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the real regime using a traveling wave transformation, its optical solitons are formally obtained through 
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the current study are new and have been not retrieved previously. 
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1. Introduction 

There are many nonlinear phenomena in nonlinear optics and other areas of scientific disciplines 

that are modeled by nonlinear Schrödinger equations. The Sasa–Satsuma equation [1–3], the complex 

Ginzburg–Landau equation [4–6], the Fokas–Lenells equation [7–9], the perturbed Gerdjikov–

Ivanov equation [10–12], the Biswas–Arshed equation [13–15], the Kudryashov equation [16–18], 

and the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation [19–27] are a family of 

nonlinear Schrödinger equations that model nonlinear phenomena related to themselves. For 

example, the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation [19–27] 

𝑖
𝜕𝑢

𝜕𝑦
+

1

2
(

𝜕2𝑢

𝜕𝑥2 −
𝜕2𝑢

𝜕𝑡2) + |𝑢|2𝑢 = 0,                          (1) 

models the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave 

guides in optics. In Eq (1), 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is a dependent variable and 𝑥, 𝑦, and 𝑡 represent spatial 

and temporal variables. The importance of exploring the 2D-HNLS equation has tempted a lot of 

researchers to consider Eq (1) as a canonical model in their studies. In this regard, Ai-Lin and Ji [22] 

adopted the Lie group symmetry method to find Lie point symmetries and exact traveling solutions of 

the 2D-HNLS equation. Aliyu et al. [23] investigated optical solitary waves of the 2D-HNLS equation 

using the solitary wave ansatz. Apeanti et al. [24] applied a generalized elliptic expansion method to 

look for optical solitons of the 2D-HNLS equation. Durur et al. [25] obtained periodic and singular 

wave solutions of the 2D-HNLS equation via the projected method. Tala-Tebue and his 

collaborators [26] considered the 2D-HNLS equation in their article and found its optical solitons 

through the modified Jacobi elliptic method. Very recently, exact solutions of the 2D-HNLS equation 

were constructed by Ur Rehman [27] using a group of well-organized methods. 

Today, due to the development of computer algebra systems like MAPLE and MATHEMATICA, 

handling symbolic computations has become easier and more convenient than the past. Such an 

evolution led to the establishment of a series of effective methods to construct soliton solutions of 

nonlinear partial differential equations (NLPDEs). Two useful techniques that profit from the existence 

of symbolic computation packages in extracting soliton solutions of NLPDEs are the exponential and 

Kudryashov methods [28–40]. The exponential and Kudryashov methods are two easy-to-use 

techniques that have demonstrated their performance in dealing with NLPDEs. To address a series of 

recent applications of these useful methods, Zafar et al. [35] applied the exponential method as a newly 

well-designed method to seek new exact solutions of the conformable time-fractional Cahn–Allen 

equation. Hosseini et al. [40] derived optical solitons of an integrable (2+1)-dimensional nonlinear 

Schrödinger system using the Kudryashov methods. The need for further studies on the existence of 

other optical solitons of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation cheered the 

authors to apply the exponential and Kudryashov methods for performing such a key goal. More works 

can be found in [41–51]. 

The organization of this paper is as follows: In Section 2, a detailed review regarding the 

exponential and Kudryashov methods is presented. In Section 3, after reducing the 2D-HNLS equation 

to a 1D-NLOD equation in the real regime using a traveling wave transformation, its optical solitons 

are formally obtained through the exponential and Kudryashov methods. Additionally, some graphical 

representations regarding bright and dark solitons are considered to clarify their dynamics. The paper 

concludes with a short review of the outcomes. 

https://www.powerthesaurus.org/such_an_evolution/synonyms
https://www.powerthesaurus.org/such_an_evolution/synonyms
https://www.powerthesaurus.org/conclude/synonyms
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2. Methods and their review 

This section presents a detailed review regarding the exponential and Kudryashov methods. For 

this aim, let’s consider the following NLOD equation 

𝑃(𝑈, 𝑈′, 𝑈′′, … ) = 0,    ′ =
𝑑

𝑑𝜖
,                           (2) 

where 𝑃 is a polynomial in terms of 𝑈 and its derivatives. 

