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1. Introduction

Consider the least squares (LS) problem involving Kronecker products

min
x∈Rnq
‖(A ⊗ B)x − b‖2, (1.1)

where A ∈ Rm×n, B ∈ Rp×q, b ∈ Rmp, and where the Kronecker product [13] is defined by

A ⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 .
The LS problems involving Kronecker products of the type (1.1) arise in many areas of application
including signal and image processing, photogrammetry, fast transform algorithms, the Lyapunov
approach to stability theory, circuits and systems, and stochastic matrices [8, 19]. Therefore, the LS
problems involving Kronecker products have attracted many researchers to study its
algorithms [2, 9, 10, 18].

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021544


9367

For a given problem, a condition number measures the worst-case sensitivity of its solution to
small perturbations in the input data, whereas backward errors reveal the stability of a numerical
method. Combined with the backward error, a condition number can provide a first-order upper
bound on the error in the computational solution [15]. In [22], the authors gave the upper bounds on
the normwise, mixed and componentwise condition numbers for the Kronecker product linear
systems (A ⊗ B)x = b. The level-2 condition numbers for the Kronecker product linear systems have
studied by Kang and Xiang [17]. Xiang and Wei [23] derived the explicit expressions of the
normwise, mixed and componentwise condition numbers for the Kronecker product linear systems
with multiple right-hand sides. For the LS problem involving Kronecker products of (1.1), Diao et
al. [7] have studied its conditioning theory when A and B are of full column rank. Chen and Li [5]
presented explicit expressions for normwise, mixed and componentwise condition numbers for the
weighted least squares problem involving Kronecker when A and B are of full column rank. In this
paper, we will present the upper bounds for the normwise, mixed and componentwise condition
numbers of the LS problem (1.1) when A or B is of rank deficient.

According to the fact that rank(A ⊗ B) = rank(A)rank(B), it follows that A ⊗ B is rank deficient
when A or B is of rank deficient. In this case, the LS solution to (1.1) always exists but it is nonunique.
Therefore the unique minimum norm LS solution xLS = (A ⊗ B)†b = (A† ⊗ B†)b is considered, where
A† denotes the Moore-Penrose inverse of A. Moreover, when A ⊗ B is a rank deficient matrix, small
changes to A or B can produce large changes to xLS = (A† ⊗ B†)b, see Example 1. In other words, a
condition number of xLS with respect to rank deficient A⊗B does not exist or is “infinite”. Hence, in this
section, we present the normwise, mixed and componentwise condition numbers of the LS problem
(1.1) by restricting changes to the perturbation matrices ∆A or ∆B, i.e. ∆A ∈ S or ∆B ∈ T , where

S =
{
∆A : R(∆A) ⊆ R(A), R((∆A)T ) ⊆ R(AT )

}
and

T =
{
∆B : R(∆B) ⊆ R(B), R((∆B)T ) ⊆ R(BT )

}
.

Here R(A) denotes the range of A.
Example 1. Let

A = B =

[
1 0
0 0

]
, A + ∆A =

[
1 0
0 ε

]
, b =

[
1 0 1 0

]T
.

By simple computations, we have

xLS = (A† ⊗ B†)b =
[

1 0 0 0
]T
, x̃LS =

(
(A + ∆A)† ⊗ B†

)
b =

[
1 0 1

ε
0

]T

and
‖x̃LS − xLS ‖2 =

1
ε
.

Throughout the paper, for given positive integers m and n, denote by Rn the space of n-dimensional
real column vectors, by Rm×n the space of all m × n real matrices, and by ‖ · ‖2 and ‖ · ‖F the 2-norm
and Frobenius norm of their arguments, respectively. Given a matrix X = [xi j] ∈ Rm×n, ‖X‖max, X†, XT

denote the max norm, given by ‖X‖max = max
i, j
|xi j|, the Moore-Penrose inverse and the transpose of X,
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respectively, and |X| is the matrix whose elements are |xi j|. For the matrices X = [xi j], Y = [yi j] ∈ Rm×n,
X ≤ Y means xi j ≤ yi j for all i, j and we define X

Y = [zi j] ∈ Rm×n by

zi j =


xi j/yi j, if yi j , 0,
0, if xi j = yi j = 0,
∞, otherwise.

The following lemmas will be used in the later discussion.

