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1. Introduction

In this article, we study the generalized quasilinear Schrödinger equations−∆pu − |u|σ−2uh′(|u|σ)∆ph(|u|σ) = f (x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain, h(t) ∈ C2(R+,R), N ≥ 3, ∆pu = div
(
|∇u|p−2

∇u
)

is the
p-Laplacian with 1 < p < N and the parameter σ > 1.

When p = σ = 2, Eq (1.1) is a special case for some physical phenomena, see [1–3]. In fact,
solutions for the Eq (1.1) for p = σ = 2 are the existence of standing wave solutions for the following
quasilinear Schrödinger equations

i∂tz = −∆z + Wz − f (|z|2)z − κzh′(|z|2)∆h(|z|2), (1.2)

where W(x), x ∈ RN is a given potential, κ is a real constant and f , h are real functions of essentially
pure power forms. The semilinear case corresponding to κ = 0 has been studied extensively in recent
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years. Quasilinear Schrödinger equation of the form (1.2) appears more naturally in mathematical
physics and has been derived as a model of several physical phenomena corresponding to various
types of h. For instance, the case of h(t) = t was used for the superfluid film equation in plasma
physics by Kurihara in [4]. In the case h(t) = (1 + t)1/2, Eq (1.2) models the self-channeling of a high-
power ultrashort lasers in matter, see [5–7] and the references in [8]. Eq (1.2) also appears in plasma
physics and fluid mechanics [9–11], in the theory of Heisenberg ferromagnets and magnons [12–14],
in dissipative quantum mechanics [15], and in condensed matter theory [16].

In recent years, problem (1.1) was studied primarily in the case p = σ = 2 and h(t) = t. Recently,
some works dealing with problem (1.1) for p , 2, σ = 2 and h(t) = t appeared in [17–19]; for
p = 2, σ , 2 and h(t) = t appeared in [20–22]; for p = 2, σ = 2 and h(t) , t appeared in [23, 24]. But,
to our best knowledge, so far there is not any result on the existence of solutions for problem (1.1) for
p , 2, σ , 2 and h(t) , t.

We consider the existence of weak solutions for a more general form of (1.2) of the following
quasilinear Schrödinger equation

i∂tz = −∆pz + Wz − |z|σ−2z f (|z|σ) − κ|z|σ−2zh′(|z|σ)∆ph(|z|σ)

in a bounded smooth domain Ω ⊂ RN with the Dirichlet boundary condition, in which κ = 1 and
f = f (t) is a Caratheodory function under some power growth with respect to t. At the same time we
assume W(x) ≡ W (a constant) to indicate that the solution stays at a constant potential level. Putting
z(x, t) = exp(−iWt)u(x) we obtain the corresponding Eq (1.1) of elliptic type with a formal variational
structure, see in Section 2.

For a deep insight into this problem one can find that a major difficulty of the problem (1.1) is
that the functional corresponding to the equation is not well defined for all u ∈ W1,p

0 (Ω) if p < N. We
generalized the method of a change of variables developed in [25] to overcome this difficulty, and make
a slight different definition of weak solution. Then by a standard argument by critical point theory, we
develop the existence of nontrivial solutions to our problem.

This article is organized as follows. In Section 2, we developed the properties of changing of
variables and give the definition of weak solution for our problem; in Section 3, we give existence
theorems of solutions; and in Section 4, we prove the main theorems.

2. Variational structure

We assume the following conditions on f :
(F1) There exist constants C > 0, α > 1 and p < q < p∗ := N p

N−p , such that for any x ∈ Ω and t ∈ R,

| f (x, t)| ≤ C(1 + |t|αq−1).

We assume that h(t) satisfies the following conditions:
(h0) There exists a constant β > 0, such that for t ∈ (0,+∞) and α > 1 (the constant appeared in the

assumption (F1)),
0 ≤

σ

p
tH′(t) ≤ (α − 1)H(t),

where
H(t) = 1 + σp−1t

p(σ−1)
σ |h′(t)|p
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with h satisfying the following
lim

t→+∞
t1−α/σh′(t) = β,

lim
t→0+

t1−1/σh′(t) = 0.

