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Abstract: The Piatetski-Shapiro sequences are sequences of the form (bncc)∞n=1 for c > 1 and c < N.
It is conjectured that there are infinitely many primes in Piatetski-Shapiro sequences for c ∈ (1, 2).
For every R > 1, we say that a natural number is an R-almost prime if it has at most R prime factors,
counted with multiplicity. In this paper, we prove that there are infinitely many R-almost primes in
Piatetski-Shapiro sequences if c ∈ (1, cR) and cR is an explicit constant depending on R.
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1. Introduction

The Piatetski-Shapiro sequences are sequences of the form

N (c) ..= (bncc)∞n=1 (c > 1, c < N).

Such sequences have been named in honor of Piatetski-Shapiro [13], who published the first paper in
this problem. He showed that the counting function

π(c)(x) ..=
∣∣∣{prime p 6 x : p ∈ N (c)}∣∣∣

satisfies the asymptotic relation

π(c)(x) ∼
x1/c

log x
as x→ ∞,

if

1 < c <
12
11

= 1.0909 . . . .
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The range for c of the asymptotic formula of π(c)(x) has been improved by several mathematicians over
the years. Kolesnik [7] improved this result to

1 < c <
10
9

= 1.1111 . . . .

Graham and Leitmann [10] using the method of exponent pairs independently improved the range to

1 < c <
69
62

= 1.1129 . . . .

Graham did not publish his paper. Heath-Brown [4] applied the Weyl’s shift and the exponent pair
method, together with his decomposition of the Von Mangoldt function, extended the range to

1 < c <
755
662

= 1.1404 . . . .

Kolesnik [8] using the method of multiple exponential sums improved the range to

1 < c <
39
34

= 1.1470 . . . .

Liu and Rivat [12] applied the double large sieve to Type I sums and extended the range to

1 < c <
15
13

= 1.1538 . . . .

Rivat [14] improved the range in his PhD thesis to

1 < c <
6121
5302

= 1.1544 . . . .

Rivat and Sargos [15] held the best record to be

1 < c <
2817
2426

= 1.1611 . . . .

We mention that Leitmann and Wolke [11] proved that the asymptotic formula holds for almost all
c ∈ (1, 2) in the sense of Lebesgue measure.

Rivat also considered to prove that there are infinitely many Piatetski-Shapiro primes by giving a
lower bound of π(c)(x). He used a sieve method and showed that

π(c)(x) �
x1/c

log x

if
1 < c <

7
6

= 1.1666 · · · .

Later, Baker, Harman and Rivat [1] and Jia [6] improved this range to

1 < c <
20
17

= 1.1764 . . . .
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Jia [5] extended the range again to

1 < c <
13
11

= 1.1818 . . . .

Kumchev [9] improved the range to

1 < c <
45
38

= 1.1842 . . . .

Eventually, Rivat and Wu [16] gave the best range up to now, which is

1 < c <
243
205

= 1.1853 . . . .

We remark that if c ∈ (0, 1) then N (c) contains all natural numbers, hence contains all primes. The
estimation of Piatetski-Shapiro primes is an approximation of the well-known conjecture that there
exists infinitely many primes of the form n2 + 1.

It is conjectured that there are infinitely many Piatetski-Shapiro primes for c ∈ (1, 2). However, the
best known bound for c is still far from 2 and the range for c has not been improved for almost 20 years.
We approach this problem in a different direction. For every R > 1, we say that a natural number is an
R-almost prime if it has at most R prime factors, counted with multiplicity. The study of almost primes
is an intermediate step to the investigation of primes. In this paper, we prove there are infinitely many
almost primes in Piatetski-Shapiro sequences.

Theorem 1.1. For any fixed c ∈ (1, cR) we have∣∣∣{n 6 x : bncc is an R-almost prime}
∣∣∣ � x

log x

holds for all sufficiently large x. In particular, we have

c3
..=

889
741

= 1.1997 . . . , c4
..=

25882
16071

= 1.6104 . . . ,

and

cR
..= 3 −

128
3(8R − 1)

(R > 5).