2.1. Exponential method 

The exponential method profits from applying a solution for Eq (2) as follows 

𝑈(𝜖) =
𝑎0+𝑎1𝑎𝜖+⋯+𝑎𝑁𝑎𝑁𝜖

𝑏0+𝑏1𝑎𝜖+⋯+𝑏𝑁𝑎𝑁𝜖 ,     𝑎𝑁 ≠ 0,     𝑏𝑁 ≠ 0,                (3) 

where 𝑎𝑖 , 𝑖 = 0,1, … , 𝑁 and 𝑏𝑖 , 𝑖 = 0,1, … , 𝑁 are computed later and 𝑁 ∈ ℤ+. By substituting Eq (3) 

into the NLOD Eq (2) and using a number of operations, we attain a set of nonlinear algebraic equations 

whose solution yields soliton solutions of Eq (2). 

2.2. Kudryashov methods 

The Kudryashov method adopts a solution for Eq (2) as follows 

𝑈(𝜖) = 𝑎0 + 𝑎1𝐾(𝜖) + ⋯ + 𝑎𝑁𝐾𝑁(𝜖),     𝑎𝑁 ≠ 0,                 (4) 

where 𝑎𝑖 , 𝑖 = 0,1, … , 𝑁 are evaluated later, 𝑁 is obtained by the balance principle, and 𝐾(𝜖) is the 

following function 

𝐾(𝜖) =
4𝐴

(4𝐴2 − 𝜂) sinh(𝜖) + (4𝐴2 + 𝜂) cosh(𝜖)
,     𝜂 = 4𝐴𝐵, 

satisfying a nonlinear equation as 

(𝐾′(𝜖))
2

= 𝐾2(𝜖)(1 − 𝜂𝐾2(𝜖)). 

By inserting Eq (4) into the NLOD Eq (2) and using a number of operations, we reach a set of 

nonlinear algebraic equations whose solution gives soliton solutions of Eq (2). 

It is noteworthy that instead of Eq (4), the solution of Eq (2) can be considered as the following 

form [40–42] 

𝑈(𝜖) = 𝑎0 + ∑ (
𝐾(𝜖)

1+𝐾2(𝜖)
)

𝑖−1
𝑁
𝑖=1 (𝑎𝑖

𝐾(𝜖)

1+𝐾2(𝜖)
+ 𝑏𝑖

1−𝐾2(𝜖)

1+𝐾2(𝜖)
),     𝑎𝑁 or 𝑏𝑁 ≠ 0,       (5) 

where 𝑎0, 𝑎𝑖 (𝑖 = 1,2, … , 𝑁), and 𝑏𝑖 (𝑖 = 1,2, … , 𝑁) are found later, 𝑁 is derived by the balance 

technique, and 𝐾(𝜖) is a function in the form 
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𝐾(𝜖) =
4𝐴

(4𝐴2 − 𝜂) sinh(𝜖) + (4𝐴2 + 𝜂) cosh(𝜖)
,     𝜂 = 4𝐴𝐵, 

satisfying 

(𝐾′(𝜖))
2

= 𝐾2(𝜖)(1 − 𝜂𝐾2(𝜖)). 

By setting Eq (5) in the NLOD Eq (2) and using a number of operations, we arrive at a set of 

nonlinear algebraic equations whose solution results in soliton solutions of Eq (2). 

3. 2D-HNLS equation and its optical solitons 

The current section presents optical solitons of the (2+1)-dimensional hyperbolic nonlinear 

Schrödinger equation that are formally derived through adopting a series of effective methods such as 

the exponential and Kudryashov methods. To begin, let’s employ a traveling wave transformation as 

follows 

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜖)𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),     𝜖 = 𝑥 + 𝛼1𝑦 + 𝛽1𝑡,             (6) 

where speed and frequency are represented by 𝛽1 and 𝛽2, respectively. After substituting Eq (6) into 

Eq (1) and distinguishing the real and imaginary expressions, one obtains the following second-order 

NLOD equation  

(1 − 𝛽1
2)

𝑑2𝑈(𝜖)

𝑑𝜖2 + (𝛽2
2 − 2𝛼2 − 1)𝑈(𝜖) + 2𝑈3(𝜖) = 0,            (7) 

where 

𝛼1 = 𝛽1𝛽2 − 1. 

