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paper, the authors obtain the boundedness of 6-type generalized fractional integral 7, on variable ex-
ponent Lebesgue spaces LP")(X) and variable exponent Morrey spaces M5 (()) (X)y. Furthermore, by
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1. Introduction

In 1931, Orlicz first obtained the definition of Lebesgue space with variable exponent L7(Q) (see
[15]), i.e., for any measurable functions f and sets QQ C R”, if there exists a positive constant 1 such

that, -
f(lf(x)l)” <o
Q n

where p is a function on Q satisfying 1 < p(x) < co. Respectively, the norm of Luxemburg-Nakano is

defined b
’ : |0\
1Nl ) = 1nf{n >0: f( ” ) dx < 1}.
Q

Since then, many papers focus on the variable exponent spaces and their applications. For example,
Kov4cik and Rékosnik [9] systematically researched variable exponent Lebesgue spaces LP©(R") and
Sobolev spaces W5PO(R™). In [16], Radulescu and Repovs studied the Lebesgue and Morrey spaces
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with variable exponent on R”, and also obtained some applications in partial differential equations. In
[17], Ragusa and Tachikawa established the CII(;Z(Q)—regularity result for W'!-local minimizers u of the
double phase functional with x-dependent exponents. In 2021, with the nonstandard growth conditions,
Mingione and Radulescu provide an overview of recent results concerning elliptic variational problems
(see [12]). The more development and research on the variable exponents, we refer readers to see
[3,4,8,11,13,21-23] and reference therein.

On the other hand, fractional integrals, which regard as an important class of operators in harmonic
analysis, have played a key role in the fields of harmonic analysis, applied probability and physics
communities. For example, Sawano and Tanaka in [18] proved that fractional integral is bounded on
Morrey space over non-doubling measures. Based on this work, the boundedness of fractional integral
on Morrey space over non-homogeneous metric measure space is obtained by Cao and Zhou in [1].
Shen et.al used the generalization of a parameterized inexact Uzawa method to solve such a kind
of saddle point problem for fractional diffusion equations (see [19]). However, in this paper, we will
mainly consider the boundedness of 6-type generalized fractional integrals, which are slightly modified
in [5], on Lebesgue and Morrey spaces with variable exponents over non-homogeneous spaces. What’s
more, the results of this paper extend the contents of fractional integral on variable exponent spaces
over R” and non-homogeneous spaces.

Let X := (X,d,u) be a quasimetric measure space, if u is a complete measure, and there exists a
non-negative real-valued function d on X X X satisfying the following conditions:

(1) d(x, x) = O for all xin X; 2)d(x,y)>0forall x #y, x, y € X;

(3) for all x, y, z € X, there exists a constant a; > 0, such that d(x,y) < a;(d(x,z) + d(y,2));

(4) there exists a constant ay > 0, such that d(x, y) < apd(y, x) for all x,y € X.

Moreover, we always assume that balls B(x, r) := {y € X : d(x,y) < r} are measurable, 0 < u(B(x, r)) <
oo, u(X) < oo and u({x}) = O for all x € X and r > 0O in this paper.

A measure g on X is said to satisfy the following growth condition, if there exists a constant C > 0

such that, forall x € X and r > 0,
u(B(x,r)) <Cr. (1.1)

Then the space (X, d, u) with measure u satisfying (1.1) is called a non-homogeneous space. In this
setting, Kokilashvili and Meskhi obtained the boundedness of Maximal function and Riesez potential
on variable Morrey spaces(see [7]). In [10], Lu proved that parameter Marcinkiewicz integral and its
commutator are bounded on Morrey spaces with variable exponent and so on.

In this paper, we set that p is a u-measurable function on X, and respectively define

p-(E) := inf p(x), p+(E) = inf p(x),

where E C X is a u-measurable. Moreover, we also denote p_ = p_(X) and p, = p.(X).

