley populations. In 2020, [12] and others discussed the estimation 

of   when   and   are independent exponentiated Pareto random variables when samples are selected 

using some ranked set sampling designs. Reference [13] presented a comprehensive review of the 

traditional reliability of the stress-strength model. In 2021, [14] estimated the traditional stress strength 

reliability by the use of the MPS estimation method. 

In our study, we used failure times in insulating fluid between two electrodes subjected to a voltage 

of 34 kV and 36 kV as an application and for illustrative purposes. These failure times were randomly 
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observed and there was no reliable information available. Moreover, the failure times model may be 

difficult to measure due to the complexity of the action of electrodes. So, we used stress-strength 

reliability model in the presence of fuzziness. 

In this article, estimation of fuzzy stress-strength reliability model           , when   and   

are independent but not symmetrically distributed inverse Rayleigh random variables, is discussed. The 

product of the spacing method was presented to infer the reliability of fuzzy stress strength by using 

different methods. The proposed estimators are obtained using the maximum likelihood estimation 

method (MLE) and the maximum product of the spacing estimation method (MPS) as well as Bayesian 

estimation when prior distributions are assumed exponential. Besides, a Monte Carlo simulation study is 

made to analyze and compare the performance of the different estimators. A real data application is 

conducted for illustration purposes and to test the estimated functions of the reliability parameter   . 

Finally, the paper is concluded. 

2. The stress strength model 

An increase in the values of     can be thought of equivalently as the increase in the difference 

of  
 

  
 

 

  
. With such consideration, the membership function can be redefined as  

     
        

 

  
 

 

  
            

 

  
 

 

  
      ,              (2) 

where       

Let   and   be two independent inverse Rayleigh random variables with scale parameters    and   , 

respectively. The inverted Rayleigh [        distribution has the following cumulative distribution 

function (CDF) and probability density function (PDF) for    : 
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              (3) 

respectively, where     is a scale parameter. The traditional reliability of the stress-strength model for 

inverse Rayleigh distribution was studied and calculated to be              (see Kotz et al. [9]). 

Therefore, the fuzzy reliability of stress-strength           is given by 

                       
 

  
 

 

  
   

 

 

 

 

  
   
  

     
  
  
   

   
  

     
  
  
       

    
  

    
  

  

     
   

 

    
               (4) 

The traditional reliability   is always greater than the fuzzy reliability   , and as         . 

Figure 1 shows different values for   when    and    changes simultaneously, Figure 2 shows fuzzy 

reliably values for different values of the constant   and when also    and    changes simultaneously. 
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Figure 1. Values for traditional reliability parameter when    and    changes simultaneously. 

 

 

Figure 2. Values for fuzzy reliability parameter for different values of   when    and 

   changes simultaneously. 
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3. Inference of stress-strength model 

In this section, the two methods (MLE and MPS) of estimation are used to estimate the fuzzy 

reliability parameter   . Let               and               be two independent random samples 

from IR (  ) and IR (  ), respectively.  

3.1. Likelihood estimation 

The joint likelihood function of the IR distribution for the stress-strength model can be written as 

                  

 

   

         

 

   

   (5) 

and the log-likelihood function is given as 

               

                  

 

   

      
 

 

   

                  

 

   

      
 

 

   

  (6) 

The normal equations for unknown parameters      , are obtained by differentiating (6) partially 

concerning the parameters      , and equate them to zero. The estimators         can be obtained as a 

solution to the following equation: 

         

   
 
  

  
     

 

  

   

        

where            ,         . The estimate by using MLE is     
  

    
 

  
   

. By using the invariance 

property of MLE, traditional reliability   and the fuzzy reliability    of IR distribution for the stress-

strength model are obtained by using MLE’s as following 

   
   

       
     

 

     
    

3.2. Maximum product of spacing estimation 

The maximum product spacing for stress-strength model is denoted as following.  

                     

   

   

 

 
   

           

   

   

 

 
   

  )7) 

such that               , where 
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 ;               )8) 

The natural logarithm of the product spacing function of the exponential distribution for stress-

strength model is denoted as following 
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)9) 

To obtain the normal equations for the unknown parameters, we partially differentiate Eq (8) 

concerning the parameters      , and equate them with zero. The estimators         can be obtained as a 

solution of the following equations. 