Lemma 1.1. [13] For any matrix X = (xi j) ∈ Rm×n, Y ∈ Rp×q and Z ∈ Rn×p, we have

|X ⊗ Y | = |X| ⊗ |Y |, ‖X ⊗ Y‖2 = ‖X‖2‖Y‖2, ‖X ⊗ Y‖∞ = ‖X‖∞‖Y‖∞.

Furthermore, with vec(·) stacking columns, we have

vec(XZY) = (YT ⊗ X)vec(Z), vec(X ⊗ Y) = (In ⊗ Kqm ⊗ Ip) (vec(X) ⊗ vec(Y)) , a ⊗ c = vec(caT ),

where a ∈ Rm, c ∈ Rn, Kmn ∈ R
mn×mn is the permutation matrix defined by

Kmn =

m∑
i=1

n∑
j=1

Ei j ⊗ ET
i j.

Here each Ei j ∈ R
m×n has entry 1 in position (i, j) and all other entries are zero.

Lemma 1.2. [12] If E ∈ Rn×n and ‖E‖2 < 1, then In − E is nonsingular and

(In − E)−1 =

∞∑
k=0

Ek.

Lemma 1.3. [3] If A, ∆A ∈ Rm×n satisfy ‖A†∆A‖2 < 1, R(∆A) ⊆ R(A) and R((∆A)T ) ⊆ R(AT ), then

(A + ∆A)† = (In + A†∆A)−1A†.

2. Normwise condition numbers

The following weighted Frobenius norm

‖(αA, βb)‖F =

√
α2‖A‖2F + β2‖b‖22

was first used by Gratton for deriving the normwise condition number for the linear least squares
problem [14]. Here ‖ � ‖F denotes the Frobenius norm of a matrix, and ‖ � ‖2 denotes the spectral norm
of a matrix or the Euclidean norm of a vector. We will call the latter 2-norm uniformly later in this
paper. Subsequently, this kind of norm was used for the partial condition number for the linear least
squares problem [1] and the normwise condition number of the truncated singular value solution of
a linear ill-posed problem [4]. A more general weighted Frobenius norm

∥∥∥∥[AT βb
]∥∥∥∥

F
, where T is a

positive diagonal matrix, is sometimes chosen. This is the case, for instance, in [6], which gives the
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explicit expressions for the normwise, mixed and componentwise condition numbers of the Tikhonov
regularization using this norm. In this paper, we use the weighted Frobenius norm and weighted 2-
norm which defined by

‖(A, B, b)‖F =

√
α2‖A‖2F + β2‖B‖2F + γ2‖b‖22,

and
‖(A, B, b)‖∈ =

√
α2‖A‖22 + β2‖B‖22 + γ2‖b‖22

with α, β, γ > 0. These norms are very flexible since they allow us to monitor the perturbations on A,
B and b. For instance, large values of α enable us to obtain condition number problems where mainly
B and b are perturbed.

Consider the perturbed LS problem of (1.1)

min
x∈Rnq
‖((A + ∆A) ⊗ (B + ∆B))x − (b + ∆b)‖2, (2.1)

where ∆A, ∆B and ∆b are the perturbations of the input data A, B and b, respectively. The unique
minimum norm LS solution to (2.1) is x̃LS =

(
(A + ∆A)† ⊗ (B + ∆B)†

)
(b + ∆b). We let the change in

the solution be ∆x = x̃LS − xLS .

Theorem 2.1. When A and B are of rank deficient, the condition number

κ(F )(A, B, b) = lim
ε→0

sup
{
‖∆x‖2
ε‖xLS ‖2

: ‖(∆A,∆B,∆b)‖F ≤ ε ‖(A, B, b)‖F ,∆A ∈ S,∆B ∈ T
}

satisfies

κ(F )(A, B, b) ≤

∥∥∥∥[P
α

Q
β
−A†⊗B†

γ

]∥∥∥∥
2
‖(A, B, b)‖F

‖xLS ‖2
:= κ(F )(A, B, b)upper1,

where P = (xT
LS
⊗A†⊗B†)(In⊗Kqm⊗ Ip)(Imn⊗vec(B)) and Q = (xT

LS
⊗A†⊗B†)(In⊗Kqm⊗ Ip)(vec(A)⊗ Ipq).

Proof. When ‖∆A‖2 is sufficiently small, we may assume that ‖A†∆A‖2 < 1. Then, from Lemmas
1.2 and 1.3 with R(∆A) ⊆ R(A), R((∆A)T ) ⊆ R(AT ), neglecting the second-order terms gives

(A + ∆A)† = A† − A†∆AA†.