By a direct, but a bit of complex computation, we observe that (1.1) is the Euler-Lagrange equation
associated to the energy functional

J(u) =
1
p

∫
Ω

(
1 + σp−1|u|p(σ−1)

|h′(|u|σ)|p
)
|∇u|pdx −

∫
Ω

F(x, u)dx, (2.1)

where F(x, t) =
∫ t

0
f (x, t)dt. But this functional J may be not well defined in u ∈ W1,p

0 (Ω) equipped
with the norm

‖u‖p =

∫
Ω

|∇u|pdx.

To overcome this difficulty, we generalize the changing of variables developed in [25]. That is v =

g−1(u), where g is defined by the following ODE g′(t) =
[
1 + σp−1|g(t)|p(σ−1)

|h′(|g(t)|σ)|p
]−1/p

, t ∈ [0,+∞)

g(t) = −g(−t), t ∈ (−∞, 0].

It follows from the theory of ODE that g is uniquely defined in R. We summarize the properties of
g as follows.

Lemma 2.1. The function g defined above satisfies the following properties:

(1) g(0) = 0;
(2) g is uniquely defined in R, C2 and invertible;
(3) 0 < g′(t) ≤ 1, for any t ∈ R;
(4) g(t) ≤ αtg′(t) ≤ αg(t), for any t > 0;
(5) g(t)/t ↗ 1, as t → 0+;
(6) |g(t)| ≤ |t|, for any t ∈ R;
(7) g(t)/t1/α ↗ K0 =

(
α

σ1−1/pβ

)1/α
, as t → +∞;

(8) |g(t)| ≤ K0|t|1/α, for any t ∈ R;
(9) g2(t) − g(t)g′(t)t ≥ 0, for any t ∈ R;

(10) There exists a positive constant L0 such that

|g(t)| ≥

 L0|t|1/α, |t| ≥ 1;
L0|t|, |t| ≤ 1;

(11) |gα−1(t)g′(t)| < K0
α;

(12) g′′(t) < 0 for t > 0 and g′′(t) > 0 for t < 0.

Proof. The conclusions (1)–(3) are trivial. To establish the left hand side of the inequality (4), we need
to show that, for any t > 0, [

1 + σp−1|g(t)|p(σ−1)
|h′(|g(t)|σ)|p

]1/p
g(t) ≤ αt.
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To prove this we study the function l(t) : R+ → R, defined by

l(t) := αt −
[
1 + σp−1|g(t)|p(σ−1)

|h′(|g(t)|σ)|p
]1/p

g(t).

It is clear that l(0) = 0, and from (h0), we get

l′(t) = α − 1 −
σp−1|g|p(σ−1)

|h′(|g|σ)|p−2
[
(σ − 1)(h′(|g|σ))2 + σh′(|g|σ)h′′(|g|σ)|g|σ

]
1 + σp−1|g|p(σ−1)

|h′(|g|σ)|p
≥ 0.

Hence the left hand side of the inequality (4) is proved. The right hand side of the inequality (4) can
be proved in a similar way.

It is easy to get (5) and (6) from (4). We give the proof of (7) by (h0) and the principle of L’Hospital.
In fact, since g(t)→ +∞ as t → +∞, we get

lim
t→+∞

g(t)
t1/α = lim

t→+∞

(
gα(t)

t

)1/α

= lim
t→+∞

(
αgα−1(t)g′(t)

1

)1/α

= lim
t→+∞

(
αpgp(α−1)(t)

1 + σp−1|g(t)|p(σ−1)
|h′(|g(t)|σ)|p

)1/αp

= lim
y→+∞

 αpy
p(α−1)
σ

1 + σp−1y
p(σ−1)
σ |h′(y)|p

1/αp

=

(
α

σ1−1/pβ

)1/α

= K0.

Then (7) is proved by (4).
It is easy to get (8) by (7) and (9) by (4). The inequalities in (10) are trivial and (11) is from (4)

and (8).
For (12), it is easy to see that

g′′(t) =
σp−1|g|p(σ−1)−2g|h′(|g|σ)|p−2

[
(σ − 1)(h′(|g|σ))2 + σh′(|g|σ)h′′(|g|σ)|g|σ

]
−[1 + σp−1|g|p(σ−1)

|h′(|g|σ)|p]1+2/p
.