          

   
 

 

    

 
 
 
 
 
 

 
 

   
  

 
   
  

 
  

   
 

   
 
  

   
 

  

 
   
  

 
  

   
 

 
 

        
  

 
  

        
 

 
 
  

   
 

  
 

  

        
 

  

   

 
 
 
 
 
 

  

The above nonlinear equations can’t be solved analytically to find         of      . So, by using 

optimization algorism as conjugate-gradient or Newton-Raphson optimization methods, the estimators 

of       are obtained. Using the invariance property of MPS estimators of the MPS’s which have been 

discussed by [13–18] and have concluded that it is the same as that of MLE, traditional reliability   and 

fuzzy reliability    for IR distribution for the stress-strength model can be computed. 

4. Bayesian estimation 

Assume that the parameters    and    are random variables with exponential prior distributions [11] 

with density function given by  

                    and                    , 

where       and      are hyperparameters of the prior distributions of    and   . The posterior 

distributions of    and    are obtained by combining the likelihood function with the prior distributions 

of both    and    and are found to be 
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Now, let          
   

    and          
   

   . After some manipulations and 

simplifications, we have that                          and                        

respectively. The joint posterior distribution of    and     is then given by  

               
  
      

   

            
  
    

                    

Let          and since   
  

     
, then using standard transformation techniques, the joint 

posterior pdf of   and   will be  

             
  
      

   

            
                                      

Under squared error loss function, the Bayes estimate     is the expected value of    and is given 

by,  
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where   
  
      

   

            
.  

The above integrals are hard to obtain, so numerical technique is used to evaluate the Bayes estimate. 

Markov Chain Monte Carlo (MCMC) approach is used to obtain Bayesian estimators. An important sub-

class of the MCMC techniques is Gibbs’s sampling and more general Metropolis within Gibbs samplers 

see [24,25]. The Metropolis-Hastings algorithm, together with the Gibbs sampling, are the two most 

popular examples of an MCMC method. It’s similar to acceptance-rejection sampling, and the Metropolis-

Hastings algorithm considers that to each iteration of the algorithm, a candidate value can be generated 

from the IR distributions. We use the Metropolis-Hastings within Gibbs sampling steps to generate 

random samples from conditional posterior densities of       , and   . For more information, see [19–23].  
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5. Simulation study 

In this section, we provide a numerical comparison using the Monte Carlo simulation algorithm. 

We explain our algorithm through an application of fuzzy and traditional stress-strength models by 

different estimation methods. In this current simulation, we will compare MLE, MPS, and Bayesian 

estimation methods based on traditional and fuzzy stress-strength measures for estimating the parameter 

of IR distribution. The comparison is made through bias and mean squared errors (MSE) of the different 

measures. The simulations are made using the   program for several combinations of the parameters and 

   , and  . 

Simulation Algorithm: 

We build our model by creating all simulation controls. At this point, we must follow the following 

steps in order: 

Step 1: Suppose different values of the parameters vector of IR distribution. 

Step 2: Choose the different sample size of strength 

                        and different sample size of stress 

                            respectively. 

Step 3: Generate the sample random values of IR distribution by using quantile function in equation 

      
  

      
       and       

  

      
       . 

Step 4: Solve differential equations for each estimation method. To obtain the estimators of the 

parameters for IR distribution, we calculate        ,     when k = 1; and     when k = 5. 

Step 5: Repeat this experiment (L-1) iterations. In each experiment, the parameter values are the same. 

The generated random values are certainly varying from experiment to experiment even though 

the sample size is not changed. In the end, we have L-values of mean and MSE, and we restricted 

the number of repeats in this experiment to 10,000. Take the averages of these values and call 

them Monte Carlo estimates. 

After completing the treatment stage, simulated outcomes are listed in Tables 1–4, Figure 3, and the 

following observations were observed: 

 The Bias and MSE decrease as sample sizes increase for all estimates. 

 For fixed values of   , the biases and MSE’s of estimates of parameters are increasing with    

increasing. 

 For fixed values of   , the biases and MSE’s of estimates of parameters are increasing with    

increasing, but the estimate of R for fuzzy stress strength and tradition are decreasing in 

approximately most situations.  

 For fixed values of   , the bias and MSE of estimates of   , R for fuzzy stress strength and 

tradition are decreasing with    increasing, but the estimates of    are increasing, in approximately 

most situations. 

 The MPS method is found to be superior to the MLE and Bayesian methods in most cases. 

 From the observed results of reliability, we note the efficiency of the fuzzy stress strength is over 

traditional stress strength in most situations according to Bias and MSE. 
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 In fuzzy stress strength, the efficiency is better with decreased values of k according to Bias and 

MSE. 

