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1. Introduction

A key practice in nonlinear physics has been the study of both the formation and interaction of
localized waves, including plasma physics, fluid dynamics, Bose-Einstein condensates and photonics,
over the last few decades. Among different types of nonlinaer localized waves, solitons are the most
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representative and ideal testbed to investigate nonlinear wave interactions due to their intrinsic
particle-like properties during propagation [1, 2]. The position and phase shift interaction-induced
displacement is typically independent of the relative phases of the solitons in the envelope. The
dynamics of collisions in the region of interaction, however, depend strongly on the relative levels.
The wave magnitude then evolves at the central collision point from the sum of the amplitudes of the
two solitons to their distinction, respectively. A wide range of theoretical theories, computational
simulations and experimental observations have already been recorded for such interactions with
solitons and their possible synchronization [3–5]. In general, nonlinear Evolution Equations (NLEEs)
are used to model social processes and structures of natural phenomena. In various fields of science
and engineering, nonlinear wave phenomena exist, including fluid mechanics, chemical dynamics,
plasma physics, solid-state physics, nonlinear optics, and population models. In nonlinear science, the
precise wave outcomes of NLEEs play a crucial role, since they give us a lot of insight into the
physical characteristics of the problem and can provide more physical details to support additional
applications. In recent years, people have been fascinated by the precise and numerical solutions of
NLEEs since they are increasingly becoming more used in various scientific fields to explain complex
nonlinear phenomena. Via differential equations, some real-world problems are converted into
mathematical equations.

The quest for soliton outcomes has been of significant importance in the understanding of
nonlinear phenomena in recent years. Soliton’s theory has been strengthened in recent decades in
order to explain the meaning of impossibility in ordinary and partial differential equations [6–14]. The
nonlinear Schrödinger equation (NLSEs) has been studied in various equations to demonstrate Soliton
propagating molecules in an optical fiber, which has a variety of physical applications especially in
plasma physics and nonlinear optics. There are several variants of the NLSEs; these forms, such as
Kaup-Newell, Chen-Lee-Liu, and Gerdjikov-Ivanov equations, are the recently determined forms.
The equation Kaup-Newell [15] has various forms. The equations can be modified to each other by
Guage transformation [16]. Transformations can not sustain the reduction in the dispersion
issue [17–20]. Conditions and integrations are highly dynamic and cannot be precisely planned. They
need impartial investigation, therefore. In order to overcome these categorized NLSEs, a large
number of numerical and exact moving wave mathematical schemes have been identified [21–43].

In this paper we consider the Hamiltonian amplitude equation with the M-truncated order “µ” given
by [44]

iDµ,ζ
M,xχ + D2µ,ζ

M,t χ − 2σ|χ|2χ − δDµ,ζ
M,tD

µ,ζ
M,xχxt = 0, 0 < µ ≤ 1, (1.1)

where σ±1 is the coefficient of the nonlinear term, δ < 1 is the coefficients of the dispersionless term, ζ
is a nonzero real number, and Dµ,ζ

M,∗χ represents the truncated M-fractional derivative of χ with respect
to x and/or t. Non-linearity arises when the change of the output is not proportional to the change of
the input. Dispersion means that waves of different wavelength propagate at different phase velocities.
The phase velocity of a wave is the rate at which the wave propagates in some medium. This is the
velocity at which the phase of any one frequency component of the wave travels. Studies have shown
that when the dispersion effect and nonlinear effect of the medium reach a stable equilibrium, the pulse
can maintain its shape and velocity in the form of solitons during the transmission process [45].

Equation (1.1) was introduced in [46]. The term χ(x, t) is the unknown complex envelope function
of x and t. This equation governs certain instabilities of modulated wave trains; the addition of the term
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−δχxt overcomes the ill-posedness of the unstable NLSEs. The equation is apparently not integrable,
but a Hamiltonian analogue of the Kuramoto–Sivashinsky equation, which arises in dissipative system.

2. Applications

Here, we acquire the optical solitons of the Hamiltonian amplitude equation with M-truncated
derivative by using the extended sinh-Gordon equation expansion method [47] and the and the
extended rational sine-cosine/sinh-cosh methods [48].