We now recall the following definitions introduced in [7].
Definition 1.1. Let N > 1 be a constant. Suppose that p is a function on X such that 0 < p_ < p, < co.
We say that p € P(N) if there exists a constant C > 0 such that,

[/J(B(x, Nr))]p—(B(x,r))—m(B(x,r)) <C, (1'2)
forall x e X and r > 0.

AIMS Mathematics Volume 6, Issue 9, 9619-9632.



9621

Definition 1.2. Let 0 < p_ < p, < co. We say that a function p on X satisfies the Log-Holder
continuity condition p € LH(X) if

(1.3)

1
Ip(x) — p(y)| < d(x,y) < o

—log(d(x,y))’
where constant A > 0 does not depend on x, y € X.

For any ball B, we respectively denote its center and radius by cp and rg (or r(B)). Let n > 1 and
B > n, aball B is said to be an (7, 8)-doubling ball if u(nB) < Bu(B), where nB denotes the ball with
the same center as B and r(nB) = nr(B). Especially, for any given ball B, we denote by B the smallest
doubling ball which contains B and has the same center as B. Given two balls B C § in X, set

Nps

2¢B
Kus =14 ) B0, (14
k=1

where Np g is denoted by the smallest integer k such that r(2B) > r(S).

The following notion of regular bounded mean oscillation (RBMO) space is from [20].

Definition 1.3. Let 7 > 1. A function f € L| (1) is said to be in the space RBMO(u) if there exists
a constant C > 0 such that for any ball B centered at some point of supp(u),

1
u(rB)

f ) = ma()ldu(y) < € (1.5)
B

and
lmp(f) —ms(f)| < CKpg (1.6)

for any two doubling balls B C §, where mp(f) represents the mean value of function f over ball B,

that is,
1

2(B) jl; S0 du(x).
Moreover, the minimal constant C satisfying (1.5) and (1.6) is defined to be the norm of f in the space
RBMO(u) and denoted by || fllrmo)-

Now we state the definition of #-type generalized fractional integral kernel as follows.

Definition 1.4. Let @ € (0,1), and 8 be a non-negative and non-decreasing function on (0, o)
satisfying

mp(f) =

1
0
f ?llog tldr < co. (1.7)
0

A function K, € L! (X x X\ {(x, x) : x € X}) is called an #-type generalized fractional integral kernel

loc

if there exists a positive constant Cg, depending on K,, such that
(1) for all x, y € X with x # y,

K, (x,y)| < Cx,—————, (1.8)
=K T,y
(2) there exists a constant ck, € (0, o) such that, for all x, X,y € X with d(x,y) > ck, d(x, X),
~ » d(x, %) 1
IKo(x,y) — Ka(E )] + 1Ka(y, %) — Koy, D) < C 09( ) . (1.9)
Y Y Y Y 5\ ey Ty
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Remark 1.1. If we take the function 6(f) = #° with § € (0, 1], then the 6-type generalized fractional
integral kernel K, is just the fractional kernel of order 1 (see [7]).

Let L;°(u) be the space of all L*(u) functions with bounded support. A linear T, is called an 6-type
generalized fractional integral with K, satisfying (1.8) and (1.9) if, for all f € L;’(u) and x ¢ supp(f),

To(F)x) = fx Kot ) f )y, (1.10)

Given a function b € RBMO(u), the commutator [b, T,,] which is generated by T, and b is defined
by
[b, Tl(F)(X) = bOTaf(x) = To(bf)(x),  forany x € X. (1.11)

The following definition of variable exponent Morrey space Mp C )(X) N 1s from [7].
Definition 1.5. Let N > 1 be aconstantand 1 < g_ < ¢g(x) < p(x) < p+ < oo, Then, the variable

exponent Morrey space Mf; (())(X )n is defined by

Mg(())(X)N = { Felfw: Ifl W0 < oo},

where
IIfIIMm(X) = sup [u(B(x, Nr))]io- q<*>||f||Lq<>(B(xr)) (L.12)

xeX,r>0

Remark 1.2. If we take p(x) = g(x) in (1.12), then, the variable exponent Morrey space Mp 3 )(X)N
is just variable exponent Lebesgue space L”")(X) (see [7]), namely, for any u-measurable subset E cX
and 1 < p_(E) < p,(E) < oo, then variable exponent Lebesgue space LP")(E) is defined by

