Mathematics
http://www.aimspress.com/journal/Math

Research article

The third-power moment of the Riesz mean error term of symmetric square L-function

Rui Zhang and Xiaofei Yan*

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China

* Correspondence: Email: xfyan.sdu@gmail.com.

Abstract

Let $f(z)$ be a holomorphic Hecke eigenform of weight k with respect to the full modular group $S L(2, Z)$, and let $\Delta_{\rho}\left(x ; s y m^{2} f\right)$ be the error term of the Riesz mean of the symmetric square L function $L\left(s, s y m^{2} f\right)$. In this paper, using a Voronoï type formula for $\Delta_{\rho}\left(x ; s y m^{2} f\right)$, we consider the third-power moment of $\Delta_{\rho}\left(x ; \operatorname{sym}^{2} f\right)$ and derive the asymptotic formula for $$
\int_{1}^{T} \Delta_{\rho}^{3}\left(x ; s y m^{2} f\right) d x .
$$

Keywords: symmetric square L-function; power moment; Riesz mean; Voronöi type formula Mathematics Subject Classification: 11F30, 11N37

1. Introduction

Let \mathbb{H} be the upper half plane, i.e., $\mathbb{H}=\{z=x+i y \mid x, y \in \mathbb{R}$, and $y>0\}$. Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even weight $k \geq 2$ for the full modular group $\Gamma=S L(2, Z)$. Then for $f \in S_{k}(\Gamma)$ and $z \in \mathbb{H}$, we have the Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} a_{f}(n) e(n z),
$$

where $a_{f}(n)$ denotes the n-th Fourier coefficient, and $e(x)=e^{2 \pi i x}$. Set $\lambda_{f}(n)=a_{f}(n) n^{-\frac{k-1}{2}}$, then $\lambda_{f}(n)$ is multiplicative. The analytic properties of $\lambda_{f}(n)$ were studied by many authors (see [5,7-10, 12-14, 16, 20,22-25]). The symmetric square L-function attached to f can be written as

$$
L\left(s, s y m^{2} f\right)=\zeta(2 s) \sum_{n=1}^{\infty} \lambda_{f}\left(n^{2}\right) n^{-s}=\sum_{n=1}^{\infty} c_{n} n^{-s}
$$

for $\mathfrak{R} s>1$. And it can be continued to an entire function on the whole complex plane. Then it is known that for any $\epsilon>0$,

$$
\left|c_{n}\right| \leq d_{3}(n) \ll n^{\epsilon}
$$

where $d_{3}(n)$ is the number of ways to write n as a product of three factors.
Hafner [3] considered the Riesz mean of the form

$$
D_{\rho}\left(x ; \operatorname{sym}^{2} f\right)=\frac{1}{\Gamma(\rho+1)} \sum_{n \leq x}^{\prime}(x-n)^{\rho} c_{n}
$$

where $\rho \geq 0$ is a fixed number and Σ^{\prime} indicates that c_{n} is replaced by $c_{n} / 2$ if $\rho=0$. Also, the Riesz mean can be represented as a sum of "residue function" and "error term":

$$
D_{\rho}\left(x ; \operatorname{sym}^{2} f\right)=\frac{L\left(0, \operatorname{sym}^{2} f\right)}{\Gamma(\rho+1)} x^{\rho}+\Delta_{\rho}\left(x ; \operatorname{sym}^{2} f\right)
$$

Then let $\Delta_{\rho}\left(x ; s y m^{2} f\right)$ be the error term of the Riesz mean of the symmetric square L-function. Hafner [3] gave that for $\rho=0$, one has

$$
\sum_{n \leq x} c_{n}=L\left(0, s y m^{2} f\right)+\Delta_{0}\left(x ; s y m^{2} f\right)
$$

The symmetric square L-function and the Riesz mean error term have been studied by many authors, for example, see [$1,4,6,11,15,18,21,25]$. Fomenko [2] considered $\Delta_{\rho}\left(x ; \operatorname{sym}^{m} f\right)$ when $m=2$ and obtained a truncated Voronoï type formula, and we give it in Lemma 2.1. Let $N=x^{\frac{1}{2}}$ in Lemma 2.1, one obtain

$$
\Delta_{\rho}\left(x ; s y m^{2} f\right) \ll x^{\frac{1+\rho}{2}}
$$

Using the Voronöi formula, Fomenko got

$$
\int_{1}^{X} \Delta_{\rho}^{2}\left(x ; s y m^{2} f\right) d x=C X^{\frac{4 \rho+5}{3}}+O\left(X^{\rho+\frac{5}{3}+\epsilon}\right)
$$

where

$$
C=2^{-2 \rho-1} \pi^{-2 \rho-2}(4 \rho+5)^{-1} \sum_{n=1}^{\infty} c_{n}^{2} n^{-\frac{2 \rho+4}{3}} .
$$