3.1. Exponential method and its application 

Because 𝑁 ∈ ℤ+, consequently, the solution of Eq (7) can be expressed as follows 

𝑈(𝜖) =
𝑎0+𝑎1𝑎𝜖+𝑎2𝑎2𝜖

𝑏0+𝑏1𝑎𝜖+𝑏2𝑎2𝜖 ,     𝑎2 ≠ 0,     𝑏2 ≠ 0,                   (8) 

where 𝑎𝑖 , 𝑖 = 0,1,2 and 𝑏𝑖 , 𝑖 = 0,1,2 are computed later. By substituting Eq (8) into the NLOD Eq (7) 

and using a number of operations, we attain a set of nonlinear algebraic equations as 

𝑎0𝑏0
2𝛽2

2 − 2𝑎0𝛼2𝑏0
2 + 2𝑎0

3 − 𝑎0𝑏0
2 = 0, 

(ln(𝑎))2𝑎0𝑏0𝑏1𝛽1
2 − (ln(𝑎))2𝑎1𝑏0

2𝛽1
2 − (ln(𝑎))2𝑎0𝑏0𝑏1 + (ln(𝑎))2𝑎1𝑏0

2 + 2𝑎0𝑏0𝑏1𝛽2
2 +

𝑎1𝑏0
2𝛽2

2 − 4𝑎0𝛼2𝑏0𝑏1 − 2𝑎1𝛼2𝑏0
2 + 6𝑎0

2𝑎1 − 2𝑎0𝑏0𝑏1 − 𝑎1𝑏0
2 = 0,  

4(ln(𝑎))2𝑎0𝑏0𝑏2𝛽1
2 − (ln(𝑎))2𝑎0𝑏1

2𝛽1
2 + (ln(𝑎))2𝑎1𝑏0𝑏1𝛽1

2 − 4(ln(𝑎))2𝑎2𝑏0
2𝛽1

2 − 4

(ln(𝑎))2𝑎0𝑏0𝑏2 + (ln(𝑎))2𝑎0𝑏1
2 − (ln(𝑎))2𝑎1𝑏0𝑏1 + 4(ln(𝑎))2𝑎2𝑏0

2 + 2𝑎0𝑏0𝑏2𝛽2
2 +

𝑎0𝑏1
2𝛽2

2 + 2𝑎1𝑏0𝑏1𝛽2
2 + 𝑎2𝑏0

2𝛽2
2 − 4𝑎0𝛼2𝑏0𝑏2 − 2𝑎0𝛼2𝑏1

2 − 4𝑎1𝛼2𝑏0𝑏1 − 2𝑎2𝛼2𝑏0
2 + 6

𝑎0
2𝑎2 + 6𝑎0𝑎1

2 − 2𝑎0𝑏0𝑏2 − 𝑎0𝑏1
2 − 2𝑎1𝑏0𝑏1 − 𝑎2𝑏0

2 = 0,  
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−3(ln(𝑎))2𝑎0𝑏1𝑏2𝛽1
2 + 6(ln(𝑎))2𝑎1𝑏0𝑏2𝛽1