So the conclusion of (12) is true. �

After the changing of variables by u = g(v), we obtain the following functional

Φ(v) := J(g(v)) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx (2.2)

which is well defined on the space W1,p
0 (Ω). It belongs to C1(W1,p

0 (Ω);R) by the assumption (F1) and
Lemma 2.1. Then for all w ∈ W1,p

0 (Ω), we get

〈Φ′(v),w〉 =

∫
Ω

|∇v|p−2∇v∇wdx −
∫

Ω

f (x, g(v))g′(v)wdx.
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Thus the critical point of Φ is the weak solution of the problem−∆pv = f (x, g(v))g′(v), in Ω,

v = 0, on ∂Ω.
(2.3)

By setting v = g−1(u), it is easy to see that Eq (2.3) is equivalent to our problem (1.1), which takes
u = g(v) as its solution.

Motivated by the above, we give the following definition of the weak solution for problem (1.1).

Definition 2.1. We say u is a weak solution of problem (1.1), if v = g−1(u) ∈ W1,p
0 (Ω) is a critical point

of the following functional corresponding to problem (2.3):

Φ(v) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx.

3. Main theorems

For the rest of this paper, we make use of the following notations: X denotes the Sobolev space
W1,p

0 (Ω); X∗ denotes the conjugate space of X; 〈·, ·〉 is the dual pairing on the space X∗ and X; by →
(resp. ⇀) we mean strong (resp. weak) convergence; |Ω| denotes the Lebesgue measure of the set
Ω ⊂ RN; Lp(Ω) denotes Lebesgue space with the norm | · |p; C,C1,C2,...denote (possibly different)
positive constants.

It is well known (see [26]) that the p-homogeneous boundary value problem−∆pu = λ|u|p−2u, in Ω,

u = 0, on ∂Ω

has the first eigenvalue λ1 > 0, which is simple and has an associated eigenfunction which is positive
in Ω. It is also known that λ1 is an isolated point of σ(−∆p), the spectrum of −∆p, which contains at
least an increasing eigenvalue sequence obtained by Lusternik-Schnirelman theory.

Let V = span{φ1} be the one-dimensional eigenspace associated to λ1, where φ1 > 0 in Ω and
‖φ1‖ := (

∫
Ω
|∇φ1|

pdx)
1/p

= 1. Taking the subspace Y ⊂ X completing V such that X = V ⊕ Y , there
exists λ > λ1 such that ∫

Ω

|∇u|pdx ≥ λ
∫

Ω

|u|pdx, u ∈ Y.

When p = 2, one can take λ = λ2, the second eigenvalue of −∆ in H1
0(Ω).

Let us recall the following useful notion from nonlinear operator theory. If X is a Banach space and
A : X → X∗ is an operator, we say that A is of type (S +), if for every sequence {xn}n≥1 ⊆ X such that
xn ⇀ x weakly in X, and lim supn→∞〈A(xn), xn − x〉 ≤ 0, we have that xn → x in X.

Let us consider the map A : X → X∗, corresponding to −∆pu with Dirichlet boundary data, defined
by

〈A(u), v〉 =

∫
Ω

|∇u|p−2
∇u · ∇vdx, ∀u, v ∈ X. (3.1)

Then we have the following result:
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Lemma 3.1. [27] The map A : X → X∗ defined by (3.1) is continuous and of type (S +).

We shall use Palais-Smale compactness condition:

Definition 3.1. Let X be a Banach space. Let Φ ∈ C1(X;R), we say Φ satisfies (PS ) (resp. (PS )c)
condition if any sequence {un} ⊂ X for which Φ(un) is bounded (resp. Φ(un) → c) and Φ′(un) → 0 as
n→ ∞ possesses a convergent subsequence.