Wang [19] generalized the truncated Voronöi type formula to the case $m \geq 3$ under the hypothesis Nice (m, f) :

$$
\begin{aligned}
\Delta_{\rho}\left(x ; s y m^{m} f\right)= & \epsilon\left(s^{\prime 2} m^{m} f\right) 2^{-\rho} \pi^{-\rho-1}(m+1)^{-\frac{1}{2}} x^{\frac{m}{m+1} \rho+\frac{m}{2(m+1)}} \\
& \times \sum_{n \leq N} c_{n} n^{-\frac{1}{m+1} \rho-\frac{m+2}{2(m+1)}} \cos \left(2 \pi(m+1)(n x)^{\frac{1}{m+1}}-\left(A(m, k)+\frac{\rho}{2}\right) \pi\right) \\
& +O\left(x^{\frac{m}{m+1} \rho+\frac{m-1}{2(m+1)}} N^{-\frac{\rho}{m+1} \rho+\frac{m-1}{2(m+1)}+\epsilon}\right)+O\left(x^{\frac{m}{m+1}(\rho+1)+\epsilon} N^{-\frac{\rho+1}{m+1}}\right),
\end{aligned}
$$

where

$$
A(m, k)= \begin{cases}\frac{m(m+2)(k-1)}{8}+\frac{1}{2}, & m \equiv 0 \quad(\bmod 4) \\ \frac{m(m+2)(k-1)}{8}+1, & m \equiv 2 \quad(\bmod 4) \\ \frac{(m+1)^{2}(k-1)}{8}+\frac{3}{4}, & m \text { is odd }\end{cases}
$$

$$
\epsilon\left(\operatorname{sym}^{m} f\right)= \begin{cases}+1, & \text { if } m \text { even } \\ \epsilon(k, m), & \text { otherwise }\end{cases}
$$

with

$$
\epsilon(k, m):=\mathrm{i}^{\left(\frac{m+1}{2}\right)^{2}(k-1)+\frac{m+1}{2}}= \begin{cases}\mathrm{i}^{k}, & \text { if } m \equiv 1(\bmod 8), \\ -1, & \text { if } m \equiv 3(\bmod 8), \\ -\mathrm{i}^{k}, & \text { if } m \equiv 5(\bmod 8), \\ +1, & \text { if } m \equiv 7(\bmod 8)\end{cases}
$$

Liu and Wang [15] studied the higher-power moments of $\Delta_{\rho}\left(x ; \operatorname{sym}^{2} f\right)$. If exists a real number $A_{0}=$ $A_{0}(\rho)>3$ such that

$$
\int_{1}^{T} \Delta_{\rho}^{A_{0}}\left(x ; s^{2} m^{2} f\right) d x \ll T^{1+\frac{2 \rho+1}{3} A_{0}+\epsilon},
$$

then for any integer $3 \leq h<A_{0}$, they had the following asymptotic formula

$$
\begin{aligned}
\int_{1}^{T} \Delta_{\rho}^{h}\left(x ; \operatorname{sym}^{2} f\right) d x= & \frac{6 B_{\rho}(h, c)}{(3+(2 \rho+1) h)(2 \pi)^{(\rho+1) h} 3^{\frac{h}{2}}} T^{1+\frac{2 p+1}{3} h} \\
& +O\left(T^{1+\frac{2 p+1}{3} h+\epsilon}\left(T^{-\delta_{\rho}\left(h, A_{0}\right)}+T^{-\frac{\rho}{3}}\right)\right)
\end{aligned}
$$

where

$$
B_{\rho}(h ; f):=\sum_{l=1}^{h-1}\binom{h-1}{l} s_{\rho}(l, h ; f) \cos \left(\frac{\pi \rho}{2}(h-2 l)\right)
$$

with

$$
s_{\rho}(l, h ; f):=\sum_{\sqrt[3]{n_{1}}+\cdots+\sqrt[3]{n_{l}}=\sqrt[3]{n_{l+1}}+\cdots+\sqrt[3]{n_{h}}} \frac{f\left(n_{1}\right) \cdots f\left(n_{h}\right)}{\left(n_{1} \cdots n_{h}\right)^{(\rho+2) / 3}} \quad(1 \leqslant l<h),
$$

and

$$
\delta_{\rho}\left(h, A_{0}\right):=\sigma_{\rho}\left(h, A_{0}\right) \min \left(\frac{2 \rho}{2 \rho+1}, \frac{1}{3 b_{\rho}\left(H_{0}\right)}\right)
$$

with

$$
\begin{gathered}
\sigma_{\rho}\left(h, A_{0}\right):=\frac{(2 \rho+1)\left(A_{0}-h\right)}{3\left(A_{0}-2\right)}, \quad 3 \leqslant h<A_{0}, \\
b_{\rho}(h):=3^{h-2}-\frac{1}{3}+\frac{(1-\rho) h}{3}
\end{gathered}
$$

