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Abstract: This paper argues that any economic phenomena should be observed by two different 

scales, and any economic laws are scale-dependent. A one-scale law arising in either 

macroeconomics or microeconomics might be mathematically correct and economically relevant, 

however, sparking debates might arise for a different scale. This paper re-analyzes the basic 

assumptions of the Evans model for dynamic economics, and it concludes that they are quite 

reasonable on a large time-scale, but the assumptions become totally invalid on a smaller scale, and a 

fractal modification has to be adopted. A two-scale price dynamics is suggested and a fractal 

variational theory is established to maximize the profit at a given period. Furthermore Evans 1924 

variational principle for the maximal profit is easy to be solved for a quadratic cost function using 

the Lagrange multiplier method. Here a quadratic-cubic cost function and a nonlinear demand 

function are used, and the stationary condition of the variational formulation is derived step by step, 

and a more complex dynamic system is obtained. The present derivation process can be extended to a 

more complex cost function and a more complex demand function, and the paper sheds a promising 

light on mathematics treatment of complex economic problems. 
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1. Introduction  

In 1924, Evans [1] suggested a dynamical model for monopoly, and the economic dynamics was 

then born [2–5]. Evans was a mathematician, his PhD thesis was on Volterra’s integral equations, 

which are now widely applied to various engineering problems [6], and he had a chance to work with 

the famous Italian mathematician, Vito Volterra (May 5, 1860~October 11, 1940), from 1910 to 1912. 

In 1920, Evans turned his interest to economics [3], and his theory shed a promising and challenging 

light in dynamic economics. Paul A. Samuelson (May 15, 1915~December 13, 2009) [7–10], a 

famous American economist, further developed Evans theory, and obtained the Nobel Prize in 

Economic Sciences in 1970 due to his contribution to the dynamic economics. 

Evans [1] took for granted the following quadratic cost function 

2

0 1 2+ +C a a Q a Q= ,         (1) 

and a well-defined market demand function, 

0 1 2( )
dP

Q b b P t b
dt

= − + ,         (2) 

where C is the cost function, Q is the demand function, P is the price, 
ia (i=0,1,2) and 

ib (i=0,1,2) 

are constants.  

The profit is then obtained as 

2 3

0 1 2 3L R C PQ C PQ a a Q a Q a Q= − = − = − − − − .    (3) 

Here R=PQ is the gross income function. The Evans model is to maximize the profit at a period of 

T [1]: 

2

0 1 2
0 0

( ) ( ) ( ) max.
T T

J P PQ C dt PQ a a Q a Q dt= − = − − − →      (4) 

The Evans model is to choose an optimal path among all admissible paths from an initial time to a 

terminal time. A detailed introduction to mathematical economics is available in [11,12], where 

complex economic problems are explained using simple mathematical concepts. 

2. Two-scale price dynamics 

In Eq (2), the demand function depends upon the price dynamics by assuming that the price 

changes smoothly, however, the price change is discontinuous and a fractal modification is needed [13]. 

Fractal models can describe many discontinuous problems using a two-scale fractal derivative [14–16]. 

2.1. Two-scale dynamic economics 

The initial concept for the two-scale economic theory was suggested in 2020 [17], which was to 

bridge the macro-economics and the micro-economics using two different scales. The two-scale 

theory argues that any economic phenomena should be described by the two different scales so that a 

more reasonable decision can be made than those by a single scale.  