2 − 3(ln(𝑎))2𝑎2𝑏0𝑏1𝛽1
2 + 3(ln(𝑎))2𝑎0𝑏1𝑏2 − 6

(ln(𝑎))2𝑎1𝑏0𝑏2 + 3(ln(𝑎))2𝑎2𝑏0𝑏1 + 2𝑎0𝑏1𝑏2𝛽2
2 + 2𝑎1𝑏0𝑏2𝛽2

2 + 𝑎1𝑏1
2𝛽2

2 + 2𝑎2𝑏0𝑏1𝛽2
2 − 4

𝑎0𝛼2𝑏1𝑏2 − 4𝑎1𝛼2𝑏0𝑏2 − 2𝑎1𝛼2𝑏1
2 − 4𝑎2𝛼2𝑏0𝑏1 + 12𝑎0𝑎1𝑎2 − 2𝑎0𝑏1𝑏2 + 2𝑎1

3 − 2𝑎1𝑏0𝑏2 −

𝑎1𝑏1
2 − 2𝑎2𝑏0𝑏1 = 0,  

−4(ln(𝑎))2𝑎0𝑏2
2𝛽1

2 + (ln(𝑎))2𝑎1𝑏1𝑏2𝛽1
2 + 4(ln(𝑎))2𝑎2𝑏0𝑏2𝛽1

2 − (ln(𝑎))2𝑎2𝑏1
2𝛽1

2 + 4

(ln(𝑎))2𝑎0𝑏2
2 − (ln(𝑎))2𝑎1𝑏1𝑏2 − 4(ln(𝑎))2𝑎2𝑏0𝑏2 + (ln(𝑎))2𝑎2𝑏1

2 + 𝑎0𝑏2
2𝛽2

2 + 2

𝑎1𝑏1𝑏2𝛽2
2 + 2𝑎2𝑏0𝑏2𝛽2

2 + 𝑎2𝑏1
2𝛽2

2 − 2𝑎0𝛼2𝑏2
2 − 4𝑎1𝛼2𝑏1𝑏2 − 4𝑎2𝛼2𝑏0𝑏2 − 2𝑎2𝛼2𝑏1

2 + 6

𝑎0𝑎2
2 − 𝑎0𝑏2

2 + 6𝑎1
2𝑎2 − 2𝑎1𝑏1𝑏2 − 2𝑎2𝑏0𝑏2 − 𝑎2𝑏1

2 = 0,  

−(ln(𝑎))2𝑎1𝑏2
2𝛽1

2 + (ln(𝑎))2𝑎2𝑏1𝑏2𝛽1
2 + (ln(𝑎))2𝑎1𝑏2

2 − (ln(𝑎))2𝑎2𝑏1𝑏2 + 𝑎1𝑏2
2𝛽2

2 + 2

𝑎2𝑏1𝑏2𝛽2
2 − 2𝑎1𝛼2𝑏2

2 − 4𝑎2𝛼2𝑏1𝑏2 + 6𝑎1𝑎2
2 − 𝑎1𝑏2

2 − 2𝑎2𝑏1𝑏2 = 0,  

𝑎2𝑏2
2𝛽2

2 − 2𝑎2𝛼2𝑏2
2 + 2𝑎2

3 − 𝑎2𝑏2
2 = 0. 

By utilizing a computer algebra system like MAPLE, we find: 

Case 1. 

𝑎1 =
𝑏1 ln(𝑎)

2√(𝛽1
2−1)

−1
,   𝑏0 =

2√(𝛽1
2−1)

−1
𝑎0

ln(𝑎)
,    

𝑏2 =
2𝑎2

ln(𝑎)(𝛽1
2−1)√(𝛽1

2−1)
−1

,   𝛽2 = ±
1

2
√−2(ln(𝑎))2𝛽1

2 + 2(ln(𝑎))2 + 8𝛼2 + 4.  

Therefore, the following solitons to the 2D-HNLS equation are acquired 

𝑢1,2(𝑥, 𝑦, 𝑡) =

𝑎0+
𝑏1 ln(𝑎)

2√(𝛽1
2

−1)
−1

𝑎𝑥+𝛼1𝑦+𝛽1𝑡+𝑎2𝑎2(𝑥+𝛼1𝑦+𝛽1𝑡)

2√(𝛽1
2

−1)
−1

𝑎0

ln(𝑎)
+𝑏1𝑎𝑥+𝛼1𝑦+𝛽1𝑡+

2𝑎2

ln(𝑎)(𝛽1
2

−1)√(𝛽1
2

−1)
−1

𝑎2(𝑥+𝛼1𝑦+𝛽1𝑡)

  

× 𝑒
𝑖(𝑥+𝛼2𝑦±(

1
2

√−2(ln(𝑎))2𝛽1
2+2(ln(𝑎))2+8𝛼2+4)𝑡)

,     

𝛼1 = 𝛽1𝛽2 − 1,   𝛽2 = ±
1

2
√−2(ln(𝑎))2𝛽1

2 + 2(ln(𝑎))2 + 8𝛼2 + 4.  