and H_{0} is the least even integer such that $n \geqslant A_{0}$. They also proved the result for $\rho=\frac{1}{2}, h=3,4,5$,

$$
\int_{1}^{T} \Delta_{\rho}^{h}\left(x ; \operatorname{sym}^{2} f\right) d x=\frac{6 B_{\frac{1}{2}}(h, c)}{(3+2 h)(2 \pi)^{\frac{3}{2} h} 3^{\frac{h}{2}}} T^{1+\frac{2}{3} h}+O\left(T^{1+\frac{2}{3} h-\lambda_{1 / 2}(h, 6)+\epsilon}\right)
$$

where $\lambda_{1 / 2}(3,6)=\frac{1}{22}, \lambda_{1 / 2}(4,6)=\frac{1}{87}, \lambda_{1 / 2}(5,6)=\frac{1}{498}$. Zhang, Han and Zhang [26] studied the power moment of the Riesz mean error term in short intervals. For $k \geq 3, T^{\frac{2}{3}+\frac{2 c_{p}, k}{(2 \rho+1)_{0}}} \leq H \leq T$ and $\epsilon>0$, they got

$$
\int_{T-H}^{T+H} \Delta_{\rho}^{k}\left(x ; \operatorname{sym}^{2} f\right) d x=B_{k} \int_{T-H}^{T+H} x^{\frac{2 \rho+1}{3} k} d x+O\left(H T^{\frac{2 \rho+1}{3} k+\epsilon}\left(H T^{-\frac{2}{3}}\right)^{-\frac{(2 \rho+1) \delta}{\rho_{\rho}, k}}\right)
$$

where

$$
B_{k}=2^{-k \rho-k+1} \pi^{-k \rho-k} 3^{-\frac{k}{2}} c_{k}, d_{\rho, k}=\left(3^{k-1}-4+k-\rho k\right)(k+\delta-2)+(2 \rho+1) \delta .
$$

Their results improved the results in [15] when $\rho=\frac{1}{2}, k=3,4,5$ and $\delta>\frac{50}{31}$.
In this paper, we will use the Voronöi type formula for $\Delta_{\rho}\left(x ; s y m^{2} f\right)$ to study the third-power moment estimates of $\Delta_{\rho}\left(x ; s y m^{2} f\right)$ and obtain the following theorem.

Theorem 1. For any $f \in S_{k}(\Gamma)^{+}, x>1$ and $\frac{\sqrt{612}}{18}-1<\rho<\frac{2}{3}$, we have

$$
\int_{1}^{T} \Delta_{\rho}^{3}\left(x ; \operatorname{sym}^{2} f\right) d x=\left(2^{\rho} \pi^{\rho+1} \sqrt{3}\right)^{-3} \frac{3}{8 \rho+8} \cos \left(\frac{\pi \rho}{2}\right) A T^{2 \rho+2}+O\left(T^{\frac{6 \rho^{2}+212+16}{8+3 \rho}+\epsilon}\right),
$$

where

$$
A=\sum_{\alpha, \beta=1}^{\infty}(\alpha \beta(\alpha+\beta))^{-\rho-2} \sum_{\substack{h=1 \\ h \text { is cube-free }}}^{\infty} h^{-\rho-2} c_{\alpha^{3} h} c_{\beta^{3} h} c_{(\alpha+\beta)^{3} h} .
$$

Particularly, for $\rho=\frac{1}{2}$, we can get the following result.
Corollary 2. Let $\rho=\frac{1}{2}$. For any $\epsilon>0$, we have

$$
\int_{1}^{T} \Delta_{\rho}^{3}\left(x ; s y m^{2} f\right) d x=\frac{\sqrt{3} \pi^{-\frac{9}{2}}}{144} B T^{3}+O\left(T^{\frac{56}{19}+\epsilon}\right),
$$

where

$$
B=\sum_{\alpha, \beta=1}^{\infty}(\alpha \beta(\alpha+\beta))^{-\frac{3}{2}} \sum_{\substack{h=1 \\ h \text { is cubce-free }}}^{\infty} h^{-\frac{3}{2}} c_{\alpha^{3} h} c_{\beta^{3} h} c_{(\alpha+\beta)^{3} h} .
$$

Remark. Note that our results improve the results in [15].