WAoo = inf{d >0 §,(f/D) <1}, (1.13)

where

S50 1= [ IO Odun) < .
E

The organization of this paper is stated as follows. In section 2, via some known results, we prove
that 6-type fractional integral T, is bounded from variable exponent Lebesgue spaces L”V(X) into

spaces L1V(X) for @ € (0,1) and = q() = pé) a, and bounded from variable exponent Morrey spaces

M”()(X)N into spaces ,()(X)Na» where ;(()) = %, % = pé) a,a = a(a(ay+ 1)+ 1)and N is a
constant with N > 1. By establishing the sharp maximal function for commutator [b, T, ] generated
by T, and b € RBMO(u), the boundedness of the [b, T,,] on spaces LP")(X) and on spaces M” ¢ )(X)N is
also obtained in sections 3 and 4.

Finally, we make some conventions on notation. Throughout the whole paper, C represents a pos-
itive constant being independent of the main parameters. For any subset E of X, we use yg to denote

its characteristic function.
2. Estimate for 7, on variable exponent spaces

In this section, by applying some known results, the boundedness of 8-type generalized fractional
integral T, on variable Lebsgue spaces L”)(X) and on variable exponent Morrey spaces M” ()(X)N is

obtained. Now we state the main theorems as follows.
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Theorem 2.1. Let N > 1 be a constant, K, satisfy (1.8) and (1.9), 1 < p_ < p(x) < g(x) < g+ < 0o,
ﬁ = p(lx) aand 0 < p, < 1. Suppose that p € P(N), g € P(1) and u satisfies (1.1). Then T, defined
as in (1.10) is bounded from Variable Lebesgue spaces L(X) into spaces LIV(X).

Theorem 2.2. Let N > 1 be a constant, K satisfy (1.8) and (1.9), 1 <z_ < #t(x) < s(x) < 5, < 09,

% "q’g)) and X(lx) = W —awith0< p, <= Suppose that u satisfies (1.1), p € P(N) and g € P(1).

Then T, defined as in (1.10) is bounded from variable Morrey spaces M"7 ¢ )(X)N into spaces M t(())(X INa-
Remark 2.1. By Remark 1.7, once Theorem 2.2 is proved, it is easy to see that Theorem 2.1 holds.
Thus, we only prove Theorem 2.2 in this section.

Proof of Theorem 2.2. For any x € X, by (1.9), we can deduce that

T, f(0] < f Ko, WILFO)Idu(y)
X

If Ol
—————, <ClI,

where [, represents the homogeneous fractional integral operator (see [7]), namely, for any x € X, set

. f»
Lf(x) = fx —[d(x,y)]l_ad,u(y), for 0 <a< 1.

Further, by applying the (M")(X)w, My, (X)a)-boundedness of I, in [7], we have

”Taf”MrS(("))(X)Na < C”I(l(lfD”M;(("))(XMa < C”f”M;’(())(X)N
3. Estimate for [b, T,,] on L'V (X)

In this section, by establishing the sharp maximal function for commutator [b, T, ], which is gen-
erated by T, and b € RBMO(u), we prove that the [b, T, ] is bounded from space L”(X) into space
L79(X). The main theorem of this section is as follows.

Theorem 3.1. Let N > 1 be a constant, b € RBMO(u), K, satisfy (1.8) and (1.9), 1 < p_ < p(x) <
P+ < = and q(lx) = p(x) —a with 0 < @ < 1. Suppose that u satisfies condition (1.1). Then [b, T, ] defined
as in (1.1 1) is bounded from L”9(X) into L1V (X).