Beginning with the two-scale dynamic model, we introduce first a famous Chinese economist, 

Ma Yin-Chu (June 24, 1882~May 10, 1982), his population theory led to China’s family planning in 
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a period from 1980 to 2016, that was a couple had only one child. The family planning became a 

basic state policy in China for many years. Ma concluded that China’s population grew exponentially, 

and there would be a serious population explosion if no family planning was carried out. Ma’s 

population model can be written as 

dx
kx

dt
= , 0(0)Q Q= ,          (5) 

where x is the population, k is the population growth ratio, 
0x  is the initial population. Eq (5) leads 

to the following result 

0

ktx x e= .            (6) 

Ma’s assumption is correct for a large scale, but when the measured scale becomes smaller, the 

population grows in a zig-zag form, so the population is not a smooth function of time, ( )x t , 

actually it is non-differentiable with respect to time, the change path is similar to a coastline, which 

can be modelled by the fractal theory [18,19]. When a man walks along the coastline, its motion 

property depends on the fractal dimension of the coastline and the man’s step length. Any 

discontinuity within the step length is ignored. We assume that the step length is x , if there is 

a groove with a width less than x , then the groove is ignored. However, when the groove’s width is 

larger than x , the man has to walk along the groove’s boundary to the opposite point. Similar to 

the coastline motion, the price can be expressed as [20] 

( , )P P t t=  ,           (7) 

where   is the two-scale fractal dimension of time [20], t  is the minimal time scale to measure 

the price change. 

As an illustrative example, we consider the change of a share price within one year. If we 

measure the change using a scale of one year, we can assume that the price changes linearly and 

smoothly. If we observe its change using a scale of a quarter, it is mixed, and has a simple zig-zag 

path. If the scale reduces further, the price change becomes totally non-differentiable. So the 

prediction of the share price depends upon the measured scale and the path’s fractal dimension. 

When the measure scale is fixed, the price can be expressed as 

( )P P t= .            (8) 

A modification of Eq (6) can be written as 

0 exp( )x x kt= .           (9) 

It is obvious that the fractal dimension affects greatly the population as illustrated in Figure 1. 
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Figure 1. Population change with respect to different fractal dimensions (k=1,
0 =1Q ). 

2.2. Two-scale price dynamics 

Considering the price is non-differential with t, but it is differential with respect to t  for given 

time scale, so Eq (2) can be modified as 

0 1 2( )
dP

Q b b P t b
dt

= − + ,         (10) 

where the fractal derivative is defined as [20] 

0

0

0

( ) ( )
= (1+ ) lim , 0 2

( )t t t

P t P tdP

dt t t 
 

− →

−
  

−
.     (11) 

The gamma function is defined as 
0

(1+ )= tt e dt


−  , when  is a natural number, 

(1+ )=1 2 3 = !      L . The fractal derivative is now widely used to model various 

discontinuous problems [21–29]. 

In order to maximize the profit, the fractal variational theory [30] has to be used. Now fractal 

variational principle is a hot topic in mathematics and engineering [31–34]. The fractal variational 

principle for the maximal profit becomes 

2

0 1 2
0 0

( ) ( ) ( ) max.
T T

J P PQ C dt PQ a a Q a Q dt
 

 

 = − = − − − →     (12) 

Taking the first-order variation to Eq (12), we have 

 1 2 1 2
0 0

( ) ( + 2 ) ( 2 )
T T

J P P Q Q P a Q a Q Q dt Q P P a a Q Q dt
 

 

       = − − = + − −  . (13) 

According to Eq (10), the first-order variation of Q is 



9198 

AIMS Mathematics  Volume 6, Issue 9, 9194–9206. 

1 2 1 2 ( )
dP d

Q b P b b P b P
dt dt 

    = − + = − + .     (14) 

Substituting Eq (14) into Eq (13) results in 

   
 

 

1 2 1 2
0

2 1 2

1 1 2 2 1 2
0

2 1 2

1 1 2 2
0

( ) ( 2 )( ( ))

( 2 )
( 2 ) ( ( 2 )

( 2 )
( 2 ) + ( (

T

T

T

d
J P Q P P a a Q b P b P dt

dt

d b P a a Qd
Q b P a a Q P b P a a Q P P dt

dt dt

d b P a a Q
Q b P a a Q P dt b P a

dt



















 





   

  



 
= + − − − + 

 

 − − 
= − − − + − − − 

  

  − − 
= − − − − −  

    





   
T

1 2 0
2 )a Q P P




 −

 (15) 

We consider the following initial and terminal conditions 

0(0 )P P = ,          (16) 