2. Some preliminary lemmas

To prove our theorem, we need the following lemmas.
Lemma 2.1. Let $x>1, N \geq 1$. Then for any fixed $\rho, 0 \leq \rho \leq 1$, we have

$$
\begin{align*}
\Delta_{\rho}\left(x ; s y m^{2} f\right)= & 2^{-\rho} \pi^{-\rho-1} 3^{-\frac{1}{2}} \Sigma(x)+O\left(x^{\frac{4 \rho+1}{6}} N^{\frac{-2 \rho+1}{6}+\epsilon}\right) \\
& +O\left(x^{\frac{2 \rho+2}{3}+\epsilon} N^{-\frac{\rho+1}{3}}\right)+O\left(x^{\epsilon}\right) \tag{2.1}
\end{align*}
$$

where

$$
\Sigma(x)=\sum_{n \leq N} c_{n} n^{-\frac{\rho+2}{3}} x^{\frac{2 \rho+1}{3}} \cos \left(6 \pi \sqrt[3]{n x}-\frac{\pi \rho}{2}\right) .
$$

Proof. See Theorem 1.1 in [2].
Lemma 2.2. Let $h \geq 3,\left(i_{1}, \cdots, i_{h-1}\right) \in\{0,1\}^{h-1}$ such that

$$
\sqrt[3]{n_{1}}+(-1) \sqrt[i_{1}]{i_{1}} n_{2}+(-1) \sqrt[i_{2}]{n_{3}}+\cdots+(-1) \sqrt[i_{h-1}]{n_{h}} \neq 0
$$

Then

$$
\left|\sqrt[3]{n_{1}}+(-1)^{i_{1}} \sqrt[3]{n_{2}}+\cdots+(-1)^{i_{h-1}} \sqrt[3]{n_{h}}\right| \gg \max \left(n_{1}, \cdots, n_{h}\right)^{-\left(3^{h-2}-3^{-1}\right)}
$$

Proof. See for example Lemma 2.3 in [21].
Lemma 2.3. If $g(x)$ and $h(x)$ are continuous real-valued functions of x and $g(x)$ is monotonic, then

$$
\int_{a}^{b} g(x) h(x) d x \ll\left(\max _{a \leq x \leq b}|g(x)|\right)\left(\max _{a \leq u<v \leq b}\left|\int_{u}^{v} h(x) d x\right|\right) .
$$

Proof. See the Lemma 1 in [17].
Lemma 2.4. Suppose $k \geq 3,\left(i_{1}, \ldots, i_{k-1}\right) \in\{0,1\}^{k-1},\left(i_{1}, \ldots, i_{k-1}\right) \neq(0, \ldots, 0)$ and

$$
N_{1}, \ldots, N_{k}>1,0<\Delta \ll E^{\frac{1}{3}}, \quad E=\max \left(N_{1}, \ldots, N_{k}\right) .
$$

Let

$$
\mathcal{A}=\mathcal{A}\left(N_{1}, \ldots, N_{k} ; i_{1}, \ldots, i_{k-1} ; \Delta\right)
$$

denote the number of solutions of the inequality

$$
\begin{equation*}
\left|\sqrt[3]{n_{1}}+(-1)^{i_{1}} \sqrt[3]{n_{2}}+\cdots+(-1)^{i_{k-1}} \sqrt[3]{n_{k}}\right|<\Delta \tag{2.2}
\end{equation*}
$$

with $N_{j}<n_{j} \leq 2 N_{j}, 1 \leq j \leq k$. Then

$$
\mathcal{A} \ll \Delta E^{-\frac{1}{3}} N_{1} \cdots N_{k}+E^{-1} N_{1} \cdots N_{k} .
$$

Proof. It can be proved similarly as Lemma 2.4 of [21]. Without loss of generality, suppose $E=N_{k}$. If n_{1}, \ldots, n_{k} satisfy (2.2), then

$$
\left|\sqrt[3]{n_{1}}+(-1)^{i_{1}} \sqrt[3]{n_{2}}+\cdots+(-1)^{i_{k-2}} \sqrt[3]{n_{k-1}}\right|=(-1)^{i_{k-1}+1} \sqrt[3]{n_{k}}+\theta \Delta
$$

for some $|\theta|<1$. We can get

$$
\left(\sqrt[3]{n_{1}}+(-1)^{i_{1}} \sqrt[3]{n_{2}}+\cdots+(-1)^{i_{k-2}} \sqrt[3]{n_{k-1}}\right)^{3}=(-1)^{i_{k-1}+1} n_{k}+O\left(\Delta N_{k}^{\frac{2}{3}}\right) .
$$

Hence for fixed n_{1}, \ldots, n_{k-1}, the number of n_{k} is $\ll 1+\Delta N_{k}^{\frac{2}{3}}$ and thus

$$
\mathcal{A} \ll \Delta N_{k}^{\frac{2}{3}} N_{1} \cdots N_{k-1}+N_{1} \cdots N_{k-1} .
$$

3. The third-power moment of $\Delta_{\rho}\left(x, s y m^{2} f\right)$

Throughout this paper, n, m and k denote natural numbers. The constants implied in the symbols \ll and O may depend on ϵ.

