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1. Introduction

There now exists a considerable body of literature devoted to the study of ‘perturbed’ versions of
familiar stochastic and deterministic equations. An example is Carmona et al. [1] and Norris et al. [2]
investigated the following doubly perturbed Brownian motion

x(t) = B(t) + αmax
0≤s≤t

x(s) + β min
0≤s≤t

x(s). (1.1)

We study ‘perturbed canonical process’, that can be, loosely speaking, described as follows: they
behave exactly as a canonical process has stationary and independent increments except when they hit
their past maximum or/and minimum where they get an extra ‘push’. Many researchers have devoted
themselves to studying the perturbed process (see [3–6]). Following them, Doney and Zhang [7]
studied the following singly perturbed Skorohod equations

x(t) = x0 +

∫ t

0
g(s, x(s))dB(s) +

∫ t

0
f (s, x(s))ds + αmax

0≤s≤t
x(s). (1.2)
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The authors proved the existence and uniqueness of the solution for (1.2) when the coefficients b, σ is
the global Lipschitz.

On the other hand, to describe the evolution of the uncertain phenomenon, Liu [8] proposed
uncertain process and designed a Liu process [9]. Meanwhile, Liu [9] introduced uncertain calculus to
handle the integral and differential with respect to an uncertain process. Uncertain differential equations
driven by a Liu process, which were first proposed by Liu [8], have attracted the increasing attentions
due to the wide applications in in many fields such as finance ( [10]), optimal control ( [11, 12]),
differential game ( [13]), population growth ( [14]), heat conduction ( [15]), string vibration ( [16]),
spring vibration ( [17]), and epidemic spread ( [18]).

As far as we known, there is no result on the perturbed uncertain differential equations. Motivated
by the need of the applications and in connection with the above discussions, it is worthwhile to develop
some techniques and methods to explore the perturbed uncertain differential equations. To this end, in
this paper, we will investigate the following perturbed uncertain differential equations,

Xt = X0 +

∫ t

0
σ(Xs)dCs +

∫ t

0
b(Xs)ds + αmax

0≤s≤t
Xs, (1.3)

where C is a canonical process starting from 0, α < 1 is a real constant, σ(x), b(x) be Lipschitz
continuous function on R. By the reflection principle and a successive approximation method, we
obtain the existence and uniqueness of the solution to the considered equations.

Our other main aim is to deal with the analogous question for a general diffusion. Specifically we
study the equation

Xt = x +

∫ t

0
σ(Xs)dCs + αmax

0≤s≤t
Xs + Lt, (1.4)

where σ is a Lipschitz continuous function on R, α < 1 is a real constant, x ≥ 0, and Lt denotes a local
time at zero of X. Since the cases x = 0 and x > 0 are quite different, we will treat them separately.
Finally we exploit our result on the uncertain differential equation together with Picard iteration to
establish existence and uniqueness of a solution to (1.4).

The rest of the paper is organized as follows. Some preliminary concepts of uncertainty theory are
recalled in Section 2. The method to solve perturbed uncertain differential equations is presented in
Section 3. An existence and uniqueness theorem for perturbed reflected canonical process is proved in
Section 4. At last, a brief summary is given in Section 5.

2. Preliminaries

In this section, we will introduce some foundational concepts and properties of uncertainty theory,
which will be used throughout this paper.

Theorem 2.1. ( [19]) An uncertain process Ct is said to be a canonical process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous;

(ii) Ct has stationary and independent increments;

(iii) every increment Cs+t −Cs is a normal uncertain variable with expected value 0 and vartiance t2.
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It is clear that a canonical process Ct is a stationary independent increment process with normal
uncertainary distribution

Φt(x) =
(
1 + exp(−

πx
√

3t
)
)−1

(2.1)

and inverse uncertainty distribution

Φ−1
t (α) =

t
√

3
π

ln
α

1 − α
. (2.2)

Theorem 2.2. ( [20]) Let Ct be a canonical process. Then its expected value is

E[Ct] = 0 (2.3)

and variance is
V[Ct] = t2. (2.4)

In other words, Liu process Ct is a normal uncertain process with expected value 0 and variance t2,
i.e., Ct ∼ N(0, t).