Lemma 3.2. [28] (Mountain Pass Theorem) Let X be a Banach space, and let f ∈ C1(X,R) satisfy
f (0) = 0 and (PS ) condition. Assume
(1) There exists a δ > 0 such that f |‖u‖=δ > 0;
(2) There is a v ∈ X satisfying ‖v‖ > δ and Φ(v) < 0.
Then f has a critical value c characterized by c = infγ∈Γ maxt∈[0,1] f (γ(t)),
where Γ = {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = v}.

We shall also assume the following condition f :
(F2) There exist p < θ, 0 < η < αθλ1(1/p−1/θ)

K0
αp and µ ∈ [0, p] such that

lim inf
|t|→∞

f (x, t)t − αθF(x, t)
|t|αµ

> −η uniformly in x ∈ Ω;

(F3) There exists a constant M > 0 such that f (x, t)t > 0 for |t| ≥ M.

Remark 3.1. The Ambrosetti-Rabinowitz type growth condition “There exists M > 0, such that
αθF(x, t) ≤ f (x, t)t, |t| ≥ M, x ∈ Ω” implies that |t| ≥ M, x ∈ Ω,

f (x, t)t − αθF(x, t) ≥ 0 > −η|t|αµ.

Then
lim inf
|t|→∞

f (x, t)t − αθF(x, t)
|t|αµ

> −η,

uniformly in x ∈ Ω. Hence (F2) is weaker than Ambrosetti-Rabinowitz type growth condition.

Our main results are the following.

Theorem 3.1. Assume (F1)–(F3) and the following
(F4) lim sup|t|→0

pKαp
0 F(x,t)
|t|αp < λ1 uniformly in x ∈ Ω;

(F5) lim inf |t|→∞
pLαp

0 F(x,t)
|t|αp > λ1 uniformly in x ∈ Ω,

hold, where K0 and L0 are constants appeared in Lemma 2.1. Then (1.1) has at least one nontrivial
weak solution in the sense of Definition 2.1.

Theorem 3.2. Assume (F1)–(F3), (F5) and the following
(F6) f (x,−t) = − f (x, t), x ∈ Ω, |t| ≤ r,
hold. Then (1.1) has a sequence of weak solutions {±uk}

∞
k=1 such that Φ(±uk)→ +∞ as k → +∞ in the

sense of Definition 2.1.

Theorem 3.3. Assume (F1), and the following
(F7) There exist r > 0, λ̂1, λ̂2 ∈ (λ1, λ) such that λ̂1 < λ̂2 and |t| ≤ r implies λ̂1|t|p ≤ pF(x, t) ≤ λ̂2|t|p,
x ∈ Ω, t ∈ R;
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(F8) lim sup|t|→∞
pKαp

0 F(x,t)
|t|αp < λ1 uniformly in x ∈ Ω,

hold, where K0 is the constant appeared in Lemma 2.1. Then (1.1) has at least two nontrivial weak
solutions in the sense of Definition 2.1.

Theorem 3.4. Assume (F1), (F7), and the following
(F9) lim|t|→∞

pKαp
0 F(x,t)
|t|αp = λ1 uniformly in x ∈ Ω;

(F10) lim|t|→∞( f (x, t)t − αpF(x, t)) = +∞ uniformly in x ∈ Ω,
hold, where K0 is the constant appeared in Lemma 2.1. Then (1.1) has at least two nontrivial weak
solutions in the sense of Definition 2.1.

4. The proof of the theorems

We decompose the proof of Theorem 3.1 into the following three lemmas.

Lemma 4.1. Under condition (F1), any bounded sequence {vn} ⊂ X such that Φ′(vn) → 0 in X∗, as
n→ ∞, has a convergent subsequence.

Proof. Since {vn} is bounded, by the self-reflextive property of X, there exists a subsequence of {vn}

(we may also denote it by {vn}) and v ∈ X, such that vn ⇀ v. From (F1), Lemma 2.1, Hölder inequality
and the compact Sobolev embedding, we can see that as n→ ∞∣∣∣∣∣∫

Ω

f (x, g(vn))g′(vn)(vn − v)dx
∣∣∣∣∣

≤

∫
Ω

(
1 + |g(vn)|αq−1g′(vn)

)
|vn − v|dx

≤

∫
Ω

C1(1 + |vn|
q−1)|vn − v|dx

≤ C2

(∫
Ω

(1 + |vn|
q−1)

q
q−1 dx

) q−1
q
(∫

Ω

|vn − v|qdx
) 1

q

→ 0.