( ) TP T P = ,          (17) 

where P0 and PT are constants. So we have 

(0 ) 0P  = ,          (18) 

( ) 0P T = .          (19) 

Setting the first-order variation of J to zero, we have 

 2 1 2

1 1 2
0

( 2 )
( ) ( 2 ) =0

T d b P a a Q
J P Q b P a a Q P dt

dt








 

  − − 
= − − − −  

   
 .  (20) 

We, therefore, obtain the following Euler-Lagrange equation 

 2 1 2

1 1 2

( 2 )
( 2 ) 0

d b P a a Q
Q b P a a Q

dt 
− −

− − − − = ,     (21) 

or 

2 1 1 1 1 2 2 2(1 2 ) + 2 0
dP dQ

a b Q b P a b b a b
dt dt 

+ − − + = .     (22) 

In view of Eq (10), we have 

2

2 1 0 1 2 1 1 1 2 2 2 1 2 2
(1 2 )( ) + 2 ( ) 0

dP dP dP d P
a b b b P b b P a b b a b b b

dt dt dt dt   
+ − + − − + − + = . (23) 

Simplifying Eq (23) results in 

2
2

2
0

d P
P A

dt 
− + = ,          (24) 

where 
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2 1 2 1

2

2 2

2 (1 )
=

2

b a b

a b


+
,          (25) 

0 2 1 1 1

2

2 2

(1 2 )+

2

b a b a b
A

a b

+
= .         (26) 

Eq (24) with boundary conditions of Eqs (16) and (17) can be easily solved, which reads 

2
exp( ) exp( )

A
P m t n t  


= + − + ,       (27) 

where m and n are constants which can be determined by the boundary conditions of Eqs (16) and 

(17): 

02
=

A
m n P


+ + ,           (28) 

2
exp( ) exp( ) T

A
m T n T P  


+ − + = .       (29) 

3. Quadratic-cubic cost function 

Evans suggested a variational theory for dynamical economics in 1924 [1], which is to 

maximize the profit at the period of T. Using the Lagrange multiplier method [35], the constraints of 

Eqs (1) and (2) can be eliminated, the augmented variational functional is 

2

0 1 2 0 1 2
0

( , , , , ) + ( ) ( ( ) )
T dP

J P Q C PQ C C a a Q a Q Q b b P t b dt
dt

   
 

= − − − − + − + − 
 

 , (30) 

where ,   are Lagrange multipliers. The stationary conditions with respect to P, Q and C are, 

respectively, as follows 

1 2+ 0
d

Q b b
dt


 + = ,          (31) 

1 2+ ( 2 ) 0P a a Q − − + = ,         (32) 

1+ 0− = .            (33) 

From Eqs (32) and (33), we have 

1 2+ 2P a a Q = − + .         (34) 

So Eq (31) becomes 

1 1 2 2 2 2+ ( + 2 ) +2 0
dP dQ

Q b P a a Q b a b
dt dt

− + − = .      (35) 

In view of Eq (1), we obtain the following differential equation for P: 
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2
2

1 1 0 2 1 1 2 1 2 2 2
(1 2 ) 2 (1 ) +2 0

d P
a b b a b b a b P a b

dt
+ + − + = .    (36) 

This is a linear differential equation, and its solution can be easily obtained for the given 

boundary conditions P(0)=P0 and P(T)=PT. 

3.1. Quadratic-cubic cost function 

The quadratic cost function leads to a linear differential equation given in Eq (36), generally the 

cost function can be expressed as 

0

N
n

n

i

C a Q
=

= .          (37) 

This will result in a complex nonlinear differential equation. Here we use a quadratic-cubic cost 

function to show the derivation process. 