By (2.1), we know that to establish the asymptotic formula in our theorem, we shall prove, for $H \geq 1$, that

$$
\begin{equation*}
\int_{H}^{2 H} \Sigma(x)^{2} d x=\frac{1}{2} \sum_{n=1}^{\infty} c_{n}^{2} n^{-\frac{2 p+4}{3}} \int_{H}^{2 H} x^{\frac{4 \rho+2}{3}} d x+O\left(H^{\frac{4 \rho+5}{3}+\epsilon} N^{-\frac{2 \rho+1}{3}}\right), \tag{3.1}
\end{equation*}
$$

and take $N=H^{\frac{6 \rho+8}{(8+3 p(\rho)+1)}}$,

$$
\begin{equation*}
\int_{H}^{2 H} \Sigma(x)^{3} d x=\frac{3}{4} \cos \left(\frac{\pi \rho}{2}\right) A \int_{H}^{2 H} x^{2 \rho+1} d x+O\left(H^{\frac{6 \rho^{2}+2 \mid \rho+16}{8+3 \rho}+\epsilon}\right) \tag{3.2}
\end{equation*}
$$

Then, since $(a+b)^{3}=a^{3}+O\left(|b| a^{2}+|b|^{3}\right)$, it follows from (2.1) that

$$
\begin{align*}
\int_{H}^{2 H} \Delta_{\rho}^{3}\left(x ; s y m^{2} f\right) d x= & \left(2^{\rho} \pi^{\rho+1} \sqrt{3}\right)^{-3} \int_{H}^{2 H} \Sigma(x)^{3} d x \\
& +O\left(H^{\frac{2 \rho+2}{3}+\epsilon} N^{-\frac{\rho+1}{3}} \int_{H}^{2 H} \Sigma(x)^{2} d x+H^{2 \rho+3+\epsilon} N^{-\rho-1}\right) \tag{3.3}\\
= & \left(2^{\rho} \pi^{\rho+1} \sqrt{3}\right)^{-3} \frac{3 A}{4} \cos \left(\frac{\pi \rho}{2}\right) \int_{H}^{2 H} x^{2 \rho+1} d x+O\left(H^{\frac{6 \rho^{2}+2 \rho \rho+16}{8+3 \rho}+\epsilon}\right)
\end{align*}
$$

by (3.1) and (3.2). Adding this for $H=T / 2, T / 2^{2}, \ldots$, we see that the asymptotic formula in our theorem follows.

We shall now give the details of the proof of (3.2). The proof of (3.1), which we shall omit, employs similar arguments and is simpler.

For simplicity, put

$$
\begin{equation*}
r=r(n, m, k):=(n m k)^{-\frac{\rho+2}{3}} c_{n} c_{m} c_{k}, \quad n, m, k \leq N \tag{3.4}
\end{equation*}
$$

and $r=0$ otherwise. Taking the third power of both sides of $\Sigma(x)$ and for each element $\mathbf{i}=\left(i_{1}, i_{2}\right) \in$ $\mathbb{I}^{2}, \mathbb{I}=\{0,1\}$, using the elementary formula

$$
\cos a_{1} \cos a_{2} \cos a_{3}=\frac{1}{4} \sum_{i \in I^{2}} \cos \left(a_{1}+(-1)^{i_{1}} a_{2}+(-1)^{i_{2}} a_{3}\right),
$$

we can write

$$
\begin{align*}
\Sigma(x)^{3}= & \frac{3}{4} \sum r x^{2 \rho+1} \cos \left(6 \pi(\sqrt[3]{n}+\sqrt[3]{m}-\sqrt[3]{k}) \sqrt[3]{x}-\frac{\pi \rho}{2}\right) \\
& +\frac{1}{4} \sum r x^{2 \rho+1} \cos \left(6 \pi(\sqrt[3]{n}+\sqrt[3]{m}+\sqrt[3]{k}) \sqrt[3]{x}-\frac{3 \pi \rho}{2}\right) \tag{3.5}\\
= & S_{0}(x)+S_{1}(x)+S_{2}(x)
\end{align*}
$$

where

$$
\begin{gather*}
S_{0}(x):=\frac{3}{4} \cos \left(-\frac{\pi \rho}{2}\right) \sum_{\sqrt[3]{n}+\sqrt[3]{m}=\sqrt[3]{k}} r x^{2 \rho+1}, \tag{3.6}\\
S_{1}(x):=\frac{3}{4} \sum_{\sqrt[3]{n}+\sqrt[3]{m} \neq \sqrt[3]{k}} r x^{2 \rho+1} \cos \left(6 \pi(\sqrt[3]{n}+\sqrt[3]{m}-\sqrt[3]{k}) \sqrt[3]{x}-\frac{\pi \rho}{2}\right), \tag{3.7}\\
S_{2}(x):=\frac{1}{4} \sum r x^{2 \rho+1} \cos \left(6 \pi(\sqrt[3]{n}+\sqrt[3]{m}+\sqrt[3]{k}) \sqrt[3]{x}-\frac{3 \pi \rho}{2}\right) . \tag{3.8}
\end{gather*}
$$