Theorem 2.3. ( [21]) Set W0 = { f ∈ C([0,∞) → R); f (0) = 0} and W+ = { f ∈ C([0,∞) → R); f (t) ≥
0 f or all t ≥ 0}. Given f ∈ W0 and 0 ≤ α < 1, there exist unique g ∈ W+ and h ∈ W+ such that

(i) g(t) = f (t) + αmax0≤s≤t g(s) + h(t);

(ii) h(0) = 0 and t → h(t)) is non-decreasing;

(iii)
∫ t

0
χ{g(s) = 0}dh(s) = h(t).

(g, h) is called a solution to the perturbed Skorohod equation for the function f .

Lemma 2.1. ( [22]) Suppose that Ct is a canonical process, and Xt is an integrable uncertain process
on [a, b] with respect to t. Then the inequality∣∣∣∣ ∫ b

a
Xt(γ)dCt(γ)

∣∣∣∣ ≤ K(γ)
∫ b

a
| Xt(γ) | dt

holds, where K(γ) is the Lipschitz constant of the sample path Xt(γ).

3. Perturbed diffusion processes

In this section, we assume that σ(x), b(x) be Lipschitz continuous function on R, i.e., there exists a
constant c such that

|σ(x) − σ(y)| ≤ c|x − y| (3.1)

|b(x) − b(y)| ≤ c|x − y| (3.2)

and linear growth condition
|σ(x)| + |b(x)| ≤ c(1 + |x|). (3.3)

For α < 1, consider the following uncertain differential equation:

Xt = X0 +

∫ t

0
σ(Xs)dCs +

∫ t

0
b(Xs)ds + αmax

0≤s≤t
Xs. (3.4)
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Theorem 3.1. Assume that the random variable X0 is independent of L. There exists a unique,
continuous, F -adpted solution Xt, t ≥ 0 to the uncertain differential (3.4) for any T > 0 if the
coefficients σ(Xt) and b(Xt) satisfy the assumption (3.1)-(3.3) for some constants c > 0.

We construct the solution by iteration. Let

X0
t =

X0

1 − α
, 0 ≤ t < ∞. (3.5)

For n ≥ 0 define Xn+1
t to be the unique, continuous, adapted solution to the following equation:

Xn+1
t = X0 +

∫ t

0
σ(Xn

s )dCs +

∫ t

0
b(Xn

s )ds + αmax
0≤s≤t

Xn+1
s . (3.6)

Such a solution exists and can be expressed explicitly as

Xn+1
t =

X0

1 − α
+

∫ t

0
σ(Xn

s )dCs +

∫ t

0
b(Xn

s )ds +
α

1 − α
max
0≤s≤t

( ∫ s

0
σ(Xn

u)dCu +

∫ s

0
b(Xn

u)du
)
. (3.7)

This is a consequence of the reflection principle. We will show that Xn converges uniformly on compact
intervals almost surely. It following from (3.7) that

|Xn+1
s − Xn

s | ≤

∣∣∣∣ ∫ s

0
σ(Xn

u)dCu −

∫ s

0
σ(Xn−1

u )dCu

∣∣∣∣ +
∣∣∣∣ ∫ s

0
b(Xn

u)du −
∫ s

0
b(Xn−1

u )du
∣∣∣∣

+
|α|

1 − α
max
0≤v≤s

( ∫ v

0
σ(Xn

u)dCu +

∫ v

0
b(Xn

u)du
)

− max
0≤v≤s

( ∫ v

0
σ(Xn−1

u )dCu +

∫ v

0
b(Xn−1

u )du
)

≤

∣∣∣∣ ∫ s

0
σ(Xn

u)dCu −

∫ s

0
σ(Xn−1

u )dCu

∣∣∣∣ +

∫ s

0
|b(Xn

u)du − b(Xn−1
u )|du

+
|α|

1 − α
max
0≤v≤s

∣∣∣∣ ∫ v

0

(
σ(Xn

u) − σ(Xn−1
u )

)
dCu

∣∣∣∣
+
|α|

1 − α
max
0≤v≤s

∣∣∣∣ ∫ v

0

(
b(Xn

u) − b(Xn−1
u )

