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1. Motivations
In this paper, we let I denote an interval on R and /° be the interior of /.
The following definitions are well known in the literature.

Definition 1.1. A function f : I € R = (—00, 00) — R is said to be convex function if the inequality
fax+ (1 =ny) <1f(x) + (1 =0f(y)
holds for all x,y € I and ¢ € [0, 1].
Definition 1.2. Let f : I CR, = (0,00) — R. If for any x,y € I and ¢ € [0, 1], the inequality
fEYT) <1f 0+ (1= 0f0)

is valid, then we call f a geometric-arithmetic convex function on /. For simplicity, we call it a GA-
convex function.
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In the paper [11], the notion of s-GA-convex functions was defined.

Definition 1.3 ([11, Definition 2.1]). Let f : I C R, — R and s € (0, 1]. If the inequality

FEYT) < EFQ) + (-0 F()

is valid for any x,y € [ and ¢ € [0, 1], then we call f an s-geometric-arithmetic convex function on /.
For shortness, we call it an s-GA-convex function.

Now we recall several Hermite-Hadamard type inequalities for GA-convex functions in the form of
theorems.

Theorem 1.1 ( [6, Theorem 1]). Let f : [a,b] C R, — R be GA-convex. Then

f(é(z_z)lﬂb-a)) = ﬁ fabf(x)dx = (lnbilna B bfa)f(a) " (bfa " Inb i 1na)f(b)'

Theorem 1.2 ( [17, Theorem 3.1]). Let f : I C R, — R be differentiable on I°, a,b € I with a < b,
and f' € L([a,b)). If |f’|? is GA-convex on [a, b] for g > 1, then

bf(b) —af(a) 1 b
‘ b-a _b—afaf(x)dx

1-1/
< [A((l, b)] q{[L(GZ, bz) _ az]lf,(a)lq + [b2 - L(az, bz)]lf,(b)w}l/q’

T [206-a)]'e
where A(u,v) = 5* and
u—v 4
—  u#v
L(u,v) = {lnu—lnv (1.1)
u, u=v

for u,v > 0 are the arithmetic mean and logarithmic mean respectively.

Theorem 1.3 ([11, Theorem 3.3]). Let f : I° C R — R be differentiable and decreasing on I°, a,b € I°
witha < b, and f € L([a,b)). If |f'|P is s-GA-convex on [a, b] for s € (0, 1] and p > 1, then

b
(b= 0f) +(x=a)f(@) _ 1‘ffwmu
b-a b-aJ,

(i) =) S

For recent developments related to integral inequalities of the Hermite-Hadamard type for convex
functions, please refer to [3-5,7-10, 12-14, 16] and closely related references therein.

In this paper, we will define a new notion of GA-F-convex functions and establish several integral
inequalities of the Hermite-Hadamard type for GA-F-convex functions.
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2. A new notion and two lemmas

In the papers [1, 2], as a generalization of strongly convex functions, the notion of F-convex
functions was defined as follows.

Definition 2.1 ( [2, p. 868, Definition 1]). Let F : R — R be a given function. A function f : I — R is
called to be F-convex if

fx+ A -0y <tf(x)+ A -f(y)—t(1 -DHF(x-y)
forall x,ye Iandt € [0, 1].
Motivated by Definition 2.1, we now define a new notion of GA-F-convex functions as follows.

Definition 2.2. Let F' : R — R be a given function. A function f : I € R, — Ris called GA-F-convex
if
FEY'T) < tf() + (1= 0f() — 11 = DF(x - y) 2.1

forall x,y e I'and t € [0, 1].
Remark 1. It is easy to see that, if f : I C R, — R is a decreasing and GA-F-convex function, then f
is an F-convex function on /.

For establishing integral inequalities of the Hermite-Hadamard type for GA-F-convex functions,
we need the following lemmas.

Lemma 2.1 ([15]). Let f : I € R, — R be a differentiable function on I° and let a,b € I° with a < b.
If f" € Lla, b), then

1 i)
Fl) - 1nb—1na£ u du

(Inx — Ina)? fl Vet 1ot Nt 1 (Inb — Inx)? fl - -
=—— t ’ dt— —— txX'b I (Xb A (2.2
mb—Tna J, ¢ FS@X) nb—Tna J, P S¥bT)dr 2D
Lemma 2.2. Let u,v € R,. Then
1
f u™v'dt = L(u,v);
0
- L
1 \;—(th,v) u+v,
Gl(u,v):f w' TV dr = 1nv— nu
0 Eu, u=v,
v(Inv —Inu) — 2v + 2L(u,v)
1 ) , UFV;
G, (u,v) =f Pul™Vdr = (Inv—Inu)
b 0 1
5”’ u=v,
vinv —Inu)(Inv —Inu — 3) + 6] — 6L(u, v)
1 > v,
Gs(u,v) :f fu™vdt= (Inv —Inuy
o b 1
0 Zu, u=v,

where L(u, V) is defined by (1.1).
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Proof. The proof is straightforward. O
3. Some new integral inequalities of Hermite-Hadamard type

In this section, we establish several integral inequalities of the Hermite-Hadamard type for GA-F-
convex functions.