Table 1. Bias and MSE for MLE, MPS and Bayesian of IR parameters under the stress-

strength model when        and       . 

  
MLE MPS Bayesian 

    
 

Bias MSE Bias MSE Bias MSE 

30, 20 

   0.01688 0.009853 -0.01175 0.008694 0.01667 0.009923 

   0.02254 0.012176 -0.01042 0.010402 0.02298 0.012269 

  0.00191 0.004646 -0.00010 0.004668 0.00222 0.004652 

    0.00082 0.003707 0.00574 0.003819 0.00108 0.003709 

    0.00123 0.004530 0.00173 0.004564 0.00152 0.004536 

50, 40 

   0.01460 0.005687 -0.00528 0.005089 0.01421 0.005724 

   0.01605 0.006444 -0.00743 0.005703 0.01554 0.006470 

  0.00037 0.002765 -0.00140 0.002770 0.00032 0.002777 

    -0.00101 0.002248 0.00214 0.002275 -0.00096 0.002259 

    -0.00034 0.002712 -0.00034 0.002716 -0.00036 0.002724 

80, 90 

   0.00467 0.003394 -0.00915 0.003286 0.00454 0.003400 

   0.00465 0.002857 -0.00793 0.002753 0.00475 0.002900 

  0.00025 0.001457 0.00088 0.001462 0.00035 0.001479 

    0.00032 0.001266 0.00382 0.001296 0.00043 0.001280 

    0.00015 0.001461 0.00187 0.001470 0.00026 0.001482 

100, 110 

   0.00709 0.002738 -0.00456 0.002591 0.00702 0.002759 

   0.00432 0.002318 -0.00647 0.002250 0.00435 0.002311 

  -0.00120 0.001109 -0.00079 0.001115 -0.00113 0.001116 

    -0.00144 0.000968 0.00140 0.000980 -0.00138 0.000976 

    -0.00143 0.001113 -0.00011 0.001118 -0.00136 0.001121 

150, 120 

   0.00495 0.001869 -0.00344 0.001793 0.00502 0.001872 

   0.00500 0.002185 -0.00504 0.002103 0.00476 0.002177 

  -0.00012 0.000925 -0.00095 0.000927 -0.00026 0.000930 

    -0.00052 0.000753 0.00078 0.000756 -0.00063 0.000757 

    -0.00034 0.000906 -0.00041 0.000906 -0.00048 0.000911 

200, 150 

   0.00143 0.001289 -0.00518 0.001280 0.00146 0.001289 

   -0.00026 0.001603 -0.00862 0.001624 -0.00023 0.001609 

  -0.00101 0.000743 -0.00190 0.000745 -0.00101 0.000745 

    -0.00051 0.000586 0.00036 0.000587 -0.00052 0.000586 

    -0.00091 0.000721 -0.00118 0.000721 -0.00091 0.000722 
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Table 2. Bias and MSE for MLE, MPS, and Bayesian of IR parameters under the stress-

strength model when        and     . 