)
du

∣∣∣∣,

(3.8)

where we used the fact that |max0≤v≤s f (v) − max0≤v≤s g(v)| ≤ max0≤v≤s | f (v) − g(v)| holds for any two
continuous functions f and g. Thus,

max
0≤s≤t
|Xn+1

s − Xn
s | ≤

(
1 +

|α|

1 − α

)[
max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(Xn

u)dCu − σ(Xn−1
u )dCu

∣∣∣∣ +

∫ s

0
|b(Xn

u) − b(Xn−1
u )|du

]
. (3.9)

For any sample γ, we define

Dn
t = max

0≤s≤t
|Xn+1

s (γ) − Xn
s (γ)|, n = 1, 2, .... (3.10)

We claim that

Dn
t ≤

(
1 + |

x0

1 − α
|
)cn+1(1 + |α|

1−α )n+1(1 + k(γ))n+1

(n + 1)!
tn+1,

n = 0, 1, 2, ..., 0 ≤ t ≤ T,
(3.11)
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where T is a constant. Indeed for n = 0, it follows from Lemma 2.1 that

D0
t (γ) = max

0≤s≤t
|X1

s − X0
s |

= max
0≤s≤t

∣∣∣∣X0 +

∫ s

0
σ(X0

s )dCs +

∫ s

0
b(X0

s )ds + αmax
0≤u≤s

X1
u − X0

s

∣∣∣∣
= max

0≤s≤t

∣∣∣∣X0 +

∫ s

0
σ(X0

s )dCs +

∫ s

0
b(X0

s )ds + αmax
0≤u≤s

X1
u −

X0

1 − α

∣∣∣∣
= max

0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

s )dCs +

∫ s

0
b(X0

s )ds + αmax
0≤u≤s

X1
u −

α

1 − α
X0)

∣∣∣∣
= max

0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

s )dCs +

∫ s

0
b(X0

s )ds + α(max
0≤u≤s

X1
u −

X0

1 − α
)
∣∣∣∣

≤ max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

u)dCu +

∫ s

0
b(X0

u)du + α(max
0≤u≤s

X1
u − max

0≤u≤s
X0

u)
∣∣∣∣

≤ max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

u)dCu +

∫ s

0
b(X0

u)du + αmax
0≤u≤s

(X1
u − X0

u)
∣∣∣∣

≤ max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

u)dCu +

∫ s

0
b(X0

u)du
∣∣∣∣ + αD0

t (γ).

(3.12)

Then

D0
t (γ) ≤

1
1 − α

max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

u)dCu +

∫ s

0
b((X0

u))du
∣∣∣∣

≤
(
1 +

|α|

1 − α

)
max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(X0

u)dCu +

∫ s

0
b(X0

u)du
∣∣∣∣

≤
(
1 +

|α|

1 − α

)(
K(γ) max

0≤s≤t

∫ s

0
|σ(X0

u)|du + max
0≤s≤t

∫ s

0
|b(X0

u)|du
)

≤
(
1 +

|α|

1 − α

)(
K(γ)

∫ t

0
|σ(X0

u)|du +

∫ t

0
|b(X0

u)|du
)

≤
(
1 +

|α|

1 − α

)(
1 + |

X0

1 − α
|
)(

1 + K(γ)
)
t (by the linear growth condition).

(3.13)
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This confirms the claim for n = 0. Next we assume the claim is true for n − 1. Then
Dn

t = max
0≤s≤t
|Xn+1

s − Xn
s |

≤
(
1 +

|α|

1 − α

){
max
0≤s≤t

[∣∣∣∣ ∫ s

0
σ(Xn

u)dCu − σ(Xn−1
u )dCu

∣∣∣∣ +
∣∣∣∣ ∫ s

0
b(Xn

u) − b(Xn−1
u )du

∣∣∣∣]}
≤ c

(
1 +

|α|

1 − α

)
max
0≤s≤t

[ ∫ s

0
|Xn

u − Xn−1
u |dCu +

∫ s

0
|Xn

u − Xn−1
u |du

]
≤ c

(
1 +

|α|

1 − α

)
max
0≤s≤t

[(
1 + K(γ)