Case 2. 

𝑎1 = −
𝑏1 ln(𝑎)

2√(𝛽1
2−1)

−1
,   𝑏0 = −

2√(𝛽1
2−1)

−1
𝑎0

ln(𝑎)
,      

𝑏2 = −
2𝑎2

ln(𝑎)(𝛽1
2−1)√(𝛽1

2−1)
−1

,   𝛽2 = ±
1

2
√−2(ln(𝑎))2𝛽1

2 + 2(ln(𝑎))2 + 8𝛼2 + 4.  

Thus, the following solitons to the 2D-HNLS equation are gained 
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𝑢3,4(𝑥, 𝑦, 𝑡) =

𝑎0−
𝑏1 ln(𝑎)

2√(𝛽1
2

−1)
−1

𝑎𝑥+𝛼1𝑦+𝛽1𝑡+𝑎2𝑎2(𝑥+𝛼1𝑦+𝛽1𝑡)

−
2√(𝛽1

2
−1)

−1
𝑎0

ln(𝑎)
+𝑏1𝑎𝑥+𝛼1𝑦+𝛽1𝑡−

2𝑎2

ln(𝑎)(𝛽1
2

−1)√(𝛽1
2

−1)
−1

𝑎2(𝑥+𝛼1𝑦+𝛽1𝑡)

  

× 𝑒
𝑖(𝑥+𝛼2𝑦±(

1
2

√−2(ln(𝑎))2𝛽1
2+2(ln(𝑎))2+8𝛼2+4)𝑡)

,     

𝛼1 = 𝛽1𝛽2 − 1,   𝛽2 = ±
1

2
√−2(ln(𝑎))2𝛽1

2 + 2(ln(𝑎))2 + 8𝛼2 + 4.   

The graphical representations of |𝑢1(𝑥, 𝑦, 𝑡)|  demonstrating the dark solitons have been 

considered in Figure 1. The appropriate values that have been utilized to portray Figure 1 are 𝑎0 = 1, 

𝑎2 = 1, 𝑏1 = 1, 𝛼2 = 0.9, 𝛽1 = 1.5, 𝑎 = 2.7, and (a) 𝑡 = −1 (b) 𝑡 = 1. 

 

Figure 1. The graphical representations of |𝑢1(𝑥, 𝑦, 𝑡)|  for 𝑎0 = 1 , 𝑎2 = 1 , 𝑏1 = 1 , 

𝛼2 = 0.9, 𝛽1 = 1.5, 𝑎 = 2.7, and (a) 𝑡 = −1 (b) 𝑡 = 1. 

3.2. Kudryashov methods and their applications 

Based on Eq (7), the balance principle, and the Kudryashov method, a solution for Eq (7) is 

considered as follows 

𝑈(𝜖) = 𝑎0 + 𝑎1𝐾(𝜖),     𝑎1 ≠ 0,                            (9) 

where 𝑎0 and 𝑎1 are evaluated later. By inserting Eq (9) into Eq (7) and using a number of operations, 

we reach the following set of nonlinear algebraic equations 

2𝜂𝑎1𝛽1
2 + 2𝑎1

3 − 2𝜂𝑎1 = 0, 

6𝑎0𝑎1
2 = 0, 

6𝑎0
2𝑎1 − 𝑎1𝛽1

2 + 𝑎1𝛽2
2 − 2𝑎1𝛼2 = 0, 

2𝑎0
3 + 𝑎0𝛽2

2 − 2𝑎0𝛼2 − 𝑎0 = 0. 
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By adopting a computer algebra system like MAPLE, we find: 

Case 1. 

𝑎0 = 0,   𝑎1 = √−𝜂𝛽1
2 + 𝜂,   𝛽2 = ±√𝛽1

2 + 2𝛼2. 

Therefore, the following solitons to the 2D-HNLS equation are acquired 

𝑢1,2(𝑥, 𝑦, 𝑡) =
4𝐴√−𝜂𝛽1

2+𝜂

(4𝐴2−𝜂) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(4𝐴2+𝜂) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)
𝑒

𝑖(𝑥+𝛼2𝑦±√𝛽1
2+2𝛼2𝑡)

,     

𝜂 = 4𝐴𝐵,   𝛼1 = 𝛽1𝛽2 − 1,   𝛽2 = ±√𝛽1
2 + 2𝛼2.   

