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1. Introduction

For any two manifolds (M,g) and (N,h), a harmonic map ψ is the critical point of the energy
functional defined as

E(ψ) =
1
2

∫
M
|dψ|2dvg.

The natural generalization of the harmonic maps was given by J. Eells and J. H. Sampson [1]. The
established map ψ is called biharmonic if it is the critical point of energy functional

E2(ψ) =
1
2

∫
M
|τ(ψ)|2dvg.

with τ(ψ) = tr(∇dψ) as the vanishing tensor field for any harmonic map. For the above established E2,
the first and second variation was studied by G. Y. Jiang [2]. For the same bi-harmonic functional, the
associated Euler-Lagrange equation is τ2(ψ) = 0, where τ2(ψ) is called bi-tension field and is defined as

τ2(ψ) = ∆τ(ψ) − tr(RN(dψ, τ(ψ))dψ.
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In the above equation, ∆ is the rough Laplacian acting on the sections of ψ−1(T N) and RN is the
curvature tensor for N. For any V ∈ Γ(ψ−1(T N)) and X,Y ∈ Γ(T N), the definitions of ∆ and RN are
given by

∆V = tr(∆2V),

RN(X,Y) = [∇N
X ,∇

N
Y ] − ∇N

[X,Y].

A large number of studies have been done on biharmonic submanifolds [3–8]. It is a general fact
that every harmonic map is biharmonic, but the vice-versa isn’t true. The biharmonic maps, which are
not harmonic, are called proper-biharmonic maps. If the harmonic map ψ is isometric immersion from
the manifold (M, g) into (N, h), then the manifold M is called minimal submanifold of N. From the
definition of proper biharmonic maps, it can be concluded that these are those submanifolds that aren’t
harmonic. Biharmonic submanifolds in different ambient spaces for different space forms have been
extensively studied in the last few decades. Caddeo R. et al. [9] studied biharmonic submanifolds in
spheres. Fetcu D. et al. [10–12] studied these submanifolds in complex, Sasakian and the product
of sphere and real line space forms. J. Roth and A. Upadhyay [13, 14] studied the biharmonic
submanifolds on product spaces and generalized space forms. Chen B. Y. proved Chen’s biharmonic
conjecture stating that biharmonic surfaces do not exist in any Euclidean space with parallel normalized
mean curvature vectors [15]. Yu F. et al. proved the same conjecture for hypersurfaces in R5 [16].

The present study establishes the necessary and sufficient conditions for the submanifolds of
Kaehler product manifolds to be biharmonic. Our future work then combines the work done in this
paper with the techniques of singularity theory presented in [17–20]. We have derived the magnitude
of scalar curvature for the hypersurfaces in a product of two spheres. We have also estimated the
magnitude of the mean curvature vector for Lagrangian submanifolds in a product of two spheres.
Finally, we proved the non-existence condition for totally complex Lagrangian submanifolds in a
product of unit sphere and hyperbolic space.

2. Preliminaries

Let M̂n and M̂p be any Kehlerian manifolds of dimensions n (real dimension 2n) and p (real
dimension 2p) respectively. Let us further assume Jn and Jp denote the almost complex structures of
M̂n and M̂p, respectively. Suppose, M̂n and M̂p are complex space forms with constant holomorphic
sectional curvatures c1 and c2, respectively. The Riemannian curvature tensor R̂n of M̂n(c1) is given by

R̂n(X,Y)Z = 1
4c1[gn(Y,Z)X − gn(X,Z)Y]

+ 1
4c1[gn(JnY,Z)JnX − gn(JnX,Z)JnY + 2gn(X, JnY)JnZ].

Similarly, the Riemannian curvature tensor R̂p of M̂p(c2) is given by

R̂p(X,Y)Z = 1
4c2[gp(Y,Z)X − gp(X,Z)Y]

+ 1
4c2[gp(JpY,Z)JpX − gp(JpX,Z)JpY + 2gp(X, JpY)JpZ].

For any generalized submanifold M of any complex space form N, the almost complex structure J

AIMS Mathematics Volume 6, Issue 9, 9309–9321.