) ∫ s

0
|Xn

u − Xn−1
u |du

]
≤ c

(
1 +

|α|

1 − α

)(
1 + K(γ)

) ∫ t

0
|Xn

u − Xn−1
u |du

≤ c
(
1 +

|α|

1 − α

)(
1 + K(γ)

) ∫ t

0

(
1 + |

x0

1 − α
|
)cn

(
1 + |α|

1−α

)n(
1 + K(γ)

)n
un

(n + 1)!
du

≤
(
1 +

∣∣∣∣ x0

1 − α

∣∣∣∣)cn+1
(
1 + |α|

1−α

)n+1(
1 + K(γ)

)n+1

(n + 1)!
tn+1.

(3.14)

Note that (3.13) and (3.14) are induced form Lemma 2.1 and the inductive assumption, respectively.
This proves the claim. Therefore,

Dn
t = max

0≤s≤t
|Xn+1(γ) − Xn

s (γ)|

≤
(
1 + |

x0

1 − α
|
)cn+1

(
1 + |α|

1−α

)n+1(
1 + K(γ)

)n+1

(n + 1)!
tn+1,

holds for all n ≥ 0. It follows from Weierstrass’ criterion that, for each sample γ,

+∞∑
n=0

(
1 + |

x0

1 − α
|
)cn+1

(
1 + |α|

1−α

)n+1(
1 + K(γ)

)n+1

(n + 1)!
tn+1

≤

+∞∑
n=0

(
1 + |

x0

1 − α
|
)cn+1

(
1 + |α|

1−α

)n+1(
1 + K(γ)

)n+1

(n + 1)!
T n+1 ≤ +∞.

Thus Xk
t (γ) converges uniformly in t ∈ [0,T ]. We denote the limit by

Xt(γ) = lim
k→∞

Xk
t (γ), γ ∈ Γ, t ∈ [0,T ].

Then

Xt = X0 +

∫ t

0
σ(Xs)dCs +

∫ t

0
b(Xs)ds + αmax

0≤s≤t
Xs.

Therefore Xt is the solution of (3.4) for all t ≥ 0 since T is arbitrary.
Next, we will prove that the solution of uncertain differential (3.4) is unique. Assume that both of

Xt and X∗t are solutions of (3.4) with the same initial value X0. Then

Xt =
X0

1 − α
+

∫ t

0
σ(Xs)dCs +

α

1 − α
max
0≤s≤t

( ∫ s

0
σ(Xu)dCu +

∫ s

0
b(Xu)du

)
,

X∗t =
X0

1 − α
+

∫ t

0
σ(X∗s )dCs +

α

1 − α
max
0≤s≤t

( ∫ s

0
σ(X∗u)dCu +

∫ s

0
b(X∗u)du

)
.

(3.15)
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Arguing as above, there is a constant C such that

|Xt − X∗t | ≤ c max
0≤s≤t

∣∣∣∣ ∫ s

0
σ(Xn

u)dCu − σ(Xn−1
u )dCu

∣∣∣∣ + c
∫ s

0
|b(Xu) − b(X∗u)|du. (3.16)

Then for each γ ∈ Γ, we have

|Xt(γ) − X∗t (γ)| ≤ C
∣∣∣∣ ∫ t

0

(
σ(Xv(γ)) − σ(X∗v (γ))

)
dCv

∣∣∣∣
+ C

∫ t

0

∣∣∣∣b(Xv(γ)) − b(X∗v (γ))
∣∣∣∣dv

≤ C · K(γ)
∣∣∣∣ ∫ t

0

(
σ(Xv(γ)) − σ(X∗v (γ))

)
dv

∣∣∣∣
+ C

∫ t

0

∣∣∣∣b(Xv(γ)) − b(X∗v (γ))
∣∣∣∣dv (by Lemma 2.1)

≤ C · L · K(γ)
∫ t

0
|Xv(γ) − X∗v (γ)|dv

+ C · L
∫ t

0
|Xv(γ) − X∗v (γ)|dv (by Lipschitz condition)

≤ C · L ·
(
1 + K(γ)

) ∫ t

0
|Xv(γ) − X∗v (γ)|dv.