Case 2. 

𝑎0 = 0,   𝑎1 = −√−𝜂𝛽1
2 + 𝜂,   𝛽2 = ±√𝛽1

2 + 2𝛼2. 

Thus, the following solitons to the 2D-HNLS equation are gained 

𝑢3,4(𝑥, 𝑦, 𝑡) = −
4𝐴√−𝜂𝛽1

2+𝜂

(4𝐴2−𝜂) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(4𝐴2+𝜂) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)
𝑒

𝑖(𝑥+𝛼2𝑦±√𝛽1
2+2𝛼2𝑡)

,  

𝜂 = 4𝐴𝐵,   𝛼1 = 𝛽1𝛽2 − 1,   𝛽2 = ±√𝛽1
2 + 2𝛼2. 

Figure 2 represents the graphical representations of |𝑢1(𝑥, 𝑦, 𝑡)| that signify the bright solitons. 

The appropriate values that have been used to plot Figure 2 are 𝐴 = 2, 𝐵 = 1, 𝛼2 = 0.3, 𝛽1 = 1.5, 

and (a) 𝑡 = −1.5 (b) 𝑡 = 1.5. 

 

Figure 2. The graphical representations of |𝑢1(𝑥, 𝑦, 𝑡)|  for 𝐴 = 2 , 𝐵 = 1 , 𝛼2 = 0.3 , 

𝛽1 = 1.5, and (a) 𝑡 = −1.5 (b) 𝑡 = 1.5. 
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It is noteworthy that instead of Eq (9), the solution of Eq (7) can be considered as 

𝑈(𝜖) = 𝑎0 + 𝑎1
𝐾(𝜖)

1+𝐾2(𝜖)
+ 𝑎2

1−𝐾2(𝜖)

1+𝐾2(𝜖)
,     𝑎1 or 𝑎2 ≠ 0,                  (10) 

where 𝑎0, 𝑎1, and 𝑎2 are found later. By setting Eq (10) in Eq (7) and using a number of operations, 