Recall that the best known range that there are infinitely many Piatetski-Shapiro primes is
(1, 1.1853) and c3 = 1.1997 > 1.1853. Hence our theorem for 3-almost primes provides a bigger
range of c than that of prime numbers. Moreover, when R = 6 we have that

c6 =
295
141

= 2.0921,

which is greater than 2.
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2. Preliminaries

2.1. Notation

We denote by btc and {t} the integer part and the fractional part of t, respectively. As is customary,
we put e(t) ..= e2πit. We make considerable use of the sawtooth function defined by

ψ(t) ..= t − btc −
1
2

= {t} −
1
2

(t ∈ R).

The letter p always denotes a prime. For the Piatetski-Shapiro sequence (bncc)∞n=1, we denote γ ..= c−1.
We use notation of the form m ∼ M as an abbreviation for M < m 6 2M.

Throughout the paper, implied constants in symbols O, � and � may depend (where obvious) on
the parameters c, ε but are absolute otherwise. For given functions F and G, the notations F � G,
G � F and F = O(G) are all equivalent to the statement that the inequality |F| 6 C|G| holds with some
constant C > 0. F � G means that F � G � F.

2.2. The weighted sieve

As we have mentioned the following notion plays a crucial role in our arguments. We specify it
to the form that is suited to our applications; it is based on a result of Greaves [3] that relates level of
distribution to R-almost primality. More precisely, we say that an N-element set of integers A has a
level of distribution D if for a given multiplicative function f (d) we have∑

d6D

max
gcd(s,d)=1

∣∣∣∣∣∣∣∣{a ∈ A, a ≡ s mod d}
∣∣∣ − f (d)

d
N
∣∣∣∣∣ 6 N

log2 N
.

As in [3, pp. 174–175] we define the constants

δ2
..= 0.044560, δ3

..= 0.074267, δ4
..= 0.103974

and
δR

..= 0.124820, R > 5.

We have the following result, which is [3, Chapter 5, Proposition 1].

Lemma 2.1. SupposeA is an N-element set of positive integers with a level of distribution D and degree
ρ in the sense that

a < Dρ (a ∈ A)

holds with some real number ρ < R − δR. Then∣∣∣{a ∈ A : a is an R-almost prime}
∣∣∣ �ρ

N
log N

.

2.3. Technical lemmas

Lemma 2.2. Let M > 1 and λ be positive real numbers and let H be a positive integer. If f : [1,M]→ R
is a real valued function with three continuous derivatives, which satisfies

λ 6 | f (3)(x)| � λ for 1 6 x 6 M,
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then for the sum

S =
1
H

2H∑
h=H+1

∣∣∣∣∣ Mh∑
m=1

e
(

h
H

f (m)
) ∣∣∣∣∣,

where the integer Mh satisfies 1 6 Mh 6 M for each h ∈ [H + 1, 2H], we have

S � Mε
(
Mλ1/6H−1/9 + Mλ1/5 + M3/4

)
+ λ−1/3.

Proof. See [17, Theorem 1]. �

Lemma 2.3. For any H > 1 there are numbers ah, bh such that∣∣∣∣∣ψ(t) −
∑

0<|h|6H

ah e(th)
∣∣∣∣∣ 6 ∑

|h|6H

bh e(th), ah �
1
|h|
, bh �

1
H
.

Proof. See [18]. �

We also need the method of exponent pair. A detailed definition of exponent pair can be found
in [2, Page 31]. For an exponent pair (k, l), we denote

A(k, l) ..=

(
k

2k + 2
,

k + l + 1
2k + 2

)
and

B(k, l) ..=

(
l −

1
2
, k +

1
2

)
the A-process and B-process of the exponent pair, respectively.

3. Proof of Theorem 1.1

3.1. Initial approach

The set we sieve is
A ..= {m 6 xc : m = bncc for integer n}.

For any d 6 D, where D is a fixed power of x, we estimate

Ad
..= {m ∈ A : d |m}.