The main term in the right-hand side of (3.2) comes from $S_{0}(x)$. Indeed, integrating both sides of (3.6) with respect to x over the interval $(H, 2 H)$, we have

$$
\begin{equation*}
\int_{H}^{2 H} S_{0}(x) d x=\frac{3}{4} \cos \left(-\frac{\pi \rho}{2}\right) \sum_{\sqrt[3]{n}+\sqrt[3]{m}=\sqrt[3]{k}} r \int_{H}^{2 H} x^{2 \rho+1} d x \tag{3.9}
\end{equation*}
$$

For natural numbers n, m and k, the condition $\sqrt[3]{n}+\sqrt[3]{m}=\sqrt[3]{k}$ holds if and only if n, m and k all have the same cube-free part h, such that $n=\alpha^{3} h, m=\beta^{3} h, k=\gamma^{3} h$ and $\alpha+\beta=\gamma$. Hence

$$
\sum_{\substack{\sqrt{n}+\sqrt[3]{m}=\sqrt[3]{k}}} r=\sum_{\substack{h i N \\ h \text { is cube-free }}} h^{-\rho-2} \sum_{\alpha+\beta \leq \sqrt[3]{\frac{N}{h}}}(\alpha \beta(\alpha+\beta))^{-\rho-2} c_{\alpha^{3} h} c_{\beta^{3} h} c_{(\alpha+\beta)} h .
$$

Since $c_{u v} \leq c_{u} c_{v}$ and $c_{w} \ll w^{\epsilon}$, we have

$$
\begin{aligned}
\sum_{\alpha+\beta>} \quad & (\alpha \beta(\alpha+\beta))^{\frac{N}{h}} \\
& \ll c_{h}^{3} \sum_{\alpha>\frac{1}{2} \sqrt[3]{\frac{N}{h}}} \sum_{\beta \leq \alpha}(\alpha \beta(\alpha+\beta))^{-\rho-2} c_{\alpha^{3} h} c_{\beta^{3} h} c_{\beta^{3}} c_{(\alpha+\beta)} c_{(\alpha+\beta)^{3}} \\
& \ll c_{h}^{3} \sum_{\alpha>\frac{1}{2} \sqrt[3]{\frac{N}{n}}} \alpha^{-2 \rho-4+\epsilon} \sum_{\beta \leq \alpha} \beta^{-\rho-2} c_{\beta}^{3} \\
& \ll c_{h}^{3}\left(\frac{N}{h}\right)^{-\frac{2 \rho+3}{3}+\epsilon}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{\sqrt[3]{n}+\sqrt[3]{m}=\sqrt[3]{k}} r= & \sum_{\substack{h \leq N \\
h \text { is scbce-free }}} h^{-\rho-2} \sum_{\alpha, \beta=1}^{\infty}(\alpha \beta(\alpha+\beta))^{-\rho-2} c_{\alpha^{3} h} c_{\beta^{3} h} c_{(\alpha+\beta)^{3} h} \\
& +O\left(\sum_{h \leq N} h^{-\rho-2} c_{h}^{3}\left(\frac{N}{h}\right)^{-\frac{2 \rho+3}{3}+\epsilon}\right) \\
= & \sum_{\alpha, \beta=1}^{\infty}(\alpha \beta(\alpha+\beta))^{-\rho-2} \sum_{\substack{h=1 \\
h \text { is cubce-free }}}^{\infty} h^{-\rho-2} c_{\alpha^{3} h} c_{\beta^{3} h} c_{(\alpha+\beta)^{3} h} \\
& +O\left(\sum_{\alpha, \beta=1}^{\infty}(\alpha \beta(\alpha+\beta))^{-\rho-2} c_{\alpha^{3}} c_{\beta^{3}} c_{(\alpha+\beta)^{3}} \sum_{h>N} h^{-\rho-2} c_{h}^{3}\right) \\
& +O\left(N^{-\frac{2 \rho+3}{3}+\epsilon} \sum_{h \leq N} h^{-\frac{\rho+3}{3}}\right) \\
= & A+O\left(N^{-\rho-1+\epsilon}\right) .
\end{aligned}
$$

Substituting this into (3.9), we have

$$
\begin{equation*}
\int_{H}^{2 H} S_{0}(x) d x=\frac{3}{4} \cos \left(\frac{\pi \rho}{2}\right) A \int_{H}^{2 H} x^{2 \rho+1} d x+O\left(H^{2 \rho+2} N^{-\rho-1+\epsilon}\right) . \tag{3.10}
\end{equation*}
$$