It follows from Gronwall inequality that

|Xt(γ) − X∗t (γ)| ≤ 0 · exp(C · L · (1 + K(γ))t) = 0

for any γ. Hence Xt = X∗t , the solution is unique. The theorem is proved.

4. Perturbed reflected diffusions

Let σ be as in Section 2. For x ≥ 0, consider the uncertain differential equation:

Xt = x +

∫ t

0
σ(Xs)dCs + αmax

0≤s≤t
Xs + Lt. (4.1)

Definition 4.1 We say that (Xt, Lt, t ≥ 0) is a solution to (4.1) if

(i) X0 = x, Xt ≥ 0 for t ≥ 0;

(ii) Xt,Lt are adapted to the filtration of C;

(iii) Lt is non-decreasing with L0 = 0 and∫ t

0
χ{Xs = 0}dLs = Lt;

(iv) (Xt, Lt, t ≥ 0) satisfies (4.1) almost surely for every t > 0.
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The cases x = 0 and x > 0 are quite different. We will treat them separately.

Theorem 4.1. Assume α < 1 and σ is Lipschitz. If x > 0, there exists a unique solution (Xt, Lt, t ≥ 0)
to (4.1).

Proof. We construct the solution iteratively in a similar way to (3.11). Define Y0
t to be the unique

solution to the equation:

Y0
t = x +

∫ t

0
σ(Y0

s )dCs + αmax
0≤s≤t

Y0
s . (4.2)

It is known from Section 2 that such a solution exists. Set T1 = inf{t ≥ 0; Y0
t = 0}. Then T1 > 0 a.s. as

x > 0. Define
Xt = Y0

t , Lt = 0 f or 0 ≤ t ≤ T1. (4.3)

Put C1
t = Ct+T1 − CT1 for t ≥ 0. It is well known that C1

t , t ≥ 0 is a normal uncertain variable with
expected value 0 and variance t2. Consider the uncertain differential equation with reflecting boundary:

Z1
t =

∫ t

0
σ(Z1

s )dC1
s + L1

t ,

Z1
t ≥ 0,Z1

0 = 0,

L1
0 = 0,

∫ t

0
χZ1

s = 0dL1
s = L1

t .

(4.4)

The definition of a solution to this equation is the same as Definition 4.1 with x = 0 and α = 0. It is
known that a unique solution (Z1

t , L
1
t ) to the (4.4) exists, see e.g. [11] or [15]. In general, suppose that

(Xt, Lt) has been defined for 0 ≤ t ≤ T2n−1. We can construct (Xt, Lt) for T2n−1 ≤ t ≤ T2n+1 as follows.
Let Z2n−1

t be the solution to the equation:

Z2n−1
t =

∫ t

0
σ(Z2n−1

s )dC2n−1
s + L2n−1

t ,

Z2n−1
t ≥ 0,Z2n−1

0 = 0,

L2n−1
0 = 0,

∫ t

0
χ{Z2n−1

s = 0}dL2n−1
s = L2n−1

t ,

(4.5)

where C2n−1
t = Ct+T2n−1 . Put T2n = inf{t > T2n−1; Z

2n−1
t−T2n−1 = max0≤s≤T2n−1 Xs} and set

Xt = Z2n−1
t−T2n−1

, Lt = LT2n−1 + L2n−1
t−T2n−1

f or T2n−1 ≤ t ≤ T2n. (4.6)

Let Y2n
t denote the solution to equation:

Y2n
t = (1 − α)XT2n +

∫ t

0
σ(Y2n

s )dC2n
s + αmax

0≤s≤t
Y2n

s , (4.7)

where C2n
t = Ct+T2n −CT2n . Set T2n+1 = inf{t > T2n,Yt−T2n=0} and

Xt = Y2n
t−T2n

, Lt = LT2nz f orT2n ≤ t ≤ T2n+1. (4.8)

By this procedure, we obtain a sequence of increasing stopping times Tn, n ≥ 0. Set T = limn→∞Tn .
Then T is again a stopping time, and (Xt, Lt) is a well defined continuous process for all 0 ≤ t < T . We
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will show that (Xt, Lt, t < T ) satisfies (4.1) in the sense of Definition 4.1. To achieve this, it is sufficient
to prove that (Xt, Lt) satisfies (4.1) for T2n ≤ t ≤ T2n+1 and n = 0, 1.... We will do this by induction. It
is obvious that (Xt, Lt) is a solution to (4.1) for 0 ≤ t < T1. If T1 ≤ t ≤ T2, it follows that