Similarly, we have (B + ∆B)† = B† − B†∆BB† when ‖∆B‖2 is sufficiently small and ∆B ∈ T . Thus, for
small ∆A and ∆B, the linear term in ∆x =

(
(A + ∆A)† ⊗ (B + ∆B)†

)
(b + ∆b) − (A† ⊗ B†)b is

(A† ⊗ B†)∆b −
(
A† ⊗ (B†∆BB†)

)
b −

(
(A†∆AA†) ⊗ B†

)
b

= (A† ⊗ B†)∆b − (A† ⊗ B†)(A ⊗ ∆B)(A† ⊗ B†)b − (A† ⊗ B†)(∆A ⊗ B)(A† ⊗ B†)b
= (A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS . (2.2)

Applying the operator vec to (2.2) and using Lemma 1.1, we have

(A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS

= (A† ⊗ B†)∆b − (xT
LS
⊗ A† ⊗ B†)(vec(A ⊗ ∆B) + vec(∆A ⊗ B))
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= (A† ⊗ B†)∆b − (xT
LS
⊗ A† ⊗ B†)(In ⊗ Kqm ⊗ Ip) (vec(A) ⊗ vec(∆B) + vec(∆A) ⊗ vec(B))

= (A† ⊗ B†)∆b − (xT
LS
⊗ A† ⊗ B†)(In ⊗ Kqm ⊗ Ip)

(
(vec(A) ⊗ Ipq)vec(∆B)

+(Imn ⊗ vec(B))vec(∆A)
)

=
[
−P
α
−

Q
β

A†⊗B†
γ

] 
αvec(∆A)
βvec(∆B)
γ∆b

 .
Consequently, we have

‖(A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS ‖2

≤

∥∥∥∥[P
α

Q
β
−A†⊗B†

γ

]∥∥∥∥
2

∥∥∥∥∥∥∥∥∥

αvec(∆A)
βvec(∆B)
γ∆b


∥∥∥∥∥∥∥∥∥

2

= ε
∥∥∥∥[P

α
Q
β
−A†⊗B†

γ

]∥∥∥∥
2
‖(A, B, b)‖F .

Since (A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS is the linear term in ∆x, Theorem 3.1 holds. �
The formula for κ(F )(A, B, b)upper1 in Theorem 2.1 involve the permutation matrix Kqm and

Kronecker products, which make them inefficient for computation. In order to overcome this
shortcoming, the next corollary will provide easily computable upper bound.

Corollary 2.1. For the estimate κ(F )(A, B, b)upper1 in Theorem 2.1, we have

κ(F )(A, B, b)upper1 ≤ ‖A†‖2‖B†‖2 ‖(A, B, b)‖F

(
‖B‖F
α

+
‖A‖F
β

+
1

γ‖xLS ‖2

)
:= κ(F )(A, B, b)upper2.

Proof. It follows from Lemma 1.1 that∥∥∥∥[P
α

Q
β
−A†⊗B†

γ

]∥∥∥∥
2
≤
‖P‖2
α

+
‖Q‖2
β

+
‖A† ⊗ B†‖2

γ

≤
‖A†‖2‖B†‖2‖xLS ‖2‖vec(B)‖2

α
+
‖A†‖2‖B†‖2‖xLS ‖2‖vec(A)‖2

β
+
‖A†‖2‖B†‖2

γ

= ‖A†‖2‖B†‖2

(
‖xLS ‖2‖B‖F

α
+
‖xLS ‖2‖A‖F

β
+

1
γ

)
,

which together with Theorem 2.1 complete the proof of this corollary. �
The normwise condition number under the weighted 2-norm is given in the following theorem.

Theorem 2.2. When A and B are of rank deficient, the condition number

κ(∈)(A, B, b) = lim
ε→0

sup
{
‖∆x‖2
ε‖xLS ‖2

: ‖(∆A,∆B,∆b)‖∈ ≤ ‖(A, B, b)‖∈ ,∆A ∈ S,∆B ∈ T
}

satisfies

κ(∈)(A, B, b) ≤

√
‖A†‖22
α2 +

‖B†‖22
β2 +

‖A†‖22‖B
†‖22

γ2‖xLS ‖
2
2

‖(A, B, b)‖∈ := κ(∈)(A, B, b)upper.
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Proof. By taking the 2-norm of (2.2) and using Lemma 1.1, we obtain∥∥∥∥(A† ⊗ B†)∆b −
(
A† ⊗ (B†∆BB†)