Theorem 3.1. Let F : R — R be a given function. Suppose that f : I C R, — R is differentiable, that
a,b e I witha < b, and that x € [a, b]. If |f'|? is GA-F-convex on I for g > 1, then

b _ 2
f) =1 1 f e d”' = M[Gma, 01'"VY[Gi(a, x) - Ga(a, DI f (@)
nb-InaJ, u Inb —1Ina

+ Gyla, )| f (0l = [Gala, x) — Ga(a, D)F(x — a)}'*
_ 2
E8=I 16,6, 01 4((Gu(b, 1) - Gatb, DI B B.1)
nb—-1na
+ Go(b, )| f' (0|7 = [Ga(b, x) — G3(b, )]F(x — b)),
where G1(u,v), Go(u,v), and Gs(u, v) are defined as in Lemma 2.2.

Proof. By Lemma 2.1 and Holder’s integral inequality, we have

b _ 2 pl
Fl) 1 f f(u) du’ < (Inx —Ina) I
Inb—-1Ina J, u 0

/ 1—-t ot dt
Inb—1Ina fa™2)|

(nb-Inx)> (Y
m‘fo‘ l’thl t|f (thl t)|dt

Inx—Inay?/ (" 1=y 1 a
 Qnxz oy f axdi) | f @] G2
0 0

Inb-1Ina
Inb = In x)2 1 I-1/qp 1 1/q
+ (ln b ln-x) (f txtbl—tdl,) |:f txtbl—t|fl(xtbl—t)|qdl_:| )
no—Iina 0 0

Since |f’|? is a GA-F-convex function on [a, b], using Lemma 2.2, we obtain

1
f ta''
0

1
@ x)|"de < f ta' X [(1 = DIf (@) + 1| f () — t(1 — )F(x — a)]dt
0

(3.3)
= [Gi(a, x) = Ga(a, DI f (@ + Ga(a, )| f (D) = [Ga(a, x) — G3(a, X)]F(x - a),
1 1
f b | (b )[  d e < f XD (L = Ol B + tlf () — t(1 — )F(x — b)] dt 34)
0 0 .
= [G1(b, x) = Ga2(b, D' (D) + Ga(b, )| f'(X)|? = [Ga(b, x) — G3(b, X)|F(x = b),
and 1 |
f ta''x'dt = Gy(a, x), f txX'b'"'dt = G(b, x). (3.5)
0 0
Substituting inequalities (3.3) —(3.5) into the inequality (3.2) leads to the inequality (3.1). The proof of
Theorem 3.1 is complete. m|
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Corollary 3.1.1. Let F : R — R be a given function. Suppose that f : I C R, — R is differentiable,
a,belwitha<b,and x € [a,b]. If |f'| is GA-F-convex on I, then

1 f(u) (Inx —Ina)? ,
ORI f D il « ST 1610 ) - Gl 0 @

+Ga(a, X)|f' ()| = [Ga(a, x) — G3(a, X)]F (x — a)}

. (Inb —In x)?
Inb-1na

where G1(u,v), Go(u,v), and Gs(u, v) are defined as in Lemma 2.2.

{[G1(B, %) = G2(b, DI (D) + Go(b, )| f' (0] = [G2(b, x) = G3(b, V)] F (x — b)},

Theorem 3.2. Let F : R — R be a given function. Suppose that f : I C R, — R is differentiable,
a,belwitha<b, and x € [a,b]. If |f'|? is GA-F-convex on I for g > 1, then

f@) | (4=1)\"[nx=Ina) :
10~ 105 lnaf ' (Zq— 1) [m{[uaq,ﬂ)—Gl(aq,x")]lf (@l

+Gy(a?, x| f (0| - [Gy(a?, x7) — Ga(a®, xD]F (x — a)}'*

(Inb - Inx)?

+ -
Inb—-1Ina

+ G (b, x| f (D)) = [G1(B9, x7) — Go(b?, xD]F (x — b)},

{[LDA, xT) = G (b, XD f" (D) (3.6)

where L(u,v), G1(u,v), and G,(u,v) are defined as in Lemma 2.2.