Consider the following fractional wave transformation:

χ(x, t) = φ(ξ)eiϕ, ξ =
ηΓ(ζ + 1) (qtµ + Pxµ)

µ
, ϕ =

Γ(ζ + 1) (rxµ + ρtµ)
µ

. (2.1)

Plugging Eq (2.1) into (1.1), provides the following nonlinear ordinary differential equation

η2q(δP − q)φ′′ + 2σφ3 + (ρ2 − δρr + r)φ = 0 (2.2)

from the real part, and the constraint condition

q =
δρP − P
2ρ − δr

. (2.3)

from the imaginary part.

2.1. Application of the extended sinh-Gordon equation expansion method

Here, we present the application of the extended sinh-Gordon equation expansion method to (1.1).
Balancing the terms φ′′ and φ3, we get n = 1. With n = 1, we have the following test functions [47]:

φ(θ) = γ1 sinh(θ) + λ1 cosh(θ) + λ0, (2.4)

φ(ξ) = ±γ1 i sech(ξ) ± λ1 tanh(ξ) + λ0, (2.5)

and
φ(ξ) = ±γ1 csch(ξ) ± λ1 coth(ξ) + λ0. (2.6)

Plugging Eq (2.4) and its second derivative alongside θ′ = sinh(θ) into Eq (2.2), provides an equation
with hyperbolic functions power. We collect a set of algebraic equations by equating each summation
of the coefficients of the hyperbolic functions of the same power to zero. We simplify the set of
algebraic equations and secured the values of the parameters involved. To reach the solutions of
Eq (1.1), we substitute the values of the parameters into any of Eqs (2.5) and (2.6).
I: For

λ0 = 0, λ1 = −

√
−

(
ρ2 − δρr + r

)
√

2
√
σ

, γ1 = −

√
−

(
ρ2 − δρr + r

)
√

2
√
σ

, η = −

√
−2ρ2 + 2δρr − 2r√

q(q − δP)
,
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we reveal the combined dark-bright soliton

χ1.1(x, t) =
1
2

√
| − 2ρ2 + 2δρr − 2r|

σ

(
tanh


Γ(ζ + 1)

√
| − 2ρ2 + 2δρr − 2r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


−isech


√
| − 2ρ2 + 2δρr − 2r|

(
Γ(ζ + 1)

(
tµ(δρP−P)

2ρ−δr + Pxµ
))

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣

)
e

iΓ(ζ+1)(rxµ+ρtµ)
µ

(2.7)

and the combined singular soliton

χ1.2(x, t) =
1
2

−
√
| − 2ρ2 + 2δρr − 2r|

σ

 ( − coth


Γ(ζ + 1)

√
| − 2ρ2 + 2δρr − 2r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


−csch


Γ(ζ + 1)

√
| − 2ρ2 + 2δρr − 2r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣

)
e

iΓ(ζ+1)(rxµ+ρtµ)
µ .

(2.8)

II: For

λ0 = 0, λ1 = 0, γ1 = −

√
ρ2 − δρr + r
√
σ

, η = −

√
ρ2 − δρr + r√
q(q − δP)

,

we reveal the bright soliton

χ2.1(x, t) = −

√
−ρ2 + δρr − r

σ
sech


Γ(ζ + 1)

√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ (2.9)

and the singular soliton

χ2.2(x, t) =

√
ρ2 − δρr + r

σ
csch


Γ(ζ + 1)

√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ . (2.10)
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III: For

λ0 = 0, λ1 =
i
√
ρ2 − δρr + r
√

2
√
σ

, ; γ1 = 0; η =

√
ρ2 − δρr + r√
2δqP − 2q2

,

we get the dark soliton

χ3.1(x, t) =

√
−
ρ2 − δρr + r

2σ
tanh

Γ(ζ + 1)
√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ
√∣∣∣∣2δP(δρP−P)

2ρ−δr −
2(δρP−P)2

(2ρ−δr)2

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ (2.11)

and the singular soliton

χ3.2(x, t) =

√
−
ρ2 − δρr + r

2σ
coth

Γ(ζ + 1)
√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ
√∣∣∣∣2δP(δρP−P)