)
b −

(
(A†∆AA†) ⊗ B†

)
b
∥∥∥∥

2

=
∥∥∥∥(A† ⊗ B†)∆b −

(
(A†A) ⊗ (B†∆B) + (A†∆A) ⊗ (B†B)

)
xLS

∥∥∥∥
2

≤ ‖A†‖2‖B†‖2‖∆b‖2 + ‖∆A‖2‖A†‖2‖xLS ‖2 + ‖∆B‖2‖B†‖2‖xLS ‖2

=

[
‖A†‖2‖xLS ‖2

α

‖B†‖2‖xLS ‖2

β
‖A†‖2‖B†‖2

γ

] 
α‖∆A‖2
β‖∆B‖2
γ‖∆b‖2


≤ ε

√
‖A†‖22‖xLS ‖

2
2

α2 +
‖B†‖22‖xLS ‖

2
2

β2 +
‖A†‖22‖B

†‖22

γ2 ‖(A, B, b)‖∈ ,

which together with the definition of κ(∈)(A, B, b) complete the proof of this theorem. �
We now give the upper bound estimates of the normwise condition numbers for the LS problem

(1.1) under the weighted Frobenius norm and weighted 2-norm when only A and b are perturbed.
These results can be proved in the same manners as in Theorems 2.1 and 2.2, and hence, we state them
in the following theorem without their proofs.

Theorem 2.3. When A is of rank deficient, we have

κ(F )(A, b) = lim
ε→0

sup
{
‖∆x‖2
ε‖xLS ‖2

: ‖(∆A,∆b)‖F ≤ ε ‖(A, b)‖F ,∆A ∈ S
}

≤

∥∥∥∥[P
α
−A†⊗B†

γ

]∥∥∥∥
2
‖(A, b)‖F

‖xLS ‖2
:= κ(F )(A, b)upper,

and

κ(∈)(A, b) = lim
ε→0

sup
{
‖∆x‖2
ε‖xLS ‖2

: ‖(∆A,∆b)‖∈ ≤ ‖(A, b)‖∈ ,∆A ∈ S
}

≤

√
‖A†‖22
α2 +

‖A†‖22‖B
†‖22

γ2‖xLS ‖
2
2

‖(A, b)‖∈ := κ(∈)(A, b)upper.

where P = (xT
LS
⊗ A† ⊗ B†)(In ⊗ Kqm ⊗ Ip)(Imn ⊗ vec(B)) and

‖(A, b)‖F =

√
α2‖A‖2F + γ2‖b‖22, ‖(A, b)‖∈ =

√
α2‖A‖22 + γ2‖b‖22.

When B = 1, the problem (1.1) reduces to the classical LS problem min
x∈Rn
‖Ax − b‖2. When B = 1, it

follows from Theorem 2.3 that

κ(F )(A, b) ≤

∥∥∥∥∥[ xT
LS
⊗A†

α
−A†

γ

]∥∥∥∥∥
2
‖(A, b)‖F

‖xLS ‖2
=

∥∥∥A†
∥∥∥

2 ‖(A, b)‖F
‖xLS ‖2

√
1 + ‖xLS ‖

2
2.

The upper bound estimate in the above inequality was proved to be the exact expression of κ(F )(A, b) in
[21, Corollary 2.2]. Therefore, we conjecture that the upper bound estimates in Theorem 2.1, Theorem
2.2 and Theorem 2.3 are the exact expression of the corresponding normwise condition numbers. This
needs to be further studied in the future.
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3. Mixed and componentwise condition numbers

The normwise condition number measures both the input and output data errors by norms. Norms
can tell us the overall size of a perturbation but not how that size is distributed among the elements
it perturbs, and this information can be important when the data is badly scaled or contains many
zeros [20]. To take into account the relative of each data component, and, in particular, a possible data
sparseness, componentwise condition numbers have been increasingly considered. These are mostly
of two kinds: mixed and componentwise. The terminologies of mixed and componentwise condition
numbers may be first used by Gohberg and Koltracht [11]. We adopt their terminology and define the
mixed and componentwise condition numbers for the LS problem (1.1) are defined as follows:

m(A, B, b) = lim
ε→0

sup
|∆A|≤ε|A|, |∆B|≤ε|B|
|∆b|≤ε|b|, ∆A∈S, ∆B∈T

‖∆x‖∞
ε‖xLS ‖∞

and

c(A, B, b) = lim
ε→0

sup
|∆A|≤ε|A|, |∆B|≤ε|B|
|∆b|≤ε|b|, ∆A∈S, ∆B∈T

1
ε

∥∥∥∥∥∥∆x
xLS

∥∥∥∥∥∥
∞

.