To prove the above theorem, we need to recall and establish the following corollary and lemmas,
see [6, 7], respectively.

Corollary 3.1. If f € RBMO(u), then there exists a constant C > 0 such that, for any balls B,
p € (l,00)and r € [1, o),

( (pB)flf(y) my(f)" du(x) <C||f||RBMO(,u) (3.1

Lemma 3.1. Let u(X) < oo, N > 1be aconstant, | < p_ < p(x) < p, <ocoand s € (1, p_). If there
exists a positive constant C such that for all x € X and r > 0, the following inequality

[u(B(x, Nr))]Pf(B(x,r))—p(X) <C
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holds, then M, y is bounded on L”* )(X), where maximal operator M y 1s defined by, forany f € L (X),

loc

Mo f(0 = sup (m f O dﬂ(y)) (32)

Moreover, if s = 1 in (3.2), we simply denote My := M, y.
Lemma32 Let u(B) < oo, N > 1 be a constant, 7 € (0,1), s € (1, 1) s < p-<pe)< %and
ﬁ = p(x) — 7. Then there exists a constant C > 0 such that, for all f € LF¢ )(X)
1M, fllzsoc < CllAlo(X),

where ]

M) = supluBx NI fB FOIdu0)) (33)

and the supremum is taken over all balls B > x.

Remark 3.1. With a way similar to that used in the proof of Theorem 1.3 in [2], it is easy to show
that Lemma 3.4 hold on (X, d, ).

Also, by applying Theorem 1.13 in [5], we have the following result on (X, d, p).

Lemma 3.3. Let K|, satisfying (1.8) and (1.9), @ € (0, 1) and L — L _ . Suppose that T, defined as
in (1.10) is bounded on L*(u). Then T, is bounded from L”(u) 1nto Lq (w).

From [6], the sharp maximal function M* M* is defined by, forall x € X, @ € [0,1) and f € L] (),

M*e f(x) = sup

[ 170 = i)+ sup P (3.4)
Bax u(3B) Js

(B.S)eA, Ké“;

where A, = {x € BC § and B, S are doubling balls} and coefficient K(“) is defined by

Ngs k l1-a
@) ._ ,Ll(z B)
Kpg =1+ kg_l [r(sz) :

For 0 < r < oo and x € X, set MB’“ f(x) = [M*e(| f I’)(x)]%. A simple computation shows that if
0 <r<1, wehave

M f(x) < C,M* f(x), xeX. (3.5)

Lemma 3.4. Let7 € (0,1), g € L! (X) and u-measurable function f satisfy the following condition

loc

ufxe X 1 |f(x)| > t}) < oo, forallt>0,

then
fx |f(0)g(x)ldu(x) < fx ME(f)(X)My(g)(x)du(x). (3.6)

Lemma 3.5. Let K, satisfy the conditions (1.8) and (1.9), s € (1,00) and py € (1,00). If T, is
bounded on L?(u), then there exists a positive constant C such that, for all f € L®(u) N L(u),

M ([b, T,1)(x) < cnbnRBMow{Mgf(x) + M, 3 (T f)(x) + Ta<|f|>(x>}. (3.7)

AIMS Mathematics Volume 6, Issue 9, 9619-9632.
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Proof. By applying the definition of sharp maximal function M*® defined as in (3.4), for any ball
B, it suffices to show that, for all x and B with B > x,

e f 16, Tulf () hB|du<y)<C||b||RBM0@{ M)+ M, z(Tafxx)} (3.8)

and, for all balls B, S with BC S and B > x,

s = el < Cllbllwnioga{ M) + Tull D) K5 K, (3.9)

where
hg = mp(To([b - bB]f)(x\(%B))) hs = mg(To([b - bs]f)(x\(%s)))
To prove (3.8), decompose f as f := fi + f> := fXgB + f)(X\(%B), then write,

f b, T2 1F03) — hlduy)
B

B)
1

- f (BG) = BTa(NO) + Tullb - b)) — hsldu(y)

u(5B) Js
<1 f (660) = BT OO + f ITo([b — byl f)Y)d()

ﬂ(zB) B

" f ITo(lb — bs1F)) — hildu(y)

=D; +D;, + D;.