2ρ−δr −
2(δρP−P)2

(2ρ−δr)2

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ . (2.12)

2.2. Application of the extended rational sine-cosine/sinh-cosh methods

Here, we present the application of the extended rational sine-cosine/sinh-cosh methods to (1.1).
Consider the following as the first test function to Eq (2.2):

φ(ξ) =
λ0 sin(ξ)

λ2 + λ1 cos(ξ)
. (2.13)

Putting Eq (2.13) into Eq (2.2), provides a polynomial functions. Setting the coefficients of the powers
of cos(ξ) gives a system of algebraic equations. Solving the set of algebraic equations provides the
following set of values to the unknown coefficients:
I: For

λ0 = −
iλ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = 0, η = −

√
ρ2 − δρr + r
√

2
√

q(q − δP)
,

we reveal the singular periodic wave solution

χI(x, t) =

√
−

r(δρ − 1) − ρ2

2σ
tan


Γ(ζ + 1)

√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

√
2µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ . (2.14)

II: For

λ0 =
iλ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = λ1, η = −

√
2
√
ρ2 − δρr + r√
q(q − δP)

,

we reveal the singular periodic wave solution

AIMS Mathematics Volume 6, Issue 9, 9207–9221.
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χII(x, t) = −

√
−

r(δρ−1)−ρ2

2σ sin


√

2Γ(ζ+1)
√
|ρ2−δρr+r|

(
tµ(δρP−P)

2ρ−δr +Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


cos


√

2Γ(ζ+1)
√
|ρ2−δρr+r|

( tµ(δρP−P)
2ρ−δr +Pxµ

)
µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 + 1

e
iΓ(ζ+1)(rxµ+ρtµ)

µ . (2.15)

Consider the following as the second test function to Eq (2.2):

φ(ξ) =
λ0 cos(ξ)

λ2 + λ1 sin(ξ)
. (2.16)

Putting Eq (2.16) into Eq (2.2), provides a polynomial functions. Setting the coefficients of the powers
of sin(ξ) gives a system of algebraic equations. Solving the set of algebraic equations provides the
following set of values to the unknown coefficients:
I: For

λ0 = −
iλ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = 0, η = −

√
ρ2 − δρr + r
√

2
√

q(q − δP)
,

we reveal the singular periodic wave solution

χI(x, t) =

√
−

r(δρ − 1) − ρ2

σ
cot


Γ(ζ + 1)

√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

√
2µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ . (2.17)

II: For

λ0 = −
iλ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = λ1, η = −

√
2
√
ρ2 − δρr + r√
q(q − δP)

,

we reveal the singular periodic wave solution

χII(x, t) = −

√
−

r(δρ−1)−ρ2

2σ cos


√

2Γ(ζ+1)
√
|ρ2−δρr+r|

(
tµ(δρP−P)

2ρ−δr +Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


1 − sin


√

2Γ(ζ+1)
√
|ρ2−δρr+r|

( tµ(δρP−P)
2ρ−δr +Pxµ

)
µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


e
iΓ(ζ+1)(rxµ+ρtµ)

µ . (2.18)

Consider the following as the third test function to Eq (2.2):
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φ(ξ) =
λ0 sinh(ξ)

λ2 + λ1 cosh(ξ)
. (2.19)

Putting Eq (2.19) into Eq (2.2), provides a polynomial functions. Setting the coefficients of the powers
of cosh(ξ) gives a system of algebraic equations. Solving the set of algebraic equations provides the
following set of values to the unknown coefficients:
I: For

λ0 =
λ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = 0, η = −

√
ρ2 − δρr + r√
2δqP − 2q2

,

we reveal the dark soliton

χI(x, t) = −

√∣∣∣∣r(δρ − 1) − ρ2

2σ

∣∣∣∣ tanh

Γ(ζ + 1)
√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ
√∣∣∣∣2δP(δρP−P)

2ρ−δr −
2(δρP−P)2

(2ρ−δr)2

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ . (2.20)