This yields the main term in (3.2) and hence that in the formula in our theorem.
We now proceed to show that the contributions from $S_{1}(x)$ and $S_{2}(x)$ are bounded by $H^{\frac{6 \rho^{2}+2 l \rho+16}{8+3 \rho}+\epsilon}$. Applying the Lemma 2.3 we find that for any real numbers $p(\neq 0)$ and q,

$$
\begin{align*}
\int_{H}^{2 H} x^{2 \rho+1} & \cos (p \sqrt[3]{x}+q) d x \\
& =\int_{H}^{2 H} 3 p^{-1} x^{2 \rho+\frac{5}{3}}\left(\frac{p}{3 x^{\frac{2}{3}}} \cos (p \sqrt[3]{x}+q)\right) d x \tag{3.11}\\
& \ll H^{2 \rho+\frac{5}{3}}|p|^{-1}\left|\int_{u}^{v}\left(\frac{p}{3 x^{\frac{2}{3}}} \cos (p \sqrt[3]{x}+q)\right) d x\right| \ll H^{2 \rho+\frac{5}{3}}|p|^{-1} .
\end{align*}
$$

Let us examine $S_{2}(x)$ first. Integrating both sides of (3.8) and then using (3.11) and (3.4), we have

$$
\begin{align*}
\int_{H}^{2 H} S_{2}(x) d x & \ll \sum r H^{2 \rho+\frac{5}{3}}(\sqrt[3]{n}+\sqrt[3]{m}+\sqrt[3]{k})^{-1} \ll H^{2 \rho+\frac{5}{3}} \sum_{n \leq m \leq k \leq N} r k^{-\frac{1}{3}} \tag{3.12}\\
& \ll H^{2 \rho+\frac{5}{3}+\epsilon} \sum_{n \leq m \leq k \leq N} n^{-\frac{\rho+2}{3}} m^{-\frac{\rho+2}{3}} k^{-\frac{\rho+3}{3}} \ll H^{2 \rho+\frac{5}{3}+\epsilon} N^{\frac{4}{3}-\rho} .
\end{align*}
$$

Next we consider $S_{1}(x)$. For convenience, let

$$
\Delta=\sqrt[3]{n}+\sqrt[3]{m}-\sqrt[3]{k}
$$

Using the trivial bound

$$
\int_{H}^{2 H} x^{2 \rho+1} \cos \left(6 \pi \Delta \sqrt[3]{x}-\frac{\pi \rho}{2}\right) d x \ll H^{2 \rho+2}
$$

where $|\Delta| \leq H^{-\frac{8}{24+\rho_{\rho}}}$ and applying (3.11) when $|\Delta|>H^{-\frac{8}{24+\rho_{\rho}}}$, we deduce from (3.7) that

$$
\begin{align*}
& \int_{H}^{2 H} S_{1}(x) d x \ll H^{2 \rho+2} \sum_{\substack{0 \leq|\Delta| \leq H^{\left.-\frac{8}{24+\rho}\right)} \\
n \leq m}} r+H^{2 \rho+\frac{5}{3}} \sum_{\substack{|\Delta|-\frac{8}{|\Delta| H^{-24+\rho \rho}} \\
n \leq m}} r|\Delta|^{-1} \tag{3.13}\\
&:=H^{2 \rho+2} W_{1}+H^{2 \rho+\frac{5}{3}} W_{2} .
\end{align*}
$$

Now we consider first the sum W_{1}. For given $n \leq m \leq N$ there is most one natural number k for which $|\Delta| \leq H^{-\frac{8}{24+\rho \rho} \rho}$, since $\Delta=\sqrt[3]{n}+\sqrt[3]{m}-\sqrt[3]{k}$ and $\left|\Delta \sqrt[3]{N^{2}}\right| \leq H^{-\frac{8}{24+\rho \rho}} \sqrt[3]{N^{2}}=o(1)$. Such k, if it exists, must be greater than m. By Lemma 2.2, $0<|\Delta| \leq H^{-\frac{8}{24+9 \rho}}$ implies $m^{-\frac{8}{3}} \ll H^{-\frac{8}{24+\rho_{\rho}}}$, so $m \gg H^{\frac{1}{8+3 \rho}}$. Hence, by (3.4),

$$
W_{1} \ll H^{\epsilon} \sum_{\substack{n \leq m \leq N \\ m \geqslant H^{8+3 \rho}}}(n m)^{-\frac{\rho+2}{3}} m^{-\frac{\rho+2}{3}} \ll H^{\epsilon} \sum_{m \gg H^{\frac{1}{8+3 \rho}}} m^{-\rho-1} \ll H^{-\frac{\rho}{8+3 \rho}+\epsilon} .
$$