From Holder inequality, Corollary 3.2 and (3.2), it follows that

i5) f |(0(y) = bp)Ta(/)WIdu(y)

f Ib(y) = bsl’ d,u(Y)
(2 B)

< C”b”RBMO(/J)Ms%(Taf)(x)-

(3 5 f T.(HO du(y))

To estimate D,, take ¢ = +/s and } = % — a. By applying Holder inequality, Corollary 3.2 and
Lemma 3.6, we obtain that

o([b = Dl fWIdu(y)

flTa([b bp] fl)(y)lrd,u(y)) (B~ LCB) —— (6 = bp) fillg

1 [ﬂ(B)]“%

(B)

[M( B)rti, | f y 5 f S
b(y) — bgl" d, d
LGB (3) L PO) ~ bo un) {[m) FO)l u(y)}

< C”b”RBMO(/.t)ME(’I%)(f)(x)-
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Since

(3B) flTa([b - bB]fZ)(y) - hBld,Lt(y)

T o[ = belf2)(y) — ﬁ To([D = bpl f2)(2)du(z)|du(y)

= #(3 B) @ f ITo([b = Dl 2)Y) = To([D — bpl f2)(D)|du(y)du(z),
5 BJB

thus, we only estimate the difference |7,,([b—bglf2)(y) —T.([b—bglf>)(2)|. For all y, z € B, by applying
(1.7), (1.9), Corollary 3.2 and Hélder inequality, we have

ITo([b — bl f2)(Y) — To([D — Dplf2)(2)
< f |Ko (v, w) — Ko(z, w)||b(W) — bpl| f(w)|du(w)
X\(3B)

d(y, b(w)—->b
e o SIS i
X\(3B)

d(y, w)/[d(y, w)]'~*

d(y,z) \ |b(w) — bg|
B d
- JZ‘\L‘X( 3IB\2-1x(3B) (d(y W))[d(y W)= o fw)ldu(w)
\ 1k 2 f ~
< CZI [F(2k1 x 3B)]1 o (2 X 3) . lb(w) — bl f(w)|du(w)

IA

\ 1y 2 f .
CZ] [r(2k 1y 3B)]1 @ (2 X 3)( e Ib(w) bzkx(%B)Hf(WNd/l(W)

+bp = D3| f If (W)Idﬂ(W))
2%x(3B)

<C i TEE B)]l = (2“"X§){( fz . |f<w>|~‘du<w>)l

1

><( f Ib(W)—bzkx(gB)lsldﬂ(W))x
2x(3B)

3 |
+bs - bzkx<%3)|[,u(2k x GBI f

2kx(3B)

N 1k 2 1 f R 5
Z (21 % 33)]1 a (2 X 3){( (2 X CBNI' Joxin) Lfw)l dM(W))

; _ s’ % k 2 1-a
X(ﬂ(ka(%B)) i P =il duow)” 1@ X B

9
+kl1BllrRBMOG [1(2° X (ZB))]I—(Y

1 ) 1
X( [u(2k x (%B))]l—as j;"x(gg) lf (W)l d,U(W)) }

AIMS Mathematics Volume 6, Issue 9, 9619-9632.
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o S 42
< Cllblkano M2 Y (k+ DA x 5
. =1

27k+l

< C”b”RBMO(y)M(a;) (Hx) Z k6(27*) —dt
555 = 2 1

—k
2—k+l

1
|log tl;dt

-k

< Cllllkayiog M (N Y 627 f2
k=1

D—k+1

o(t
|log tlydt

—k

< Cllbllraog) M, ()(x) i fz
k=1
< Cllbllrsmogn M, (F)(),
where we have used the following fact that
b = byx3 )| < CkllbllrBMOG)- (3.10)