(4.1)

By (4.1) and the following
|〈Φ′(vn), vn − v〉| ≤ C‖Φ′(vn)‖X∗ → 0,

we get ∫
Ω

|∇vn|
p−2
∇vn∇(vn − v)dx→ 0.

Then we conclude that vn → v by the property of (S +) in Lemma 3.1. �

Lemma 4.2. Under assumptions (F2) and (F3), any sequence {vn} ⊂ X such that |Φ(vn)| ≤ B, and
Φ′(vn)→ 0 in X∗, as n→ ∞, is bounded in X.

Proof. Suppose that {vn} ⊂ X, |Φ(vn)| ≤ B, and Φ′(vn) → 0 in X∗ as n → ∞. By (F2), there exists
C1 > 0 such that

f (x, t)t − αθF(x, t) > −η|t|αµ, |t| > C1, x ∈ Ω.
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Let C := supn Φ(vn). From Lemma 2.1 (4), (9) and (10), (F2) and (F3) we have

C + 1 + ‖vn‖

≥ Φ(vn) −
1
θ
〈Φ′(vn), vn〉

≥

(
1
p
−

1
θ

)
‖vn‖

p +

∫
Ω

1
θ

f (x, g(vn))g′(vn)vn − F(x, g(vn))dx

≥

(
1
p
−

1
θ

)
‖vn‖

p +
1
αθ

∫
Ω

f (x, g(vn))g(vn) − αθF(x, g(vn))dx −C2

≥

(
1
p
−

1
θ

)
‖vn‖

p
−
η

αθ

∫
Ω

|g(vn)|αµdx −C3

≥

(
1
p
−

1
θ

)
‖vn‖

p
−
ηKαµ

0

αθ

∫
Ω

|vn|
µdx −C4

≥

(
1
p
−

1
θ

)
‖vn‖

p
−
ηKαµ

0

αθ

∫
Ω

|vn|
pdx −C5

≥

(
1
p
−

1
θ
−
ηKαµ

0

αθλ1

)
‖vn‖

p
−C6.

Noticing that
(

1
p −

1
θ
−

ηKαµ
0

αθλ1

)
> 0, we obtain the boundedness of {vn} in X. �

Lemma 4.3. Assume that (F1), (F4) and (F5) hold. Then the functional Φ satisfies:
(1) There exists a δ > 0 such that Φ|‖v‖=δ > 0;
(2) There is an e ∈ V satisfying ‖e‖ > δ and Φ(e) < 0.

Proof. We obtain from the assumptions (F1) and (F4) that for some small ε > 0, there exists Cε > 0
such that

F(x, t) ≤
λ1 − ε

pKαp
0

|t|αp + Cε|t|αq, ∀x ∈ Ω, t ∈ R.

Taking v ∈ X, using the inequality
∫

Ω
|∇v|pdx ≥ λ1

∫
Ω
|v|pdx, the Sobolev inequality |v|qq ≤ τ‖v‖q and

Lemma 2.1, we get

Φ(v) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx

≥
1
p
‖v‖p
−

∫
Ω

λ1 − ε

pKαp
0

|g(v)|αp + Cε|g(v)|αqdx

≥
1
p
‖v‖p
−

∫
Ω

λ1 − ε

p
|v|p + C1|v|qdx

≥
1
p
‖v‖p
−
λ1 − ε

pλ1
‖v‖p
−C2‖v‖q

=
ε

pλ1
‖v‖p
−C2‖v‖q.

Then there exists a δ > 0 such that Φ|‖v‖=δ > 0.
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By (F5), there exist ε > 0 and T > 0 such that

F(x, t) ≥
λ1 + ε

pLαp
0

|t|αp, |t| > T, x ∈ Ω.