9311

induces the existence of four operators on M, namely

j : T M → T M, k : T M → NM, l : NM → T M,m : NM → NM,

defined for all X ∈ TM (tangent bundle) and ζ ∈ NM (normal bundle) by

JX = jX + kX,

Jζ = lζ + mζ.
(2.1)

Since J is the almost complex structure, it satisfies J2= −Id. For any X, Y tangent to N, we also have
g(JX,Y) = −g(X, JY). Using the above properties of J, the relations for the operators, j, k, l and m are
given as

j2X + lkX + X = 0, (2.2)

m2ζ + klζ + ζ = 0, (2.3)

jlζ + lmζ = 0, (2.4)

k jX + mkX = 0, (2.5)

g(kX, ζ) + g(X, lζ) = 0. (2.6)

for all X ∈ Γ(T M) and ζ ∈ Γ(NM). Also, j and m are skew-symmetric.
Now, let us consider the Kaehler product manifold M̂n(c1) × M̂p(c2) denoted by M̂. If P and Q

denote projection operators of the tangent spaces of M̂n(c1) and M̂p(c2), then we always have P2 = P,
Q2 = Q and PQ = QP. If we put F = P − Q, the properties of P and Q establish F2 = I. This
F is almost product structure of M̂n(c1) × M̂p(c2). Moreover, we define a Riemannian metric g on M̂ as

g(X,Y) = gn(PX, PY) + gp(QX,QY).

Where X and Y are vector fields on M̂. It further follows, g(FX,Y) = g(X, FY). If we put
JX = JnPX + JpQX, we get JnP = PJ, JpQ = QJ, FJ = JF, g(JX, JY) = g(X,Y), ∇̂J=0. Thus J is the
Kaehlerian structure on M̂. The Riemannian curvature tensor R̂ of the product manifold M̂ is given
as [21]

R̂(X,Y)Z =
c1 + c2

16
[g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX − g(JX,Z)JY

+ 2g(X, JY)JZ + g(FY,Z)FX − g(FX,Z)FY + g(FJY,Z)FJX − g(FJX,Z)FJY

+ g(FZ, JY)FJZ] +
c1 − c2

16
[g(FY,Z)X − g(FX,Z)Y + g(Y,Z)FX − g(X,Z)FY

+ g(FJY,Z)JX − g(FJX,Z)JY + g(JY,Z)FJX − g(JX,Z)FJY

+ 2g(FX, JY)JZ + 2g(X, JY)JFZ]. (2.7)

The product structure F induces the existence of four operators:

f : T M → T M, h : T M → NM, s : NM → T M and t : NM → NM,
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defined for all X ∈ TM (tangent bundle) and ζ ∈ NM (normal bundle) by

FX = f X + hX,

Fζ = sζ + tζ.
(2.8)

These four operators follow the following relations

f 2X + shX = X, (2.9)

t2ζ + hsζ = ζ, (2.10)

f sζ + stζ = 0, (2.11)

h f X + thX = 0, (2.12)

g(hX, ζ) = g(X, sζ). (2.13)

for all X ∈ Γ(T M) and ζ ∈ Γ(NM). Also, f and t are symmetric.

3. Results

The first theorem gives necessary and sufficient condition for the manifold to be biharmonic.

Theorem 3.1. Let M be a u-dimensional submanifold of the Kaehler product manifold M̂ = M̂n(c1)
× M̂p(c2) with A, B and H, respectively denoting the shape operator, second fundamental form and
mean curvature vector. Then, this submanifold is biharmonic if and only if the following equations are
satisfied:

− ∇⊥H + tr(B(., AH.)) +
c1 + c2

16
[−uH + 3klH + hsH − tr( f )tH + 2(h j f lH (3.1)

+ tk f lH + h jsmH + tksmH) − tr( f j + sk)(hlH + tmH)] +
c1 − c2

16
[−tr( f )H

− utH + 3(k f lH + ksmH) − tr( f j + sk)(mH) + 3(h jlH + tklH)] = 0.

u
2

grad|H|2 + 2tr(A∇⊥H(.)) +
c1 + c2

8
[3 jlH + f sH − tr( f )sH (3.2)

+ 2( f j f lH + sk f lH + f jsmH + sksmH) − tr( f j + sk)( f lH + smH)]

+
c1 − c2

8
[sH − usH + 3( j f lH + jsmH) − tr( f j + sk)(lH) + 3( f jlH + sklH)] = 0.