Thus,

; f ITo([b = bl £2)(¥) = hsldu(y) < Clibliremogo M (f)(x),
u(3B) Jp 2

which, together with D, and D,, implies (3.8).
Now let us estimate (3.9). Consider two balls B € § with x € Band let N := Ngg + 1. Write
lhp — hs|
mp(To([b = bs1fxx\38) + mp(To(lbs — Dplfxx\38)) — ms(To([b = bs]fxx3s))

mp(To([D = bs1fxx2vp) + mp(To([b = bs1fxovp 3p) + me(To(lbs — Dslfxx\38))

—ms(To([b = bs1fxx2vp)) = ms(To([b = Ds1fxvp 3s))

< |mp(To([b — bs 1 fxx\ovg)) — ms(To([b — bs ] fxx\2vB))

+Hmp(To([bs = bl fxx\3p)| + Imp(To([b = Ds1fxovp 3 p))| + Ims(To([D = bs ] fxonp 3s))l
=E, +E, +E; +E4.

With arguments similar to that used in the estimate of D3 and Theorem 1 in [22], it is not difficult
to obtain that

Bi < Cliblksviony M,y (N(x)

and
Ex < CKis Ibllkmoqo [ Ta(/() + M (NI

For any y € B, by applying Holder inequality, Corollary 3.2 and (3.2), we obtain that
ITo([b — bS]szNB\%B)(yN

AIMS Mathematics Volume 6, Issue 9, 9619-9632.
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< f Ko DIIBOW) — bs [LFOw)Iduw)
2VB\3B

N-1
lb(w) — bs|lf (W)
<C f dp(w)
kzz; @=1x3\@ixip 1A, W'
N—-

1
1
<C byiriszp — b d
P r(2k X %B)]l—oz (l 2k lng Sl 2k+]X%B |f(W)| /l(W)
e [ 0= bl ro0iauon)|
21x3B
N-1 1 %
< I — ( sq )
Ckzz; [0 %B)]l‘“{l 2kt1x3B s| LHX%B Lf(w)’ du(w)
3 !
@ X 5B f £ dutn))
2 2+1x3B

X(f |b(W) - b21<+-1><;B|S/d,u(W)).c }
2k+ix3p

N-1 k+1 o, 3 l-a
) [u(2¥! x 2B)]
< C”b”RBMO(ﬂ)Mig)(f)(x){ Z [r(2k x %j?)]l“’ }

p=r)
< CKps ”b||RBMO(/J)M§2(f)(x)~

Taking the mean over ball B, we get E; < CK, B.S IIbIIRBMO(H)M((? (f)(x). Similarly, we have
)

E, < CEB,S||b||RBM0(p)M§2(f)(X)-

Which, combining the estimates E;, E, and E3, implies (3.9).
Proof of Theorem 3.1. By applying Lemmas 3.3 and 3.4 , Lemmas 3.6-3.8 and Holder inequality,
we can deduce that

(B, Telfllox)
[ @b ran@eeoduco
X

= Ssup
”g”Lq’(-)(X)

<C sup

||g||Lq/(»)(X)

<C sup ‘ f MA ([, T, 1) (0 My(8)(0)du(x)
X

||g||qu(~)(X)

f M ([b, T, ] £)(X) My (g)(x)du(x)
X

< C||bllremow) Sup
||8||Lq’(-)(X)

+To(f I)(X)MN(g)(X)}dM(X)

< ClIbllremo |l 1l x)-

f {Mi‘? SOMN(Q)(X) + M, 3(To f)(x)My(8)(x)
X )
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4. Estimate for [b, T, ] on spaces M;’ ((A'))(X) N

The main theorem of this section is stated as follows.