Xt = Z1
t−T1

=

∫ t−T1

0
σ(Z1

s )dC1
s + L1

t−T1

=

∫ t−T1

0
σ(Z1

s )dCs+T1 + Lt

=

∫ t

T1

σ(Xu)dCu + Lt

= XT1 +

∫ t

T1

σ(Xu)dCu + Lt

= x +

∫ T1

0
σ(Xs)dCs + α max

0≤s≤T1
Xs +

∫ t

T1

σ(Xu)dCu + Lt

= x +

∫ t

0
σ(Xs)dCs + α max

0≤s≤T1
Xs + Lt,

(4.9)

since max0≤s≤T1 Xs = max0≤s≤tXs for T1 ≤ t ≤ T2, and XT1 = 0.
Furthermore, if T1 ≤ t ≤ T2, we see that∫ t

0
χ{Xs=0}dLs =

∫ t

T1

χ{Xs = 0}dL1
s−T1

=

∫ t−T1

0
χ{Z1

s = 0}dL1
s = L1

t−T1
= Lt. (4.10)

Thus we have showed that (Xt, Lt) is a solution to (4.1) for 0 ≤ t ≤ T2. Suppose that (Xt, Lt) satisfies
(4.1) for 0 ≤ t ≤ T2n. If T2n ≤ t ≤ T2n+1, it follows that

Xt = Y2n
t−T2n

= (1 − α)XT2n +

∫ t−T2n

0
σ(Y2n

s )dC2n
s + α max

0≤s≤t−T2n
Y2n

s

= x +

∫ T2n

0
σ(Xs)dCs + α max

0≤s≤T2n
Xs + LT2n − αXT2n

+

∫ t−T2n

0
σ(Y2n

s )dCs+T2n + α max
0≤s≤t−T2n

Y2n
s

= x +

∫ t

0
σ(Xs)dCs + α max

T2n≤s≤t
Xs + Lt

= x +

∫ t

0
σ(Xs)dCs + αmax

0≤s≤t
Xs + Lt,

(4.11)

where we have used the fact that XT2n = max0≤s≤T2n Xs and Y2n
0 = XT2n from their definitions. Since

Xt , 0 for T2n ≤ t < T2n+1, we also have∫ t

0
χ{Xs = 0}dLs =

∫ T2n

0
χ{Xs = 0}dLs = LT2n = Lt. (4.12)
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So (Xt, Lt) satisfies (4.1) also for T2n ≤ t < T2n+1. Repeating similar arguments as for (4.10), we also
can show that (Xt, Lt) satisfies (4.1) for T2n+1 ≤ t < T2n+2.

Finally we show that T = ∞ a.s. By the construction of X, we can have that

0 = XT2n+1 = max
0≤s≤T2n

Xs +

∫ T2n+1

T2n

σ(Xs)dCs + α
(

max
0≤s≤T2n+1

Xs − max
0≤s≤T2n

Xs

)
+ LT2n+1 − LT2n . (4.13)

Suppose T < ∞ with positive probability. Letting n → ∞ in (4.13), we get 0 = max0≤s≤T Xs which
contradicts the fact that X0 = (1 − α)−1x > 0. The proof of existence is complete.

On the other hand, it is easily seen that the solution is unique since it is unique on each interval
[Tn,Tn+1]. �

Theorem 4.2. Assume x = 0. If 0 ≤ α < 1
2 , then there exists a unique solution (Xt,Tt, t ≥ 0) to (4.1).