we arrive at a set of nonlinear algebraic equations as 

16𝐴𝐵𝑎2𝛽1
2 − 16𝐴𝐵𝑎2 + 2𝑎0

3 − 6𝑎0
2𝑎2 + 6𝑎0𝑎2

2 + 𝑎0𝛽2
2 − 2𝑎2

3 − 𝑎2𝛽2
2 − 2𝑎0𝛼2 + 2𝑎2𝛼2 −

𝑎0 + 𝑎2 = 0,  

−24𝐴𝐵𝑎1𝛽1
2 + 24𝐴𝐵𝑎1 + 6𝑎0

2𝑎1 − 12𝑎0𝑎1𝑎2 + 6𝑎1𝑎2
2 − 𝑎1𝛽1

2 + 𝑎1𝛽2
2 − 2𝑎1𝛼2 = 0, 

−48𝐴𝐵𝑎2𝛽1
2 + 48𝐴𝐵𝑎2 + 6𝑎0

3 − 6𝑎0
2𝑎2 + 6𝑎0𝑎1

2 − 6𝑎0𝑎2
2 + 3𝑎0𝛽2

2 − 6𝑎1
2𝑎2 + 6𝑎2

3 − 8

𝑎2𝛽1
2 − 𝑎2𝛽2

2 − 6𝑎0𝛼2 + 2𝑎2𝛼2 − 3𝑎0 + 9𝑎2 = 0,  

8𝐴𝐵𝑎1𝛽1
2 − 8𝐴𝐵𝑎1 + 12𝑎0

2𝑎1 + 2𝑎1
3 − 12𝑎1𝑎2

2 + 6𝑎1𝛽1
2 + 2𝑎1𝛽2

2 − 4𝑎1𝛼2 − 8𝑎1 = 0, 

6𝑎0
3 + 6𝑎0

2𝑎2 + 6𝑎0𝑎1
2 − 6𝑎0𝑎2

2 + 3𝑎0𝛽2
2 + 6𝑎1

2𝑎2 − 6𝑎2
3 + 8𝑎2𝛽1

2 + 𝑎2𝛽2
2 − 6𝑎0𝛼2 − 2

𝑎2𝛼2 − 3𝑎0 − 9𝑎2 = 0,  

6𝑎0
2𝑎1 + 12𝑎0𝑎1𝑎2 + 6𝑎1𝑎2

2 − 𝑎1𝛽1
2 + 𝑎1𝛽2

2 − 2𝑎1𝛼2 = 0, 

2𝑎0
3 + 6𝑎0

2𝑎2 + 6𝑎0𝑎2
2 + 𝑎0𝛽2

2 + 2𝑎2
3 + 𝑎2𝛽2

2 − 2𝑎0𝛼2 − 2𝑎2𝛼2 − 𝑎0 − 𝑎2 = 0. 

By utilizing a computer algebra system like MAPLE, we find: 

Case 1. 

𝐵 = 0,   𝑎0 = 0,   𝑎1 = 2√−𝛽2
2 + 2𝛼2 + 1,   𝑎2 = 0,   𝛽1 = ±√𝛽2

2 − 2𝛼2. 

Therefore, the following solitons to the 2D-HNLS equation are acquired 

𝑢1,2(𝑥, 𝑦, 𝑡) = 2𝐴√−𝛽2
2 + 2𝛼2 + 1

sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+cosh(𝑥+𝛼1𝑦+𝛽1𝑡)

(𝐴 sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+𝐴 cosh(𝑥+𝛼1𝑦+𝛽1𝑡))2+1
𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),  

𝛼1 = 𝛽1𝛽2 − 1,   𝛽1 = ±√𝛽2
2 − 2𝛼2. 

Case 2. 

𝐵 = 0,   𝑎0 = 0,   𝑎1 = −2√−𝛽2
2 + 2𝛼2 + 1,   𝑎2 = 0,   𝛽1 = ±√𝛽2

2 − 2𝛼2. 

Thus, the following solitons to the 2D-HNLS equation are derived 

𝑢3,4(𝑥, 𝑦, 𝑡) = −2𝐴√−𝛽2
2 + 2𝛼2 + 1

sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+cosh(𝑥+𝛼1𝑦+𝛽1𝑡)

(𝐴 sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+𝐴 cosh(𝑥+𝛼1𝑦+𝛽1𝑡))2+1
𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),  

𝛼1 = 𝛽1𝛽2 − 1,   𝛽1 = ±√𝛽2
2 − 2𝛼2. 

Case 3. 
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𝐵 = −
1

2𝐴
,   𝑎0 = −𝑎2,   𝑎1 = 0,   𝛽1 = √−𝑎2

2 + 1,   𝛽2 = ±√−4𝑎2
2 + 2𝛼2 + 1. 

Consequently, the following solitons to the 2D-HNLS equation are obtained 

𝑢5,6(𝑥, 𝑦, 𝑡) = −
8𝑎2𝐴2

2 sinh(𝑥+𝛼1𝑦+𝛽1𝑡) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)(4𝐴4−1)+2(cosh(𝑥+𝛼1𝑦+𝛽1𝑡))2(4𝐴4+1)−4𝐴4−1
  

× 𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),   

𝛼1 = 𝛽1𝛽2 − 1,   𝛽1 = √−𝑎2
2 + 1,   𝛽2 = ±√−4𝑎2

2 + 2𝛼2 + 1. 

Case 4. 

𝐵 = −
1

2𝐴
,   𝑎0 = −𝑎2,   𝑎1 = 0,   𝛽1 = −√−𝑎2

2 + 1,   𝛽2 = ±√−4𝑎2
2 + 2𝛼2 + 1. 

Accordingly, the following solitons to the 2D-HNLS equation are gained 

𝑢7,8(𝑥, 𝑦, 𝑡) = −
8𝑎2𝐴2

2 sinh(𝑥+𝛼1𝑦+𝛽1𝑡) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)(4𝐴4−1)+2(cosh(𝑥+𝛼1𝑦+𝛽1𝑡))2(4𝐴4+1)−4𝐴4−1
  

× 𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),   

𝛼1 = 𝛽1𝛽2 − 1,   𝛽1 = −√−𝑎2
2 + 1,   𝛽2 = ±√−4𝑎2

2 + 2𝛼2 + 1. 