Theorem 4.1. Let b € RBMO(u), K, satisfy (1.8) and (1.9), u(X) < co, N := a;(1 +2ay), 1 < p_ <
p(x) < q(x) < g, <00, 1 <1 <1(x) < 5(x) < 5, < o0, M =4 L= L —gand 0 < p() < 1
and p € P(N). Suppose that u satisfies (1.1). Then [b, T, ] defined as in (1.11) is bounded from spaces
MS (()) (X)y into spaces Mf((f))(X)Na.

To prove the above theorem, we need to establish the following lemmas.

Lemma 4.1. Let u(X) < o0, 1 < p_ < p(x) < g(x) < g+ < co. Suppose that N = a;(1 + 2ay)

and p € P(N), g € P(1). Then M,y defined as in (3.2) is bounded from spaces M; ((.'))(X)N into spaces

M} XOna-
q(l%emark 4.1. With a slight modified argument similar to that use in the proof of Theorem 3.4 in [7],

it is not difficult to prove that Lemma 4.2 also holds.
Lemma 4.2. Let N be a constant satisfying the condition N > 1 and 7 € (0,1). Suppose that
1<s<qg-<qgx)<px) <py<oo,s< % and 1 < p(x) < % Suppose that u satisfies condition (1.1).

Then

1—
IMEFOO1< CIAIG ) (M f (], @.1)
o
% ”f”Mp((-))(X)N
P& _ qC
Proof. For any x € X, we set £} = AT Then

s s g v [ rordao)

x€Bu(B(x,Nr))<ty

b sup (B NI f FOIdu) = Hy + Ho,
B

x€Bu(B(x,Nr))>{,

For H;, we obtain that

= swp G N [ 7o)
B

xeB,u(B(x,Nr))<l,

1 .
= s [N(B(x,Nr))]’(m fB O ducy)

XEB(B(x,Nr)<ly

< EMonf@) = LS Moy f]' T,
q0)

If u(B(x,Nr)) > {,, then there exists a i € N such that 2-'¢, < u(B(x, Nr)) < 2¢,. By applying
Holder inequality and Definition 1.6, we can deduce that

Hy<  sup  [u(Bou N5 fxsllowoollesll 1o

XEBu(B(x,Nr))>ty L® 40 (X)

< sup [uB NPT sl [u(B)] 7

xeB,u(B(x,Nr))>{

<Ifllyrogy  Sup [u(BGx NI [u(Blx, Nr)Jo 3 [u(B)] 77

x€B,u(B(x,Nr))>{,
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< Clfhgoon , Sup [u(BCx, NP)I™# [u(B(x, Nr)|a 79

XEBu(B(x,Nr)>Ly

INT— —— _ 1

< C”fHM;’(())(X) Sg£(2l)‘r ) (fx)‘r P
i

< Tp(x) ) 1-tp(x) )
< CIAI Mo 0]

Which, together with estimate H,, the proof of Lemma 4.4 is completed.

By applying Lemmas 4.2 and 4.4, it is easy to get the following result.

Lemma 4.3. Let u(X) < oo, 1 < p_ < p(x) < gx) < gy <00, 1 <t <tx) < s(x) <5, < oo,
™ _ 9 1 1

@ = 2o and ﬁ =57 satisfying 0 < 7 < o Suppose that N = a;(1 + 2ap) and p € P(N),

q € P(1). Then METK, defined as in (3.3) is bounded from spaces M 5 (()) (X)y into spaces M:((.'))(X )Na-

Proof of Theorem 4.1 From Theorem 2.2, Lemmas 3.8, 4.2 and 4.4, it follows that

B, TedPllygr, < CUMELD, Tl Pyt
< CIM*@[b, T, 1(f M)

< Clbllsntog {4 llys 0, + M. TPl + ITal Dl |

< ‘ : b RBMO( M ) P0) X :

In this paper, we mainly obtain the boundedness of 6-type generalized fractional integral T, and
its commutator [b, T,] generated by b and T on variable Lebesgue space LP")(X) and Morrey space

p()
Mq(‘) (X)N
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