Proof. The equations of biharmonicity have been already established in [12, 22, 23]. Projection of the
equation τ(ψ) = 0 on both tangential and normal bundles establishes the following equations
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−∇⊥H + tr(B(., AH.)) + tr(R̄(.,H.)⊥ = 0,
u
2

grad|H|2 + 2tr(A∇⊥H(.)) + 2tr(R̄(.,H.)> = 0.
(3.3)

Suppose that {Xi}
u
i=1 is a local orthonormal frame for TM, then by using the Eq 2.7 of curvarture tensor

R̄, we have

tr(R̄(.,H.) =

u∑
i=1

R̄(Xi,H)Xi, (3.4)

=⇒ tr(R̄(.,H.) =
∑u

i=1 {
c1+c2

16 [g(H, Xi)Xi − g(Xi, Xi)H + g(JH, Xi)JXi

− g(JXi, Xi)JH + 2g(Xi, JH)JXi + g(FH, Xi)FXi − g(FXi, Xi)FH

+ g(FJH, Xi)FJXi − g(FJXi, Xi)FJH + g(FXi, JH)FJXi]

+ c1−c2
16 [g(FH, Xi)Xi − g(FXi, Xi)H + g(H, Xi)FXi − g(Xi, Xi)FH

+ g(FJH, Xi)JXi − g(FJXi, Xi)JH + g(JH, Xi)FJXi − g(JXi, Xi)FJH

+ 2g(FXi, JH)JXi + 2g(Xi, JH)JFXi]},

Introducing the established sets of four operators, j, k, l and m and f, h, s and t for J and F
respectively, we get the simplified equation as

tr(R̄(.,H.) = c1+c2
16 [−uH +

∑u
i=1 g(lH, Xi)JXi +

∑u
i=1 2g(Xi, lH)JXi

+ F(FH)> − tr( f )FH + FJ(FJH)> − tr( f j + sk)FJH + FJ(FJH)>]

+ c1−c2
16 [(FH)> − tr( f )H − uFH + J(FJH)> − tr( f j + sk)JH

+
∑u

i=1 g(lH, Xi)FJXi + 2J(FJH)> +
∑u

i=1 2g(Xi, lH)JFXi],

or tr(R̄(.,H.) = c1+c2
16 [−uH + 3JlH + f sH + hsH − tr( f )sH − tr( f )tH

+ 2FJ( f lH + smH) − tr( f j + sk)FJH]

+ c1−c2
16 [sH − tr( f )H − uFH + J( f lH + smH) − tr( f j + sk)JH +

3FJlH + 2J( f lH + smH)],

=⇒ tr(R̄(.,H.) = c1+c2
16 [−uH + 3 jlH + 3klH + f sH + hsH − tr( f )sH − tr( f )tH

+ 2( f j f lH + h j f lH + sk f lH + tk f lH + f jsmH + h jsmH + sksmH + tksmH)

AIMS Mathematics Volume 6, Issue 9, 9309–9321.



9314

− tr( f j + sk)( f lH + hlH + smH + tmH)]

+ c1−c2
16 [sH − tr( f )H − ush − utH + 3( j f lH + k f lH + jsmH + ksmH)

− tr( f j + sk)(lH + mH) + 3( f jlH + h jlH + sklH + tklH)].

By identification of tangential and normal parts, we get the required equations. �

Corollary 3.2. If M is a u-dimensional totally real submanifold of the Kaehler product manifold M̂
= M̂n(c1) × M̂p(c2). Then, this submanifold is biharmonic if and only if the following equations are
satisfied

− ∇⊥H + tr(B(., AH.)) +
c1 + c2

16
[−uH + 3klH + hsH − tr( f )tH (3.5)

+ 2(tk f lH + tksmH) − tr(sk)(hlH + tmH)] +
c1 − c2

16
[−tr( f )H

− utH + 3(k f lH + ksmH) − tr(sk)(mH) + 3(tklH)] = 0.

u
2

grad|H|2 + 2tr(A∇⊥H(.)) +
c1 + c2

8
[ f sH − tr( f )sH (3.6)

+ 2(sk f lH + sksmH) − tr(sk)( f lH + smH)]

+
c1 − c2

8
[sH − usH − tr(sk)(lH) + 3(sklH)] = 0.