Proof. We will use the Picard iteration method. Define X0
t ≡ 0 and (Xn+1

t , Ln+1
t ) to be the unique

solution to the equation:

Xn+1
t =

∫ t

0
σ(Xn

s )dCs + αmax
0≤s≤t

Xn+1
s + Ln+1

t . (4.14)

The existence and uniqueness of this solution follow from Section 3. Observe that by the reflection
principle,

Ln+1
t = − inf{

( ∫ t

0
σ(Xn

u)dCu + αmax
0≤u≤s

Xn+1
u

)
∧ 0}. (4.15)

Now (4.14) and (4.15) imply that

|Xn+1
t − Xn

t | ≤

∣∣∣∣ ∫ t

o

(
σ(Xn

s ) − σ(Xn−1
s )

)
dCs

∣∣∣∣ + sup
s≤t

∣∣∣∣ ∫ s

0

(
σ(Xn

u) − σ(Xn−1
u )

)
dCu

∣∣∣∣
+ 2α sup

s≤t
|Xn+1

s − Xn
s |.

(4.16)

Consequently,

sup
s≤t
|Xn+1

s − Xn
s | ≤

2
1 − 2α

sup
s≤t

∣∣∣∣ ∫ t

0

(
σ(Xn

u) − σ(Xn−1
u )

)
dCu

∣∣∣∣. (4.17)

Let β = sup |X1
s − X0

s |. Then

sup
s≤t
|Xn+1

s − Xn
s | ≤

2
1 − 2α

sup
s≤t

∣∣∣∣ ∫ s

0

(
σ(Xn

u) − σ(Xn−1
u )

)
dCu

∣∣∣∣
≤

2
1 − 2α

K(γ) sup
s≤t

∣∣∣∣ ∫ s

0

(
σ(Xn

u) − σ(Xn−1
u )

)
du

∣∣∣∣
≤

2
1 − 2α

L · K(γ) · sup
s≤t

∣∣∣∣ ∫ s

0
(Xn

u − Xn−1
u )du

∣∣∣∣
≤

( 2
1−2α · L · K(γ) · β · t)n

n!
,

(4.18)

holds for all n ≥ 1. It follows from Weierstrass’ criterion that, for each sample γ,

+∞∑
n=1

( 2
1−2α · L · K(γ) · β · t)n

n!
≤

( 2
1−2α · L · K(γ) · β · T )n

n!
.

AIMS Mathematics Volume 6, Issue 9, 9647–9659.



9657

Thus Xn
s converges uniformly to a continuous, adapted process X on [0,T ] almost surely. It is also

seen that Mn(t) :=
∫ t

0
σ(Xn

s )dCs converges uniformly on [0,T ] to Mn(t) :=
∫ t

0
σ(Xn

s )dCs almost surly.
Thus, by (4.14), we see that Ln

t converges uniformly to a continuous non-decreasing process L on [0,T ]
almost surly. Letting n→ ∞ in (4.14) gives

Xt(γ) = lim
k→∞

Xk
t (γ), γ ∈ Γ, t ∈ [0,T ].

Then

Xt = X0 +

∫ t

0
σ(Xs)dCs +

∫ t

0
b(Xs)ds + αmax

0≤s≤t
Xs.

Therefore, Xt is the solution of (3.4) for all t ≥ 0 since T is arbitrary.

Xt =

∫ t

0
σ(Xs)dCs + αmax

0≤s≤t
Xs + Lt. (4.19)

To show that (Xt, Lt) is a solution to (4.1), we need to prove∫ t

0
χ{Xs=0}dLs = Lt. (4.20)

This will follow if we can show that for any f ∈ C0(0,∞)∫ t

0
f (Xs)dLs = 0. (4.21)

Indeed, ∫ t

0
f (Xs)dLs = lim

n→∞

∫ t

0
f (Xn

s )dLn
s = 0. (4.22)

Next we show the uniqueness. Let (X1
t , L

1
t ), (X2

t , L
2
t ) be two solutions to (4.1). Using the similar

arguments as above, it can be shown that

|X1
t − X2

t | ≤ Cα

∫ t

0
|X1

s − X2
s |ds.

By Gronwall’s inequality, it follows that X1 = X2, and hence L1 = L2. �

5. Conclusions

In this paper, a new type of differential equations within the framework of uncertainty theory was
discussed for the first time. First of all, we was first to provide an existence and uniqueness theorem
under Lipschitz condition and linear growth condition. And then, as an application, we establish the
existence and uniqueness of some perturbed reflected canonical process. In the future work, we will
try to explore the stability for this type of perturbed uncertain differential equations.
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