II: For

λ0 = −
λ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = λ1; η = −

√
−2ρ2 + 2δρr − 2r√

q(q − δP)
,

we reveal the periodic wave solution

χII(x, t) =

√
r(δρ−1)−ρ2

2σ sinh

Γ(ζ+1)
√
|−2ρ2+2δρr−2r|

(
tµ(δρP−P)

2ρ−δr +Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


cosh

Γ(ζ+1)
√
|−2ρ2+2δρr−2r|

( tµ(δρP−P)
2ρ−δr +Pxµ

)
µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 + 1

e
iΓ(ζ+1)(rxµ+ρtµ)

µ . (2.21)

Consider the following as the fourth test function to Eq (2.2):

φ(ξ) =
λ0 cosh(ξ)

λ2 + λ1 sinh(ξ)
. (2.22)

Putting Eq (2.22) into Eq (2.2), provides a polynomial functions. Setting the coefficients of the powers
of sinh(ξ) gives a system of algebraic equations. Solving the set of algebraic equations provides the
following set of values to the unknown coefficients:
I: For

λ0 = −
λ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = 0; η = −

√
ρ2 − δρr + r√
2δqP − 2q2

,

we reveal the singular soliton
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χI(x, t) =

√
r(δρ − 1) − ρ2

2σ
coth

Γ(ζ + 1)
√
|ρ2 − δρr + r|

(
tµ(δρP−P)

2ρ−δr + Pxµ
)

µ
√∣∣∣∣2δP(δρP−P)

2ρ−δr −
2(δρP−P)2

(2ρ−δr)2

∣∣∣∣
 e

iΓ(ζ+1)(rxµ+ρtµ)
µ . (2.23)

II: For

λ0 =
λ1

√
r(δρ − 1) − ρ2

√
2
√
σ

, λ2 = −iλ1, η = −

√
−2ρ2 + 2δρr − 2r√

q(q − δP)
,

we reveal the periodic wave solution

χII(x, t) =

√
r(δρ−1)−ρ2

2σ cosh

Γ(ζ+1)
√
|−2ρ2+2δρr−2r|

(
tµ(δρP−P)

2ρ−δr +Pxµ
)

µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣


− sinh

Γ(ζ+1)
√
|−2ρ2+2δρr−2r|

( tµ(δρP−P)
2ρ−δr +Pxµ

)
µ

√∣∣∣∣ (δρP−P)
(
δρP−P
2ρ−δr −δP

)
2ρ−δr

∣∣∣∣
 − i

e
iΓ(ζ+1)(rxµ+ρtµ)

µ . (2.24)

3. Physical interpretation

As it was presented in the preceding section, two analytical approaches were used in securing the
optical solitons to the fractional Hamiltonian amplitude equation. To have a clear physical view to the
features of the reported results in this study, numerical simulations are performed via the 3-dimensional
and contour graphs by a careful choice of the parameters’ values involved. The dynamics of the
reported solutions is analyze based on the choice of the fractional values µ.

Figure 1 displays the shape of bright-soliton at µ = 1. When µ = 0.7, solution (2.9) maintains its
dark-soliton shape with shork-shock, and changes to short-shock waves at µ = 0.5. Figure 2 displays
the shape of dark-soliton at µ = 1. When µ = 0.9, solution (2.11) maintains its bright-soliton shape
with shork-shock, and changes to short-shock waves at µ = 0.5. Figure 3 portrays the shock-periodic
wave shape at three different fractional values of µ.
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Figure 1. The 3-dimensional and contour graphs of solution (2.9) at r = 1, δ = 0.9, ρ =

0.62, P = 0.86, σ = −1, ζ = 3.57, and different fractional values of µ, for (a,d) µ = 1, for
(b,c) µ = 0.7, for (c,f) µ = 0.5.
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Figure 2. The 3-dimensional and contour graphs of solution (2.11) at r = 1.71, δ = 0.5, ρ =

−0.54, P = 0.44, σ = 1, ζ = 1.33, and different fractional values of µ, for (a,d) µ = 1, for
(b,c) µ = 0.9, for (c,f) µ = 0.5.
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Figure 3. The 3-dimensional and contour graphs of solution (2.21) at r = 1.71, δ = −2, ρ =