Proof. If M is a totally real submanifold, then we know that for any X ∈ Γ(T M), we have

JX = kX,

In other words, jX = 0. Using this fact in Theorem 3.1, we get the required equations. �

Corollary 3.3. a): If M is any hypersurface of the Kaehler product manifold

M̂ = M̂p(c1) × M̂n−p(c2).

Then, M is biharmonic if and only if the following equations are satisfied

− ∇⊥H + tr(B(., AH.)) +
c1 + c2

16
[−(n − 2)H + hsH (3.7)

− tr( f )tH + 2(h j f lH + tk f lH) − tr( f j + sk)(hlH)]

+
c1 − c2

16
[−tr( f )H − (n − 1)tH + 3(k f lH) + 3(tklH)] = 0.

n − 1
2

grad|H|2 + 2tr(A∇⊥H(.)) +
c1 + c2

8
[ f sH − tr( f )sH (3.8)

+ 2( f j f lH + sk f lH) − tr( f j + sk)( f lH)] +
c1 − c2

8
[sH
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− (n − 1)sH + 3( j f lH) − tr( f j + sk)(lH) − 3sH] = 0.

b): If M is any totally real hypersurface of the Kaehler product manifold

M̂ = M̂p(c1) × M̂n−p(c2).

Then, M is biharmonic if and only if the following equations are satisfied:

− ∇⊥H + tr(B(., AH.)) +
c1 + c2

16
[−(n − 2)H + hsH − tr( f )tH + 2(tk f lH) (3.9)

− tr(sk)(hlH)] +
c1 − c2

16
[−tr( f )H − (n − 1)tH + 3(k f lH) + 3(tklH)] = 0.

n − 1
2

grad|H|2 + 2tr(A∇⊥H(.)) +
c1 + c2

8
[ f sH − tr( f )sH + 2(sk f lH) − tr(sk)( f lH)] (3.10)

+
c1 − c2

8
[sH − (n − 1)sH − tr(sk)(lH) − 3sH] = 0.

Proof. a): For any hypersurface M, J maps normal vectors to tangent vectors as such m = 0. Using
this fact with the Eqs 2.3 and 2.4 for H, we get the required equations from Theorem 3.1.
b): For any totally real hypersurface M, we have j = 0 and m = 0. �

Corollary 3.4. If M is a u-dimensional Lagrangian manifold of the Kaehler product manifold

M̂ = M̂n(c1) × M̂p(c2).

Then, M is biharmonic if and only if the following equations are satisfied

− ∇⊥H + tr(B(., AH.)) +
c1 + c2

16
[−(u + 3)H + hsH − tr( f )tH (3.11)

+ 2(tk f lH) − tr(sk)(hlH)] +
c1 − c2

16
[−tr( f )H − utH + 3(k f lH) + 3(tklH)] = 0.

u
2

grad|H|2 + 2tr(A∇⊥H(.)) +
c1 + c2

8
[ f sH − tr( f )sH (3.12)

+ 2(sk f lH) − tr(sk)( f lH)] +
c1 − c2

8
[sH − usH − tr(sk)(lH) − 3(sH)] = 0.

Proof. If M is a Lagrangian manifold , then j = 0 and m = 0. Using this fact with Eq 2.3, we get the
required equations from Theorem 3.1. �

From now on, the authors will consider the ambient space to be product of two 2-spheres of same
radius (for simplicity radius equals 1 unit). The reason for taking 2-sphere follows from [24] as it is
the only sphere which accepts Kaehler structure. In the following equations, we will have

c1 + c2

16
=

c1

8
=

1
8

and
c1 − c2

8
= b = 0.

To estimate the magnitude of mean curvature vector and scalar curvature, the authors will further
assume the cases where F will map the whole of tangent bundle or normal vectors to respective bundles
only. The reason being the equations involve the product of almost complex structure J and product
structure F. As such it isn’t possible to get simpler equations involving dimensions of submanifolds
and mean curvature vector only.
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Proposition 3.5. Let M be any hypersurface of S 2 × S 2 with non-zero constant mean curvature such
that FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and N ∈ Γ(T M⊥). Then M is biharmonic if
we have

|B|2 =
1
8

[
1 +

1
|H|2

tr(sk)〈FJH,H〉
]
. (3.13)