We know that rd ∈ A if and only if

rd 6 nc < rd + 1 and rd 6 x.

Within O(1) the cardinality of Ad is equal to the number of integers n 6 x for which the interval(
(nc − 1)d−1, ncd−1] contains a natural number. Hence

|Ad| =
∑
n6x

(⌊
ncd−1

⌋
−

⌊
(nc − 1)d−1

⌋)
+ O(1)
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= Xd−1 +
∑
n6x

(
ψ((nc − 1)d−1) − ψ(ncd−1)

)
+ O(1),

where
X ..=

∑
n6x

1 = x.

By Lemma 2.1 we need to show that for any sufficiently small ε > 0∑
d6D

∣∣∣|Ad| − Xd−1
∣∣∣ 6 Xx−ε/3 = x1−ε/3

for sufficiently large x. Splitting the range of d into dyadic subintervals, it is sufficient to prove that∑
d∼D1

∣∣∣∣ ∑
N<n6N1

(
ψ((nc − 1)d−1) − ψ(ncd−1)

) ∣∣∣∣ � x1−ε/2 (3.1)

holds uniformly for D1 6 D,N 6 x,N1 ∼ N. Our aim is to establish (3.1) with D as large as possible.
We define

S ..=
∑

N<n6N1

(
ψ((nc − 1)d−1) − ψ(ncd−1)

)
. (3.2)

3.2. Estimation of S by the method of exponent pair

By Lemma 2.3 and taking that
H = Dxε,

we have
S = S 1 + O(S 2),

where
S 1

..=
∑

N<n6N1

∑
0<|h|6H

ah

(
e(h(nc − 1)d−1) − e(hncd−1)

)
and

S 2
..=

∑
N<n6N1

∑
|h|6H

bh

(
e(h(nc − 1)d−1) + e(hncd−1)

)
.

We consider S 1. Writing that
φh

..= e(hd−1) − 1 � 1,

we obtain that

S 1 =
∑

N<n6N1

∑
0<|h|6H

ahφhe(hncd−1)

�
∑

0<h6H

h−1
∑

N<n6N1

e(hncd−1). (3.3)

Using the exponent pair (k, l), we have∑
N<n6N1

e(hncd−1) � (hd−1Nc−1)kN l + (hd−1)−1N1−c. (3.4)

AIMS Mathematics Volume 6, Issue 9, 9536–9546



9542

Substituting (3.4) to S 1 and (3.1), it becomes that∑
d∼D1

|S 1| �
∑
d∼D1

∣∣∣ ∑
0<h6H

h−1(hkd−kNkc−k+l + h−1dN1−c)
∣∣∣

�
∑
d∼D1

∣∣∣Hkd−kNkc−k+l + H−1dN1−c
∣∣∣

� HkD1−kNkc−k+l + H−1D2N1−c

� Dxkc−k+l+kε + D2x1−c.

Now we consider S 2. The contribution of S 2 from h = 0 is∑
N<n6N1

bh � NH−1. (3.5)

Substituting (3.5) to (3.1), we have ∑
d∼D1

NH−1 � DNH−1 � x1−ε/2,

The contribution of S 2 from h , 0 is

=
∑

N<n6N1

∑
0<|h|6H

bh

(
e(h(mc − 1)d−1) + e(hmcd−1)

)
�

∑
N<n6N1

∑
0<|h|6H

bhφhe(hncd−1)

�
∑

0<h6H

H−1
∑

N<n6N1

e(hncd−1), (3.6)

which can be estimated by the same method of S 1. By (3.4), we write (3.6) to be

�
∑
d∼D1

∣∣∣ ∑
0<h6H

H−1(hkd−kNkc−k+l + h−1dN1−c)
∣∣∣

� HkD1−kNkc−k+l + H−1D2N1−c log H

� Dxkc−k+l+kε + D2x1−c.