For any v ∈ V , we can denote v = tφ1, t ∈ R. Then

Φ(tφ1) =
1
p

∫
Ω

|∇tφ1|
pdx −

∫
Ω

F(x, g(tφ1))dx

≤
1
p
|t|p −

∫
Ω

λ1 + ε

pLαp
0

|g(tφ1)|αpdx + C3|Ω|

≤
1
p
|t|p −

∫
Ω

λ1 + ε

p
|tφ1|

pdx + C4

=
1
p
|t|p −

λ1 + ε

pλ1
|t|p + C4

= −
ε

pλ1
|t|p + C4 → −∞ as t → ∞.

Hence there exists ē = tφ1 ∈ X, ‖e‖ > δ such that Φ(e) < 0. �

Proof of Theorem 3.1. Obviously we have Φ(0) = 0. By Lemmas 4.1 and 4.2, we know that the
functional Φ satisfies the (PS ) condition. Sum up the above fact, Theorem 3.1 follows from
Lemmas 4.1–4.3 by Lemma 3.2. �

We will use the Fountain Theorem to prove Theorem 3.2. Since X is a reflexive and separable
Banach space, there exist {e j} ⊂ X and {e∗j} ⊂ X∗ such that

X = span{e j : j = 1, 2, ...}, X∗ = span{e∗j : j = 1, 2, ...}

in which

〈e∗i , e j〉 =

 1, i = j,

0, i , j.

We will write X j = span{e j}, Yk = ⊕k
j=1X j, Zk = ⊕∞j=kX j.

Lemma 4.4. [28] (Fountain Theorem) Assume
(A1) X is a Banach space, Φ ∈ C1(X,R) is an even functional;
(A2) Φ satisfies (PS )c condition for every c > 0,
and for each k ∈ N, there exist ρk > rk > 0 such that
(A3) ak := maxv∈Yk , ‖v‖=ρk Φ(v) ≤ 0;
(A4) bk := infv∈Zk , ‖v‖=rk Φ(v)→ +∞ as k → +∞.
Then Φ admits a sequence of critical values tending to +∞.

Lemma 4.5. [28] Denote βk = sup{|v|q : ‖v‖ = 1, v ∈ Zk}. Then limk→+∞ βk = 0.

Proof of Theorem 3.2. Obviously Φ is even by (F6). Further more, by Lemmas 4.1 and 4.2, Φ satisfies
the (PS )c condition. We need only to prove that there exist ρk > rk > 0 such that condition (A3) and
(A4) in Lemma 4.4 hold.
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(A3) From assumption (F5) and Lemma 2.1, there exist ε > 0 and T > 0 large enough such that

F(x, g(t)) ≥
λ1 + ε

pLαp
0

|g(t)|αp
≥
λ1 + ε

p
|t|p, |t| > T, x ∈ Ω.

For any w ∈ Yk with ‖w‖ = 1 and ρk = t > 1, we have

Φ(tw) =
1
p

∫
Ω

|∇tw|pdx −
∫

Ω

F(x, g(tw))dx

≤
1
p

tp −
λ1 + ε

p

∫
Ω

|tw|pdx + C1

=
1
p

tp −
λ1 + ε

pλ1
tp + C1

= −
ε

pλ1
tp + C1 → −∞ as t → ∞.

(A4) After integrating, we obtain from (F1) that the existence of C2 > 0 such that

|F(x, t)| ≤ C2(1 + |t|αq). (4.2)

Let v ∈ Zk, ‖v‖ = rk := (C2qKαq
0 β

q
k)1/p−q, in which K0 is the constant appeared in Lemma 2.1. By (4.2),

Lemmas 2.1 and (4.5), we get

Φ(v) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx

≥
1
p
‖v‖p
−C2

∫
Ω

|g(v)|αqdx −C2|Ω|

≥
1
p
‖v‖p
−C2Kαq

0

∫
Ω

|v|qdx −C2|Ω|

≥
1
p
‖v‖p
−C2Kαq

0 β
q
k‖v‖

q
−C2|Ω|

=

(
1
p
−

1
q

)
(C2qKαq

0 β
q
k)

p
p−q −C2|Ω| → +∞, as k → +∞.