Proof. By the established hypothesis on F, we have f = 0 and t = 0. Using these equations along with
Eqs 2.9 and 2.10 in Eq 3.7, we get

− ∇⊥H + tr(B(., AH.)) −
1
8

[H + tr(sk)(hlH)] = 0, (3.14)

Since M is a hypersurface, the above equation becomes,

tr(B(., AH.)) −
1
8

[H + tr(sk)(hlH)] = 0, (3.15)

Since tr(B(., AH.))= |B|2H, on further simplifying, we get,

|B|2H2 =
1
8

[
H2 + tr(sk)〈hlH,H〉

]
, (3.16)

or

|B|2 =
1
8

[
1 +

1
|H|2

tr(sk)〈FJH,H〉
]
. (3.17)

�

Remark 3.6. It can be easily concluded from above proposition that there doesn’t exist any
hypersurface of S 2×S 2 when FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and N ∈ Γ(T M⊥) for

tr(sk)〈FJH,H〉 + |H|2 ≤ 0.

The above proposition can be used to derive the value of scalar curvature for biharmonic hypersurface
M when FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and N ∈ Γ(T M⊥).

Proposition 3.7. Let M be any proper-biharmonic hypersurface of S 2 × S 2 with non-zero constant
mean curvature such that FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and N ∈ Γ(T M⊥).
Then the scalar curvature τ of M is given by

τM =
1
8

[5 + tr(sk)2 −
1
|H|2

tr(sk)〈FJH,H〉] + 3|H|2.

Proof. By the equation of Gauss, we have,

τM =

n−1∑
i, j=1

〈R̄(Xi, X j)X j, Xi〉 − |B|2 + (n − 1)|H|2,

The curvature tensor R̂ for S 2 × S 2 is given by Eq 2.7 with

c1 + c2

16
=

c1

8
=

1
8

and
c1 − c2

8
= 0.
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And,

〈R̂(Xi, X j)X j, Xi〉 =
1
8

[1 + 〈FX j, X j〉〈FXi, Xi〉 (3.18)

− 〈FXi, X j〉
2 + 〈FJX j, X j〉〈FXi, Xi〉],

Since FXi ∈ Γ(T M⊥) and f = 0. We have

n−1∑
i, j=1

〈R̂(Xi, X j)X j, Xi〉 =
1
8

[6 + tr(sk)2]. (3.19)

Using the value of |B|2 gives the required equation. �

Proposition 3.8. Let M be any totally complex-hypersurface of S 2 × S 2 with non-zero constant mean
curvature such that FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and N ∈ Γ(T M⊥). Then for
trivially biharmonic M, we have

|B|2 =
1
8
. (3.20)

Proof. By the established hypothesis on F, we have f = 0 and t = 0. Using these equations along with
Eqs 2.9 and 2.10 in Theorem 3.1, we get

− ∇⊥H + tr(B(., AH.)) −
1
8

H = 0, (3.21)

Since M is a hypersurface, the above equation becomes

tr(B(., AH.)) −
1
8

H = 0. (3.22)

Since tr(B(., AH.))= |B|2H. On further simplifying, we get the required equation. �

Proposition 3.9. Let M be any proper-biharmonic totally complex-hypersurface of S 2 × S 2 with
non-zero constant mean curvature such that FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and
N ∈ Γ(T M⊥). Then the scalar curvature τ of M is given as

τM =
1
8

[5 + tr(sk)2] + 3|H|2. (3.23)

Proof. By the equation of Gauss, we have

τM =

n−1∑
i, j=1

〈R̂(Xi, X j)X j, Xi〉 − |B|2 + (n − 1)|H|2,

The curvature tensor R̂ for S 2 × S 2 is given by Eq 2.7 with

c1 + c2

16
=

c1

8
=

1
8

and
c1 − c2

8
= 0.
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Then,

〈R̂(Xi, X j)X j, Xi〉 =
1
8

[1 + 〈FX j, X j〉〈FXi, Xi〉 − 〈FXi, X j〉
2 (3.24)

+ 〈FJX j, X j〉〈FXi, Xi〉].