Case 5. 

𝐵 = 0,   𝑎0 = 0,   𝑎1 = 2𝑖𝑎2,   𝛽1 = √4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

So, the following exact solutions to the 2D-HNLS equation are acquired 

𝑢9,10(𝑥, 𝑦, 𝑡) =
𝑎2((𝐴2+1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2−1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)+2𝑖𝐴)

(𝐴2−1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2+1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)
𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),  

𝛼1 = 𝛽1𝛽2 − 1,   𝛽1 = √4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Case 6. 

𝐵 = 0,   𝑎0 = 0,   𝑎1 = 2𝑖𝑎2,   𝛽1 = −√4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Therefore, the following exact solutions to the 2D-HNLS equation are derived 

𝑢11,12(𝑥, 𝑦, 𝑡) =
𝑎2((𝐴2+1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2−1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)+2𝑖𝐴)

(𝐴2−1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2+1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)
𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),  

𝛼1 = 𝛽1𝛽2 − 1,   𝛽1 = −√4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Case 7. 
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𝐵 = 0,   𝑎0 = 0,   𝑎1 = −2𝑖𝑎2,   𝛽1 = √4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Thus, the following exact solutions to the 2D-HNLS equation are obtained 

𝑢13,14(𝑥, 𝑦, 𝑡) =
𝑎2((𝐴2+1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2−1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)−2𝑖𝐴)

(𝐴2−1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2+1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)
𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),  

𝛼1 = 𝛽1𝛽2 − 1, 𝛽1 = √4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Case 8. 

𝐵 = 0,   𝑎0 = 0,   𝑎1 = −2𝑖𝑎2,   𝛽1 = −√4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Consequently, the following exact solutions to the 2D-HNLS equation are gained 

𝑢15,16(𝑥, 𝑦, 𝑡) =
𝑎2((𝐴2+1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2−1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)−2𝑖𝐴)

(𝐴2−1) sinh(𝑥+𝛼1𝑦+𝛽1𝑡)+(𝐴2+1) cosh(𝑥+𝛼1𝑦+𝛽1𝑡)
𝑒𝑖(𝑥+𝛼2𝑦+𝛽2𝑡),  

𝛼1 = 𝛽1𝛽2 − 1, 𝛽1 = −√4𝑎2
2 + 1,   𝛽2 = ±√−2𝑎2

2 + 2𝛼2 + 1. 

Note 1: It should be stated that our results were examined by MAPLE, confirming their correctness. 

Note 2: It is noteworthy that optical solitons generated by the first and third methods are new and have 

been not retrieved previously. 

The graphical representations of |𝑢5(𝑥, 𝑦, 𝑡)|  demonstrating the bright solitons have been 

considered in Figure 3. The appropriate values that have been utilized to portray Figure 3 are 𝐴 = 1, 

𝑎2 = 0.5, 𝛼2 = 1, and (a) 𝑡 = −1.5 (b) 𝑡 = 1.5. 

 

Figure 3. The graphical representations of |𝑢5(𝑥, 𝑦, 𝑡)|  for 𝐴 = 1 , 𝑎2 = 0.5 , 𝛼2 = 1 , 

and (a) 𝑡 = −1.5 (b) 𝑡 = 1.5. 

4. Conclusions 

The present paper studied comprehensively the (2+1)-dimensional hyperbolic nonlinear 

Schrödinger equation describing the propagation of electromagnetic fields in self-focusing and 
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normally dispersive planar wave guides in optics. The intended purpose was accomplished by reducing 

the 2D-HNLS equation to a one-dimensional nonlinear ordinary differential equation in the real regime 

using a traveling wave transformation and solving the resulting 1D-NLOD equation through the 

exponential and Kudryashov methods. As a result, several new optical solitons to the (2+1)-

dimensional hyperbolic nonlinear Schrödinger equation were formally obtained that are categorized as 

bright and dark solitons. Several graphical representations regarding the bright and dark solitons were 

represented to clarify the dynamics of the obtained solutions. 
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