We assume that xLS , 0 for m(A, B, b) and xLS has no zero entries for c(A, B, b).
The following theorem gives the upper bounds for the mixed and componentwise condition numbers

of the LS problem (1.1).

Theorem 3.1. When A and B are of rank deficient, we have

m(A, B, b) ≤

∥∥∥|P|vec(|A|) + |Q|vec(|B|) + |A† ⊗ B†||b|
∥∥∥
∞

‖xLS ‖∞
:= m(A, B, b)upper1

≤

∥∥∥∥2
(
(|A†||A|) ⊗ (|B†||B|)

)
|xLS | + |A

† ⊗ B†||b|
∥∥∥∥
∞

‖xLS ‖∞
:= m(A, B, b)upper2

and

c(A, B, b) ≤

∥∥∥∥∥∥ |P|vec(|A|) + |Q|vec(|B|) + |A† ⊗ B†||b|
|xLS |

∥∥∥∥∥∥
∞

:= c(A, B, b)upper1

≤

∥∥∥∥∥∥∥∥
2
(
(|A†||A|) ⊗ (|B†||B|)

)
|xLS | + |A

† ⊗ B†||b|

|xLS |

∥∥∥∥∥∥∥∥
∞

:= c(A, B, b)upper2,

where P = (xT
LS
⊗A†⊗B†)(In⊗Kqm⊗ Ip)(Imn⊗vec(B)) and Q = (xT

LS
⊗A†⊗B†)(In⊗Kqm⊗ Ip)(vec(A)⊗ Ipq).

Proof. According to |∆A| ≤ ε|A|, we know that the zero elements of A are not permitted to be
perturbed. Therefore,

vec(∆A) = DAD†Avec(∆A),

where DA = diag(vec(A)). Similarly, we have vec(∆B) = DBD†Bvec(∆B) and ∆b = DbD†b∆b with DB =

diag(vec(B)) and Db = diag(b). Thus the linear term (A† ⊗ B†)∆b− (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS of
∆x can be rewritten as

(A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS
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= −Pvec(∆A) − Qvec(∆B) + (A† ⊗ B†)∆b

= −PDAD†Avec(∆A) − QDBD†Bvec(∆B) + (A† ⊗ B†)DbD†b∆b

=
[
−PDA −QDB (A† ⊗ B†)Db

] 
D†Avec(∆A)
D†Bvec(∆B)

D†b∆b

 . (3.1)

Taking the infinity norm and using the assumption |∆A| ≤ ε|A|, |∆B| ≤ ε|B| and |∆b| ≤ ε|b|, we have

‖(A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS ‖∞

≤ ε
∥∥∥∥[−PDA −QDB (A† ⊗ B†)Db

]∥∥∥∥
∞
.

Since (A† ⊗ B†)∆b− (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS is the linear term of ∆x, m(A, B, b) is bounded by

m(A, B, b) ≤

∥∥∥∥[−PDA −QDB (A† ⊗ B†)Db

]∥∥∥∥
∞

‖xLS ‖∞

=

∥∥∥∥[| − PDA| | − QDB| |(A† ⊗ B†)Db|
]

e
∥∥∥∥
∞

‖xLS ‖∞

=

∥∥∥|P|vec(|A|) + |Q|vec(|B|) + |A† ⊗ B†||b|
∥∥∥
∞

‖xLS ‖∞
,

where e is an mn + mp + pq dimensional vector with all entries equal to one.
Recall that in the definition of c(A, B, b), we assume that xLS has no zero entries. Hence, it follows

from (3.1) and the assumption |∆A| ≤ ε|A|, |∆B| ≤ ε|B| and |∆b| ≤ ε|b| that∥∥∥∥∥∥ (A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS

xLS

∥∥∥∥∥∥
∞

=
∥∥∥∥D−1

xLS

(
(A† ⊗ B†)∆b − (A† ⊗ B†) (A ⊗ ∆B + ∆A ⊗ B) xLS

)∥∥∥∥
∞

≤

∥∥∥∥D−1
xLS

[
−PDA −QDB (A† ⊗ B†)Db

]∥∥∥∥
∞

∥∥∥∥∥∥∥∥∥

D†Avec(∆A)
D†Bvec(∆B)