Since FXi ∈ Γ(T M⊥) and f = 0. We have
n−1∑
i, j=1

〈R̂(Xi, X j)X j, Xi〉 =
1
8

[6 + tr(sk)2]. (3.25)

Using the value of |B|2 gives the required equation. �

Corollary 3.10. Let M be u-dimensional Lagrangian submanifold of S 2 × S 2 with non-zero constant
mean curvature such that FX ∈ Γ(T M⊥) and FN ∈ Γ(T M) for any X ∈ Γ(T M) and N ∈ Γ(T M⊥). Let
us further assume [tr(sk)〈FJH,H〉] ≥ 0 Then we have

a): If M is a proper-biharmonic, then 0 < |H|2 ≤ u+2
8u .

b): If |H|2 = u+2
8u , then M is biharmonic if and only if it is pseudo-umbilical manifold, ∇⊥H = 0 and

tr(sk)=0.

Proof. By the given hypothesis for F, we have f = 0 and t = 0.
Implementing the above conditions along with Eq 2.9 in Corollary 3.4 a), we get,

− ∆⊥H + tr(B(., AH.)) −
1
8

[(u + 2)Htr(sk)(hlH)] = 0. (3.26)

By taking the inner product with H, we get

− 〈∆⊥H,H〉 + |AH |
2 −

1
8

[(u + 2)|H|2 + tr(sk)〈FJH,H〉)] = 0, (3.27)

where AH is the shape operator associated with mean curvature vector H.
Using Bochner formula, we get

1
8

(u + 2)|H|2 = |AH |
2 + |∇⊥H|2 +

1
8

tr(sk)〈FJH,H〉). (3.28)

By the Cauchy-Schwarz inequality, we have |AH |
2 ≥ u|H|4. Using this fact, we have

1
8

(u + 2)|H|2 ≥ u|H|4 + |∇⊥H|2 +
1
8

tr(sk)〈FJH,H〉) (3.29)

≥ u|H|4 +
1
8

tr(sk)〈FJH,H〉) ≥ u|H|4.

Since H is a non-zero constant, we have

0 < |H|2 ≤
u + 2

8u
.

If |H|2 ≤ u+2
8u and M is proper-biharmonic, all of the above inequalities become equalities. Thus, we

have ∇⊥H|2 = 0 and tr(sk) = 0 as FJ is an isometry. Since the Cuachy-Schwarz inequality becomes
equality, we have M as pseudo-umbilical. �
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Remark 3.11. The cases for which FX ∈ Γ(T M) and FN ∈ Γ(T M⊥) for any X ∈ Γ(T M) and N ∈
Γ(T M⊥) establish the results comparable to those established in this paper. The proofs of all those
results follow a similar procedure; thus, they haven’t been discussed here.

Finally, we discuss a non-existence case for the product of a unit sphere and a hyperbolic space. Out
of all the discussed cases, the non-existence result can be found only for totally-complex Lagrangian
submanifolds. Same has been discussed here:

Proposition 3.12. There doesn’t exist any proper biharmonic totally complex Lagrangian submanifold
(dimension ≥ 2) with parallel mean curvature in S 2 × Hn−2 such that FX ∈ Γ(T M⊥) and FN ∈ Γ(T M)
for any X ∈ Γ(T M) and N ∈ Γ(T M⊥).

Proof. Since mean curvature H is parallel and not identically zero. Therefore, FH isn’t zero identically.
M is trivially biharmonic, according to Theorem 3.1, we have

u
2

grad|H|2 + 2tr(A∇⊥H(.)) +
c1 + c2

8
[ f sH − tr( f )sH] (3.30)

+
c1 − c2

8
[sH − usH − 3(sH)] = 0.

For the above equation, we have c1 + c2 = 0 and c1 − c2 = 2,

or
u
2

grad|H|2 + 2tr(A∇⊥H(.)) +
1
4

[−(u + 2)sH] = 0. (3.31)

Using the hypothesis, we have sH = 0 or FH = 0, which isn’t possible. �

4. Conclusions

We established the necessary and sufficient conditions for the submanifolds of Kaehler product
manifolds to be biharmonic. And we derived the magnitude of scalar curvature for the hypersurfaces
in a product of two unit spheres. Also, for the same product, the magnitude of the mean curvature vector
for Lagrangian submanifolds has been estimated. Finally, we proved the non-existence condition for
totally complex Lagrangian submanifolds in a product of unit sphere and a hyperbolic space.
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