Therefore, to make (3.1) to be true, we need that

Dxkc−k+l+kε � x1−ε/2, (3.7)

and
D2x1−c � x1−ε/2. (3.8)

Combining (3.7) and (3.8), we obtain that

D � min
(
xc/2−ε/4, x1−kc+k−l−ε

)
. (3.9)
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3.3. Exponent pair estimation for R = 3

We apply the weighted sieve with the choice

R = 3, δ3 = 0.074267

and choose

ΛR = 3 −
3

40
=

117
40

< R − δR.

By (3.9) we require that

1 − kc + k − l >
40

117
and

c
2
>

40
117

, (3.10)

then by Lemma 2.1,A contains� x/ log x R-almost primes. To achieve (3.10), we need that

c <
70 − 117l

117k
+ 1.

Taking the exponent pair

BAAAAAB(0, 1) =

(
19
42
,

32
63

)
,

we have that

c <
889
741

= 1.1997 . . . .

3.4. Exponent pair estimation for R = 4

We apply the weighted sieve with the choice

R = 4, δ4 = 0.103974

and choose

ΛR = 4 −
13

125
=

487
125

< R − δR.

Similarly to (3.10), we need that

1 − kc + k − l >
125
487

and
c
2
>

125
487

, (3.11)

which requires that

c <
362 − 487l

487k
+ 1 =

25882
16071

= 1.6104 . . . ,

by taking the exponent pair

BABABAABAAB(0, 1) = (
33

128
,

75
128

).
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3.5. A refinement for R > 5

For R > 5, we estimate (3.2) by Lemma 2.2. By (3.3) we have that

S 1 � log H max
1�T�H

S (T,N),

where

S (T,N) ..=
1
T

∑
h∼T

∑
n∼N

e(hd−1nc).

By Lemma 2.2 with f (n) = Td−1(n + N)c and

λ = c(c − 1)(c − 2)Td−1Nc−3,

it follows that

S (T,N) � N1+ε(Td−1Nc−3)1/6T−1/9 + N1+ε(Td−1Nc−3)1/5

+ N3/4+ε + (Td−1Nc−3)−1/3

� T 1/18d−1/6Nc/6+1/2+ε + T 1/5d−1/5Nc/5+2/5+ε

+ N3/4+ε + T−1/3d1/3N1−c/3.

Hence

S 1 � H1/18d−1/6Nc/6+1/2+ε + H1/5d−1/5Nc/5+2/5+ε

+ N3/4+ε + d1/3N1−c/3.

The contribution of S 2 from h , 0 can be estimated by the same method and achieve the same upper
bound, which means that (3.6) is

� H1/18d−1/6Nc/6+1/2+ε + H1/5d−1/5Nc/5+2/5+ε

+ N3/4+ε + d1/3N1−c/3.

Together with the contribution of S 2 from h = 0, by (3.5) we obtain that the left-hand side of (3.1) is∑
d∼D1

|S | �
∑
d∼D1

∣∣∣H1/18d−1/6Nc/6+1/2+ε + H1/5d−1/5Nc/5+2/5+ε

+ N3/4 log H + d1/3N1−c/3
∣∣∣

� H1/18D5/6Nc/6+1/2+ε + H1/5D4/5Nc/5+2/5+ε

+ DN3/4 log H + D4/3N1−c/3

� D8/9xc/6+1/2+19ε/18 + Dxc/5+2/5+6ε/5 + Dx3/4+ε + D4/3x1−c/3.

To ensure the left-hand side of (3.1) is� x1−ε/2, we require that

D � min
(
x9/16−3c/16−ε, x3/5−c/5−ε, x1/4−ε, xc/4−ε

)
. (3.12)
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3.6. The bound of c for R > 5

We apply the weighted sieve with the choice

δR = 0.124820 (R > 5)

and choose
ΛR = R −

1
8
< R − δR.

To apply Lemma 2.1, by (3.12) we need that

min
(

9
16
−

3
16

c,
3
5
−

c
5
,

1
4
,

c
4

)
>

1
R − 1

8

,

which gives that

c < 3 −
128

3(8R − 1)
.
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