Then the conclusion of Theorem 3.2 is obtained by Lemma 4.4. �

Remark 4.1. We can obtain the existence of a sequence solutions by symmetric mountain pass theorem
under similar odd condition (F6).

For the proof of Theorems 3.3 and 3.4, we need the following lemma from [29].

Lemma 4.6. Let X be a Banach space with a direct sum decomposition X = X1⊕X2, with k = dimX2 <

∞, let f be a C1 functional on X with f (0) = 0, satisfying (PS ) condition. Assume that, for some ρ > 0,
(1) f (u) ≥ 0, for u ∈ X1, ‖u‖X ≤ ρ;
(2) f (u) ≤ 0, for u ∈ X2, ‖u‖X ≤ ρ.
Assume also that f is bounded below and infX f < 0. Then f has at least two nonzero critical points.

Lemma 4.7. Under assumptions (F1) and (F8) (or substitute (F9) and (F10) for (F8)), the functional Φ

is coercive in X, that is, Φ(v)→ +∞ as ‖v‖ → ∞.
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Proof. (1) Let (F8) holds. From (F1) and (F8) we can see for some ε > 0, there exists a constant Cε > 0
such that

F(x, t) ≤
λ1 − ε

pKαp
0

|t|αp + Cε, t ∈ R, x ∈ Ω.

So by Sobolev inequality, we get for v ∈ X,

Φ(v) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx

≥
1
p
‖v‖p
−
λ1 − ε

pKαp
0

∫
Ω

|g(v)|αpdx −Cε|Ω|

≥
1
p
‖v‖p
−
λ1 − ε

p

∫
Ω

|v|pdx −Cε|Ω|

≥
ε

pλ1
‖v‖p
−Cε|Ω| → +∞, as ‖v‖ → +∞.

(2) Let (F9) and (F10) hold. Write F(x, t) = λ1
pKαp

0
|t|αp + H(x, t) and f (x, t) = αλ1

Kαp
0
|t|αp−2t + h(x, t). Then

lim
|t|→∞

pKαp
0 H(x, t)
|t|αp = 0

and
lim
|t|→∞

(h(x, t)t − αpH(x, t)) = +∞ uniformly in x ∈ Ω.

It follows that for any M > 0, there is a TM > 0 such that

h(x, t)t − αpH(x, t) ≥ M, |t| ≥ TM, x ∈ Ω.

Integrating the equality
d
dt

(
H(x, t)
|t|αp

)
=

h(x, t)t − αpH(x, t)
|t|αpt

over the interval [t1, t2] ⊂ [TM,+∞), we have

H(x, t2)
tαp
2

−
H(x, t1)

tαp
1

≥
M
αp

(
1

tαp
1

−
1

tαp
2

)
.

Letting t2 → +∞, we have H(x, t) ≤ − M
αp for t ≥ TM, x ∈ Ω. In a similar way, we have H(x, t) ≤ − M

αp
for t ≤ −TM, x ∈ Ω. So we can see

lim
|t|→∞

H(x, t)→ −∞ uniformly in x ∈ Ω. (4.3)

We suppose on the contrary, there exists a sequence {vn} ⊂ X such that ‖v‖ → ∞ as n → ∞, but
Φ(vn) ≤ C for some constant C ∈ R. Set wn = vn

‖vn‖
, then up to a subsequence, we assume there is some

w0 ∈ X such that wn ⇀ w0 in X, wn → w0 in Lp(Ω), and wn(x) → w0(x) for a.e. x ∈ Ω. Moreover, we
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have the following:

C
‖vn‖

p ≥
Φ(vn)
‖vn‖

p =
1

p‖vn‖
p

∫
Ω

|∇vn|
pdx −

1
‖vn‖

p

∫
Ω

F(x, g(vn))dx

≥
1
p

∫
Ω

(|∇wn|
p
− λ1|wn|

p)dx −
1
‖vn‖

p

∫
Ω

H(x, g(vn))dx

≥
1
p

∫
Ω

(|∇wn|
p
− λ1|wn|

p)dx +
M|Ω|

αp‖vn‖
p −

1
‖vn‖

p

∫
|g(vn)|≤TM

H(x, g(vn))dx

≥
1
p

∫
Ω

(|∇wn|
p
− λ1|wn|

p)dx −
C1

‖vn‖
p ,

which implies

lim sup
n→∞

∫
Ω

|∇wn|
pdx ≤ λ1

∫
Ω

|w0|
pdx. (4.4)