    MLE MPS Bayesian 

      Bias MSE Bias MSE Bias MSE 

30, 20 

   0.01722 0.009963 -0.01153 0.008799 0.01663 0.009996 

   0.09455 0.209672 -0.03808 0.178814 0.08884 0.200672 

  -0.00244 0.002011 -0.00378 0.002049 -0.00251 0.001967 

    -0.00430 0.003224 0.00483 0.003249 -0.00415 0.003192 

    -0.00377 0.002483 -0.00125 0.002477 -0.00377 0.002441 

50, 40 

   0.00929 0.005053 -0.01045 0.004713 0.00944 0.005122 

   0.02895 0.104113 -0.06328 0.098289 0.02630 0.101853 

  -0.00321 0.001175 -0.00435 0.001196 -0.00342 0.001176 

    -0.00357 0.001841 0.00262 0.001843 -0.00374 0.001854 

    -0.00376 0.001436 -0.00220 0.001430 -0.00396 0.001442 

80, 90 

   0.00908 0.003693 -0.00466 0.003437 0.00905 0.003681 

   0.02371 0.046319 -0.02677 0.044176 0.02369 0.046968 

  -0.00193 0.000621 -0.00159 0.000619 -0.00193 0.000622 

    -0.00318 0.001212 0.00187 0.001202 -0.00318 0.001210 

    -0.00268 0.000834 -0.00057 0.000821 -0.00269 0.000834 

100, 110 

   0.00456 0.002584 -0.00704 0.002496 0.00453 0.002569 

   0.01642 0.034435 -0.02646 0.033520 0.01529 0.034530 

  -0.00092 0.000489 -0.00064 0.000486 -0.00102 0.000495 

    -0.00127 0.000913 0.00303 0.000916 -0.00132 0.000915 

    -0.00124 0.000645 0.00055 0.000637 -0.00132 0.000651 

150, 120 

   0.00318 0.001967 -0.00528 0.001923 0.00302 0.001941 

   0.01613 0.035520 -0.02435 0.034584 0.01556 0.035056 

  -0.00057 0.000409 -0.00110 0.000412 -0.00056 0.000406 

    -0.00079 0.000700 0.00186 0.000704 -0.00073 0.000694 

    -0.00079 0.000515 -0.00016 0.000515 -0.00076 0.000511 

200, 150 

   0.00140 0.001126 -0.00524 0.001124 0.00142 0.001134 

   0.02209 0.028304 -0.01175 0.027012 0.02163 0.028342 

  0.00057 0.000293 0.00001 0.000294 0.00053 0.000295 

    0.00031 0.000442 0.00230 0.000448 0.00027 0.000445 

    0.00042 0.000349 0.00079 0.000350 0.00038 0.000351 
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Table 3. Bias and MSE for MLE, MPS and Bayesian of IR parameters under the stress-

strength model when      and       . 

    MLE MPS Bayesian 

      Bias MSE Bias MSE Bias MSE 

30, 20 

   0.06763 0.155282 -0.04768 0.137440 0.06555 0.156610 

   0.02046 0.011668 -0.01262 0.010028 0.02030 0.011591 

  0.00402 0.001864 0.00273 0.001846 0.00420 0.001887 

    0.00203 0.000444 0.00421 0.000483 0.00216 0.000452 

    0.00298 0.001319 0.00439 0.001348 0.00317 0.001340 

50, 40 

   0.04891 0.094691 -0.02992 0.086752 0.04807 0.094583 

   0.01049 0.006881 -0.01254 0.006335 0.01044 0.006899 

  0.00135 0.001199 0.00026 0.001189 0.00140 0.001200 

    0.00076 0.000280 0.00215 0.000295 0.00079 0.000280 

    0.00092 0.000848 0.00173 0.000856 0.00097 0.000847 

80, 90 

   0.03999 0.054062 -0.01579 0.050003 0.04016 0.053777 

   0.00592 0.002720 -0.00667 0.002597 0.00561 0.002704 

  -0.00002 0.000582 0.00040 0.000586 -0.00013 0.000580 

    -0.00007 0.000147 0.00130 0.000155 -0.00012 0.000147 

    -0.00027 0.000431 0.00116 0.000440 -0.00035 0.000430 

100, 110 

   0.00977 0.042263 -0.03626 0.041625 0.01012 0.042315 

   0.00263 0.002330 -0.00810 0.002294 0.00291 0.002340 

  0.00112 0.000520 0.00137 0.000522 0.00118 0.000522 

    0.00084 0.000130 0.00197 0.000137 0.00085 0.000131 

    0.00107 0.000383 0.00219 0.000391 0.00111 0.000385 

150, 120 

   0.00724 0.028570 -0.02618 0.028321 0.00687 0.028620 

   0.00732 0.002145 -0.00283 0.002016 0.00731 0.002161 

  0.00236 0.000382 0.00182 0.000379 0.00240 0.000386 

    0.00108 0.000090 0.00165 0.000093 0.00110 0.000091 

    0.00184 0.000271 0.00214 0.000274 0.00188 0.000274 

200, 150 

   0.00595 0.020483 -0.02065 0.020369 0.00619 0.020443 

   0.00547 0.001682 -0.00295 0.001608 0.00545 0.001685 

  0.00171 0.000301 0.00116 0.000300 0.00168 0.000302 

    0.00077 0.000068 0.00118 0.000070 0.00075 0.000068 

    0.00133 0.000210 0.00148 0.000212 0.00130 0.000210 
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Table 4. Bias and MSE for MLE, MPS, and Bayesian of IR parameters under the stress-

strength model when      and     . 