Similarly, in the sum W_{2}, we have $k=(\sqrt[3]{n}+\sqrt[3]{m})^{3}+O\left(|\Delta| \sqrt[3]{m^{2}}\right)>m$ and there are $\ll 1+|\Delta| \sqrt[3]{m^{2}}$
such k. Hence

$$
\begin{aligned}
W_{2} & \ll H^{\epsilon} \sum_{\substack{\left.n \leq m \leq N \\
\frac{\mid}{\mid} \right\rvert\, \gg-H^{24++\rho}}} n^{-\frac{\rho+2}{3}} m^{-\frac{\rho+2}{3}}|\Delta|^{-1}\left(1+|\Delta| \sqrt[3]{m^{2}}\right) m^{-\frac{\rho+2}{3}} \\
& \ll H^{\epsilon} \sum_{n \leq m \leq N} n^{-\frac{\rho+2}{3}} m^{-\frac{2 \rho+4}{3}} H^{\frac{8}{24+\rho \rho}}+H^{\epsilon} \sum_{n \leq m \leq N} n^{-\frac{\rho+2}{3}} m^{-\frac{2 \rho+2}{3}} \\
& <H^{\frac{8}{24+\rho \rho}+\epsilon}+H^{\epsilon} N^{\frac{2}{3}-\rho} \\
& <H^{\frac{8}{24+\rho \rho}+\epsilon .}
\end{aligned}
$$

Collecting these estimates we find that

$$
\int_{H}^{2 H} S_{1}(x) d x \ll H^{\frac{6 \rho^{2}+21 \rho+16}{8+3 \rho}+\epsilon} .
$$

Combining this with (3.10) and (3.12), we deduce from (3.2) the formula (3.5). Then according to (3.3), our theorem is proved.

Acknowledgments

Zhang is supported by the National Natural Science Foundation of China [Grant No. 11771256]. Yan is supported by the National Natural Science Foundation of China [Grant No. 11801327] and Natural Science Foundation of Shandong Province [Grant No. ZR201709280100].

Conflict of interest

The authors declare no conflict of interest.

References

1. D. Bump, D. Ginzburg, Symmetric square L-functions on GL(r), Ann. Math., 136 (1992), 137-205.
2. O. Fomenko, The behavior of Riesz means of the Coefficients of a symmetric square L-function, J. Math. Sci., 143 (2007), 3174-3181.
3. J. Hafner, On the representation of the summatory functions of a class of arithmetical functions, Springer Berlin Heidelberg, (1981), 148-165.
4. X. Han, X. Yan, D. Zhang, On fourier coefficients of the symmetric square L-function at piatetskishapiro prime twins, Mathematics, 9 (2021), 1254.
5. J. Huang, H. Liu, Divisor problems related to Hecke eigenvalues in three dimensions, J. Math., 2021 (2021), 1-12.
6. J. Huang, H. Liu, F. Xu, Two-dimensional divisor problems related to symmetric L-functions, Symmetry, 13 (2021), 359.
7. H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of L-functions, Publ. Math. IHES, 91 (2000), 55-131.
8. Y. J. Jiang, G. S. Lü, X. F. Yan, Mean value theorem connected with Fourier coefficients of HeckeMaass forms for $S L(m, \mathbb{Z})$, Math. Proc. Cambridge Philos. Soc., 161 (2016), 339-356.
9. H. Liu, S. Li, D. Zhang, Power moments of automorphic L-function attached to Maass forms, Int. J. Number Theory, 12 (2016), 427-443.
10. H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58-71.
11. H. Lao, On the fourth moment of coefficients of symmetric square L-function, Chin. Ann. Math. Ser. B, 33 (2012), 877-888.
12. H. Lao, M. McKee, Y. Ye, Asymptotics for cuspidal representations by functoriality from $G L(2)$, J. Number Theory, 164 (2016), 323-342.
13. H. Liu, Mean value estimates of the coefficients of product L-functions, Acta Math. Hungar., 156 (2018), 102-111.
14. H. Liu, R. Zhang, Some problems involving Hecke eigenvalues, Acta Math. Hungar., 159 (2019), 287-298.
15. K. Liu, H. Wang, Higher power moments of the Riesz mean error term of symmetric square L function, J. Number Theory, 131 (2011), 2247-2261.
16. P. Song, W. Zhai, D. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139-158.
17. K. Tsang, Higher-power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc., 65 (1992), 65-84.
18. Y. Tanigawa, D. Zhang, W. Zhai, On the Rankin-Selberg problem: Higher power moments of the Riesz mean error term, Sci. China Ser. A, 51 (2008), 148-160.
19. H. Wang, On the Riesz means of coefficients of m th symmetric power L-functions, Lith. Math. J., 50 (2010), 474-488.
20. Y. Ye, D. Zhang, Zero density for automorphic L-functions, J. Number Theory, 133 (2013), 38773901.
21. W. Zhai, On higher-power moments of $\Delta(x)$ (II), Acta Arith., 114 (2004), 35-54.
22. D. Zhang, Y. Lau, Y. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math., 108 (2017), 263-269.
23. D. Zhang, Y. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_{0}(N)$, Ramanujan J., 47 (2018), 685-700.
24. D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211-225.
25. D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 2021. DOI:10.1007/s10114-021-0174-3.
26. R. Zhang, X. Han, D. Zhang, Power moments of the Riesz mean error term of symmetric square L-function in short intervals, Symmetry, 12 (2020), 2036.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