By the weakly semicontinuous property of the norm and the Sobolev inequality again, we have the
converse inequality of (4.4),

λ1

∫
Ω

|w0|
pdx ≤

∫
Ω

|∇w0|
pdx ≤ lim inf

n→∞

∫
Ω

|∇wn|
pdx ≤ lim sup

n→∞

∫
Ω

|∇wn|
pdx. (4.5)

By (4.4) and (4.5),
∫

Ω
|∇w0|

pdx = λ1

∫
Ω
|w0|

pdx and wn → w0 in X with ‖w0‖ = 1. Hence w0 = ±φ1.
Take w0 = φ1. Then vn → +∞ a.e. x ∈ Ω, which implies H(x, g(vn))→ −∞ by (4.3). So we have

C ≥ Φ(vn) =
1
p

∫
Ω

|∇vn|
pdx −

∫
Ω

F(x, g(vn))dx

≥
1
p

∫
Ω

(|∇vn|
p
− λ1|vn|

p)dx −
∫

Ω

H(x, g(vn))dx

≥ −

∫
Ω

H(x, g(vn))dx→ +∞, as n→ ∞,

which is a contradiction. So we have Φ is coercive in X. �

Lemma 4.8. Under assumptions (F1) and (F7), for the decomposition of the space X = V ⊕ Y, there is
a small ball Bρ with the center at 0 and small radius ρ > 0 such that
(1) Φ(v) ≤ 0, for v ∈ V, v ∈ Bρ;
(2) Φ(v) ≥ 0, for v ∈ Y, v ∈ Bρ.

Proof. (1) Take v ∈ V , we can see that ‖v‖ ≤ ρ implies |g(v)| ≤ r, ∀x ∈ Ω for ρ > 0 small enough. So
by (F7), for ‖v‖ ≤ ρ,

Φ(v) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx

=
λ1

p

∫
Ω

|v|pdx −
∫

Ω

F(x, g(v))dx

=

∫
|g(v)|≤r

(
λ1

p
|v|p − F(x, g(v))

)
dx

<

∫
|g(v)|≤r

(
λ̂1

p
|g(v)|p − F(x, g(v))

)
dx

≤ 0.
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(2) Take v ∈ Y . From Lemma 2.1, assumptions (F1) and (F7), Sobolev embedding and the definition
of λ̄, we have the following

Φ(v) =
1
p

∫
Ω

|∇v|pdx −
∫

Ω

F(x, g(v))dx

=
1
p

∫
Ω

(|∇v|p − λ̂2|v|p)dx −
∫

Ω

(
F(x, g(v)) −

λ̂2

p
|v|p

)
dx

≥
1
p

(
1 −

λ̂2

λ̄

)
‖v‖p
−

∫
|g(v)|>r

(
F(x, g(v)) −

λ̂2

p
|v|p

)
dx

≥
1
p

(
1 −

λ̂2

λ

)
‖v‖p
−C1

∫
|g(v)|>r

|g(v)|αqdx

≥
1
p

(
1 −

λ̂2

λ

)
‖v‖p
−C2

∫
|g(v)|>r

|v|qdx

≥
1
p

(
1 −

λ̂2

λ̄

)
‖v‖p
−C3‖v‖q.

So we can derive, when v ∈ Y and ‖v‖ ≤ ρ for ρ > 0 small, that Φ(v) ≥ 0, which completes the
proof. �

Proof of Theorems 3.3 and 3.4. Obviously we have Φ(0) = 0. Further more, by Lemmas 4.1 and 4.7,
Φ is coercive and satisfies the (PS ) condition. Hence Φ is bounded below. From Lemma 4.8 (1) we
have infX Φ < 0. By summing up the above fact the conclusion follows from Lemmas 4.7 and 4.8 by
Lemma 4.6. �
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