Proof. By Lemma 2.1 and Holder’s integral inequality, we have

1 P f(u) (Inx - Ina)? .
_ d < - = 7 t -t 1
ALY 1nb—1nafa « YT Tnb-Ina fo a

(nb-Inx)> (Y
mﬁ txtbl t|f (xtbl t)|dl’

3 2 1 1-1/q 1 1/q
< (Inx—1Ina) (f l,q/(q—l)dl.) [f a‘](l—t)xqt|f/(a1—txz)|‘7dt] (3.7)
0 0

1-1 t)| dt

Inb-1na

Inb—Inx)?/ (! 1-l/gp (1 e
. %(‘f tq/(q—l)dl,) [f bq(l—z)x%|f/(xfb1—t)|‘1dt]
nb-Ina \J, 0

Using the GA-F-convexity of |f’|? and Lemma 2.2, we obtain

1
f 100 4t
0

1
S| dr < f a® X1 = DIf (@) + 1l f (Ol — (1 = HF(x — a)]d ¢
0

[L(a*, x) = Gi(a”, xDIf @) + Gi(a”, x)|f (] = [Gi(a?, x7) = Gala®, x)]F(x ~ a), -
f b de < f B DIF B + AF W - 11— DFGx— By di (3.9)
= [L(", x7) = G (0% xDNF DI + G (b7, x)If (0l = [Gi(B7, x7) = Go(b, ¥DF (x = b),
and | g1
fo 1@V dr = 20T (3.10)
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Substituting inequalities (3.8)—(3.10) into the inequality (3.7) results in the inequality (3.6). The proof
of Theorem 3.2 is complete. O

Theorem 3.3. Let F : R — R be a given function. Suppose that f : I C R, — R is differentiable,
a,belwitha<b, and x € [a,b]. If |f'| is GA-F-convex on I for g > 1, then

1 b fu) (Inx — In a)? -1
- dul <« —=— 7 11(q9/@D_ya/a=D /q
ALY lnb—lna‘[l " ”' S b _ing @)

|/ (@)l N @I Fx-a) ]l/q
(q+1(g+2) g+2 (g+2)(g+3)

(Inb — In x)* 4 —nl=1/
[L(bq/(q )’ x4/(a ))] q
Inb-1Ina

X[ I ()| N @l F(x=b) ]1/q
g+ D(g+2) qg+2 (g+2(qg+3)]

(3.11)

where L(u, V) is defined as in Lemma 2.2.

Proof. By Lemma 2.1 and Holder’s integral inequality, we have

1 " f(w)
Flx) = lnb—lnaﬁ u du'

1 1-1/qr 1
f 410-0/a=D at/a-D) g t] [ f [
0 0

(Inx — Ina)®

r( 11—t 1|4 ta
f(a x)| dt

Inb—-Ina
1 - 1
—(lnb—lnx)2 f xq’/(q_l)bq(l_’)/(q_l)dt]] l/q[f 11 f’(x’bl_t)|th]]/q. (3.12)
Inb—-Ina LJ, 0

Since |f’|7 is GA-F-convex on [a, b], using Lemma 2.2, we obtain

1 1
f ) f (@) dt < f “(1 = DIf (@ + 1f' ()9 — t(1 = HF (x — a)] dt
0 0

3.13
@ fWF_Fa-a G19
(g+D(g+2) q+2 (g+2(q+3)
1 1
f “lf (b de < f “I(L = Dl B+ f )l = 11 = HF(x — b)] d 1
0 o , (3.14)
_ Lf (b))l N lff@ F(x-0b)
(g+D(@+2)  g+2 (g+2)0(g+3)
fl q?1-0/=D yat/(q=1) q 4 = L(a‘”(q_l), xq/(q—l)), (3.15)
0
fl xqt/(q—l)bq(l—t)/(q—l) dr = L(bq/(q—l)’xq/(q—l)). (3.16)
0

Substituting (3.13)—(3.16) into the inequality (3.12) arrives at the inequality (3.11). The proof of
Theorem 3.3 is thus complete. m|
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4. Conclusions

In this paper, we defined the notion of geometric-arithmetic-F-convex functions in Definition 2.2
and, via the integral identity (2.2) and other analytic techniques such as those in Lemma 2.2, establish
those integral inequalities (3.1) in Theorem 3.1, (3.6) in Theorem 3.2, and (3.11) in Theorem 3.3 of the
Hermite-Hadamard type for geometric-arithmetic-F-convex functions defined by the inequality (2.1)
in Definition 2.2.
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