−0.54, P = 0.44, σ = −1, ζ = 1.33, and different fractional values of µ, for (a,d) µ = 1, for
(b,c) µ = 0.85, for (c,f) µ = 0.56.
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4. Results and discussion

We investigated the Hamiltonian amplitude equation that governs certain instabilities of modulated
wave trains. We have successfully reached some important wave solutions to this nonlinear model
such as the dark, bright, combined dark-bright, singular solitons, periodic and singular periodic wave
solutions. It is known that dark soliton describes the solitary waves with lower intensity than the
background, bright soliton describes the solitary waves whose peak intensity is larger than the
background and the singular soliton solutions is a solitary wave with discontinuous derivatives;
examples of such solitary waves include compactions, which have finite (compact) support, and
peakons, whose peaks have a discontinuous first derivative [49, 50].

Moreover, results presented in this study have some important physical meaning, for instance, the
hyperbolic sine arises in the gravitational potential of a cylinder and the calculation of the Roche
limit, the hyperbolic cosine function is the shape of a hanging cable (the so-called CATENARY),
the hyperbolic tangent arises in the calculation of magnetic moment and rapidity of special relativity,
the hyperbolic secant arises in the profile of a laminar jet and the hyperbolic cotangent arises in the
Langevin function for magnetic polarization [51].

5. Conclusions

In this study the Hamiltonian amplitude equation have been investigated comprehensively with the
aid of two efficient analytical schemes namely; the extended sinh-Gordon equation expansion method
and the and the extended rational sine-cosine/sinh-cosh methods. To this end, so many different
solitons and other solutions with an interesting behavior have been established. The physical
characteristics of the acquired solutions are plotted in order to provide a good perspective of their
features. To investigate the interpretation of complex physical phenomena, the results obtained can be
used in different branches of science. It is also worth noting that the original equation has been
satisfied by all the recorded solutions. The two techniques are very vehement in constructing novel
solutions to nonlinear partial differential equations.
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41. L. Akinyemi, M. Şenol, H. Rezazadeh, H. Ahmad, H. Wang, Abundant optical soliton solutions
for an integrable (2+1)-dimensional nonlinear conformable Schrodinger system, Results Phys., 25
(2021), 104177.

42. J. C. He, Z. Y. Cong, Comment on revision of Kaup-Newell’s works on IST for DNLS equation,
Commun. Theor. Phys., 50 (2008), 1369–1374.

43. M. O. Al-Amr, New applications of reduced differential transform method, Alex. Eng. J., 53 (2014),
243–247.

44. S. Kumar, K. Singh, R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude
equation: Lie classical approach and (G′/G)-expansion method, Pramana-J. Phys., 79 (2012),
41–60.

45. C. Y. Yang, W. Y. Li, W. T. Yu, M. L. Liu, Y. J. Zhang, G. L. Ma, et al., Amplification, reshaping,
fission and annihilation of optical solitons in dispersion decreasing fiber, Nonlinear Dynam., 92
(2018), 203–213.

46. M. Wadati, H, Segur, M. J. Ablowitz, A new Hamiltonian amplitude equation governing modulated
wave instabilities, J. Phys. Soc. Jpn., 61 (1992), 1187.

47. X. L. Yang, J. S. Tang, Travelling wave solutions for Konopelchenko-Dubrovsky equation using an
extended sinh-Gordon equation expansion method, Commun. Theor. Phys., 50 (2008), 1047.

48. N. Mahaka, G. Akram, Extension of rational sine-cosine and rational sinh-cosh techniques to
extract solutions for the perturbed NLSE with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019),
159.

49. A. C. Scott, Encyclopedia of nonlinear science, Routledge, Taylor and Francis Group, New York,
2005.

50. P. Rosenau, What is a Compacton?, Notices of the AMS, 52 (2005), 738–739.

51. E. W. Weisstein, Concise Encyclopedia of Mathematics, New York: CRC Press, 2002.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 9, 9207–9221.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Applications
	Application of the extended sinh-Gordon equation expansion method
	Application of the extended rational sine-cosine/sinh-cosh methods

	Physical interpretation
	Results and discussion
	Conclusions