    MLE MPS Bayesian 

n, m   Bias MSE Bias MSE Bias MSE 

30, 20 

   0.06224 0.176286 -0.05263 0.157645 0.06459 0.177161 

   0.09727 0.203480 -0.03537 0.172121 0.09340 0.199105 

  0.00357 0.004826 0.00162 0.004858 0.00292 0.004771 

    0.00261 0.001646 0.00843 0.001815 0.00227 0.001636 

    0.00246 0.004133 0.00686 0.004254 0.00188 0.004101 

50, 40 

   0.03017 0.082788 -0.04820 0.078270 0.03007 0.083022 

   0.06224 0.113595 -0.03145 0.101059 0.06146 0.113486 

  0.00315 0.002556 0.00139 0.002559 0.00306 0.002556 

    0.00181 0.000863 0.00564 0.000929 0.00178 0.000862 

    0.00220 0.002158 0.00494 0.002204 0.00214 0.002157 

80, 90 

   0.02923 0.051774 -0.02658 0.048799 0.03008 0.052007 

   0.01866 0.047300 -0.03152 0.045476 0.01861 0.047487 

  -0.00118 0.001537 -0.00050 0.001532 -0.00129 0.001538 

    -0.00039 0.000552 0.00294 0.000576 -0.00047 0.000553 

    -0.00131 0.001370 0.00200 0.001378 -0.00142 0.001371 

100, 110 

   0.02007 0.043336 -0.02620 0.041573 0.02040 0.043196 

   0.01477 0.035742 -0.02818 0.034901 0.01559 0.035898 

  -0.00043 0.001201 -0.00003 0.001200 -0.00038 0.001204 

    0.00010 0.000455 0.00281 0.000473 0.00010 0.000455 

    -0.00048 0.001100 0.00215 0.001108 -0.00046 0.001101 

150, 120 

   0.02229 0.027613 -0.01152 0.026372 0.02199 0.027322 

   0.01364 0.036194 -0.02658 0.035347 0.01402 0.036164 

  -0.00135 0.000946 -0.00218 0.000952 -0.00127 0.000944 

    -0.00084 0.000300 0.00075 0.000305 -0.00080 0.000298 

    -0.00157 0.000781 -0.00045 0.000783 -0.00151 0.000778 

200, 150 

   0.01240 0.020863 -0.01433 0.020372 0.01221 0.020684 

   0.01492 0.025875 -0.01865 0.025209 0.01504 0.025844 

  0.00016 0.000705 -0.00069 0.000707 0.00020 0.000703 

    0.00002 0.000232 0.00122 0.000237 0.00004 0.000231 

    -0.00011 0.000594 0.00064 0.000597 -0.00007 0.000592 
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Figure 3. Relative Efficiency for different measures. 

6. Application of real data 

The numerical results of tradition and fuzzy stress-strength reliability estimation of the IR 

distribution for real data are presented in this section. 

Two real stress and strength data sets contained times to breakdown down an insulating fluid 

between electrodes recorded at different voltages; these data have been discussed by [26]. Data I and 

data II as presented in Table 4, are the failure times (in minutes) are presented, which are for an 
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insulating fluid between two electrodes subject to a voltage of 34 kV (data set I) and 36 kV (data set II). 

Table 6 provides information about the estimated parameters of the IR model and the corresponding 

traditional and fuzzy reliability measures 

Table 5. Data sets of times to breakdown down an insulating fluid between electrodes 

recorded at different voltages. 

Data I 
0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.5 

7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89 - 

Data II 
0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71 2.9 

3.67 3.99 5.35 13.77 25.50 - - - - - 

Table 6. Tradition and the fuzzy stress-strength estimation of the IR distribution. 

        R         

MLE 0.60363 1.02982 0.63046 0.39315 0.56254 

MPS 0.55815 0.89220 0.61516 0.39480 0.55339 

Bayesian 0.64494 1.12664 0.63595 0.38661 0.56330 

The graph of MCMC estimates for    and    using the MH algorithm are the plotting of estimates, 

histogram of estimates, and convergence of estimates are shown in Figure 3. In Figure 4, we note the 

convergence of MCMC estimates for    and    in the first quartile iteration. 

 

Figure 4. Convergence of MCMC estimation of    and   . 
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7. Conclusions 

The new approach of estimating fuzzy stress-strength reliability            is getting much 

attention because of the properties of   , which makes the analysis more sensitive and more reliable. 

Also, when the study results are not known completely, the use of traditional methods may be 

misleading, and the need for new approaches that can handle such situations is very important. In this 

paper, the stress and strength variables were distributed as inverted Rayleigh distribution. It can be noted 

that different membership functions will provide different measures of   . It is also noted that the MPS 

method is superior to the MLE and Bayesian methods in most cases. 
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