D†b∆b


∥∥∥∥∥∥∥∥∥
∞

≤ ε
∥∥∥∥D−1

xLS

[
−PDA −QDB (A† ⊗ B†)Db

]∥∥∥∥
∞
,

where DxLS
= diag(vec(xLS )). Hence, we have

c(A, B, b) ≤
∥∥∥∥D−1

xLS

[
−PDA −QDB (A† ⊗ B†)Db

]∥∥∥∥
∞

=
∥∥∥∥∣∣∣∣D−1

xLS

∣∣∣∣ (|P|vec(|A|) + |Q|vec(|B|) + |A† ⊗ B†||b|
)∥∥∥∥
∞

=

∥∥∥∥∥∥ |P|vec(|A|) + |Q|vec(|B|) + |A† ⊗ B†||b|
|xLS |

∥∥∥∥∥∥
∞

.

Using Lemma 1.1, we can get

|P|vec(|A|) ≤ (|xT
LS
| ⊗ |A†| ⊗ |B†|)(In ⊗ Kqm ⊗ Ip)(Imn ⊗ vec(|B|))vec

(
(vec(|A|))T

)
AIMS Mathematics Volume 6, Issue 9, 9366–9377.



9374

= (|xT
LS
| ⊗ |A†| ⊗ |B†|)(In ⊗ Kqm ⊗ Ip)vec

(
vec(|B|)(vec(|A|))T

)
= (|xT

LS
| ⊗ |A†| ⊗ |B†|)(In ⊗ Kqm ⊗ Ip)(vec(|A|) ⊗ vec(|B|))

= (|xT
LS
| ⊗ |A†| ⊗ |B†|)vec(|A| ⊗ |B|)

= (|A†| ⊗ |B†|)(|A| ⊗ |B|)|xLS | =
(
(|A†||A|) ⊗ (|B†||B|)

)
|xLS |.

Similarly, we can deduce that

|Q|vec(|B|) ≤
(
(|A†||A|) ⊗ (|B†||B|)

)
|xLS |.

Because of the monotonicity property of the infinity norm, the upper bounds m(A, B, b)upper2 and
c(A, B, b)upper2 can be obtained by applying the aforementioned two inequalities to m(A, B, b)upper1

and c(A, B, b)upper1 and by using the matrix norm triangular inequality. �
The following theorem gives the upper bound estimates of the mixed and componentwise condition

numbers for the LS problem (1.1) when only A and b are perturbed, which can be proved in the same
way as Theorem 3.1.

Theorem 3.2. When A is of rank deficient, we have

m(A, b) = lim
ε→0

sup
|∆A|≤ε|A|,|∆b|≤ε|b|

∆A∈S

‖∆x‖∞
ε‖xLS ‖∞

≤

∥∥∥|P|vec(|A|) + |A† ⊗ B†||b|
∥∥∥
∞

‖xLS ‖∞
≤

∥∥∥∥((|A†||A|) ⊗ (|B†||B|)
)
|xLS | + |A

† ⊗ B†||b|
∥∥∥∥
∞

‖xLS ‖∞

and

c(A, b) = lim
ε→0

sup
|∆A|≤ε|A|, |∆b|≤ε|b|

∆A∈S

1
ε

∥∥∥∥∥∥∆x
xLS

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥ |P|vec(|A|) + |A† ⊗ B†||b|
|xLS |

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥∥
(
(|A†||A|) ⊗ (|B†||B|)

)
|xLS | + |A

† ⊗ B†||b|

|xLS |

∥∥∥∥∥∥∥∥
∞

,

where P = (xT
LS
⊗ A† ⊗ B†)(In ⊗ Kqm ⊗ Ip)(Imn ⊗ vec(B)).

When B = 1, it follows from Theorem 3.2 that

m(A, b) ≤

∥∥∥|xT
LS
⊗ A†|vec(|A|) + |A†||b|

∥∥∥
∞

‖xLS ‖∞
=

∥∥∥|A†||A||xLS | + |A
†||b|

∥∥∥
∞

‖xLS ‖∞

and

c(A, b) ≤

∥∥∥∥∥∥ |xT
LS
⊗ A†|vec(|A|) + |A†||b|

|xLS |

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ |A†||A||xLS | + |A
†||b|

|xLS |

∥∥∥∥∥∥
∞

,

which have been obtained in [16].
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4. Numerical experiments

We consider the LS problem (1.1) with

A =


9 × 10i 0 0

0 2 2
3 0 0

 , B =


1 0 0
0 2 2
3 0 0

 , b =


100
100
...

100

 ∈ R9, i = 0, 2, 4.

We first compare κ(F )(A, B, b)upper1, κ(F )(A, B, b)upper2, κ(∈)(A, B, b)upper2 with the upper bounds of the
mixed and componentwise condition numbers given in Theorem 3.1. Thus, upon computations in
MATLAB R2015b with precision 2.2204 × 10−16, we get the results listed in Table 1. From Table 1,
we find that as the (1, 1)-element of A increases, the upper bounds of the normwise condition numbers
become larger and larger, while, comparatively, the upper bounds of the mixed and componentwise
condition numbers have no change. This is mainly because the mixed and componentwise condition
numbers notice the structure of the coefficient matrix A with respect to scaling, but the normwise
condition numbers ignore it.

Table 1. Comparison of condition numbers.

i = 0 i = 2 i = 4

κ(F )(A, B, b)upper1 1.4398 × 102 4.6210 × 102 4.3838 × 104

κ(F )(A, B, b)upper2 5.3253 × 102 1.0724 × 105 1.0126 × 109

κ(∈)(A, B, b)upper 3.0347 × 103 8.6573 × 105 8.2129 × 109

m(A, B, b)upper1 3.0000 3.0000 3.0000

m(A, B, b)upper2 3.0000 3.0000 3.0000

c(A, B, b)upper1 3.0000 3.0000 3.0000

c(A, B, b)upper2 3.0000 3.0000 3.0000

For i = 0, suppose the perturbations are ∆A = 10− j × A, ∆B = 10− j × B and ∆B = 10− j × rand(9, 1),
where rand(·) is the MATLAB function. Obviously, ∆A ∈ S and ∆B ∈ T . Define ε1 =

‖(∆A,∆B,∆b)‖F
‖(A,B,b)‖F

,

ε2 =
‖(∆A,∆B,∆b)‖∈
‖(A,B,b)‖∈

and ε3 = max{ε : |∆A| ≤ ε|A|, |∆B| ≤ ε|B| |∆b| ≤ ε|b|}, it follows from the definitions
of κ(F )(A, B, b), κ(∈)(A, B, b), m(A, B, b) and c(A, B, b) that

‖∆x‖2
‖xLS ‖2

≤ ε1κ
(F )(A, B, b)upper1 + O(ε2

1),
‖∆x‖2
‖xLS ‖2

≤ ε2κ
(∈)(A, B, b)upper + O(ε2

2)

and
‖∆x‖∞
‖xLS ‖∞

≤ ε3m(A, B, b)upper1 + O(ε2
3),

∥∥∥∥∥∥∆x
xLS

∥∥∥∥∥∥
∞

≤ ε3c(A, B, b)upper1 + O(ε2
3)
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for small ε1, ε2 and ε3. As shown in Table 2, the error bounds given by the upper bounds of the
condition numbers are at most two order of magnitude larger than the actual errors. This illustrates
that, the estimates κ(F )(A, B, b)upper1, κ(∈)(A, B, b)upper, m(A, B, b)upper1 and c(A, B, b)upper1 can estimate
their corresponding condition numbers well.

Table 2. Comparisons of our estimated errors with the exact errors.

j 10 11 12

‖∆x‖2/‖xLS ‖2 1.9936 × 10−10 1.9933 × 10−11 1.9961 × 10−12

ε1κ
(F )(A, B, b)upper1 5.2458 × 10−10 5.2301 × 10−11 5.2224 × 10−12

ε2κ
(∈)(A, B, b)upper 1.0291 × 10−8 1.0256 × 10−9 1.0238 × 10−10

‖∆x‖∞/‖xLS ‖∞ 1.9936 × 10−10 1.9941 × 10−11 1.9956 × 10−12

ε3m(A, B, b)upper1 3.0000 × 10−10 3.0000 × 10−11 3.0000 × 10−12∥∥∥∥ ∆x
xLS

∥∥∥∥
∞

1.9963 × 10−10 1.9941 × 10−11 1.9971 × 10−12

ε3c(A, B, b)upper1 3.0000 × 10−10 3.0000 × 10−11 3.0000 × 10−12
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