2 3

0 1 2 3+ + +C a a Q a Q a Q= ,         (38) 

The variational principle becomes 

2 3

0 1 2 3
0 0

( ) ( ) ( ) max.
T T

J P PQ C dt PQ a a Q a Q a Q dt= − = − − − − →     (39) 

Using the Lagrange multiplier method, we have 

2 3

0 1 2 3 0 1 2
0

( , , ) + ( )
T dP

J P Q PQ a a Q a Q a Q Q b b P b dt
dt

 
 

= − − − − − + − 
 

    (40) 

where   is the Lagrange multiplier. The stationary conditions are 

1 2+ 0
d

Q b b
dt


 + = ,         (41) 

2

1 2 32 3 + 0P a a Q a Q − − − = .        (42) 

From Eq (42), the multiplier can be identified as 

2

1 2 3= ( 2 3 )P a a Q a Q − − − − .       (43) 

Eq (41) becomes 

2

1 1 2 3 2 2 3( 2 3 ) ( 2 3 ) 0
dP dQ dQ

Q b P a a Q a Q b a a Q
dt dt dt

− − − − + − + + = .   (44) 

Replacing Q in Eq (44) by Eq (2), we can obtain a differential equation of P.  

The Lagrange multiplier method always works, but sometimes it might fail, see detailed 

discussion in [35]. We can also obtain Eq (18) without using the Lagrange multiplier. The 

Euler-Lagrange equation can be obtained from the following equation 

2

1 2 3
0

( ) ( + 2 3 ) 0
T

J P P Q Q P a Q a Q Q a Q Q dt     = − − − = .    (45) 
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From Eq (2), we have 

1 2 ( )Q b P b P t   = − + .        (46) 

Substituting Eq (46) into Eq (45) gives 

 2

1 2 3 1 2
0

2 2

1 1 2 3 2 1 2 3
0

2 2

1 1 2 3 2 1 2 3
0

2

2 1 2 3

( ) +( 2 3 )( )

= ( 2 3 ) ( 2 3 )

= ( 2 3 ) ( 2 3 )

+ ( 2 3 )

T

T

T

J P Q P P a a Q a Q b P b P dt

d
Q b P a a Q a Q P b P a a Q a Q P dt

dt

d
Q b P a a Q a Q P b P a a Q a Q P dt

dt

b P a a Q a Q

   

 

 

= − − − − +

 
 − − − − + − − −  
 

 
   − − − − − − − −    
 

 − − −







 
0

2 2

1 1 2 3 2 1 2 3
0

= ( 2 3 ) ( 2 3 )

=0

t T

t

T

P

d
Q b P a a Q a Q b P a a Q a Q Pdt

dt





=

=


 
   − − − − − − − −    
 



.  (47) 

In the above derivation, we use (0) ( ) 0P P T = = . From Eq (47), we obtain the following 

equation 

2 2

1 1 2 3 2 1 2 3( 2 3 ) ( 2 3 ) =0
d

Q b P a a Q a Q b P a a Q a Q
dt
 − − − − − − − −  ,   (48) 

which is exactly same as Eq (44). 

Submitting Eq (2) into Eq (44), we obtain the following nonlinear differential equation: 

2

0 1 2 1 1 1 2 1 0 1 2 3 1 0 1 2

2 2 2 1 2 3 2 0 1 2 1 2

+ +2 ( )+3 ( )

'+2 ( )+6 ( )( )=0

b b P b P b P a b a b b b P b P a b b b P b P

b P a b b P b P a b b b P b P b P b P

  − + − − + − +

    − − + − + − +
   (49) 

Simplifying Eq (49) leads to following one 

2 2

0 1 2 3 00 11 02 12 0A P A P A P A A P A P A PP A P P     + + + + + − + = ,   (50) 

where the coefficients are given as 

2

0 2 3 0 2

1 2 2 1 2 3 0 1 2 2 2 1 2 3 0 1 2

2 1 2 1 3 0 1

2

3 0 1 1 2 0 1 3 0 1

3

00 3 1

2

11 3 1 2

2

02 3 1 2

2 3

12 1 2 3 1 2 3 2

=2( +3 )

= 2 6 2 6

= 2 (1 3 )

= + +2 +3

=3

= 3

= 6

= 2 +6 6

A a a b b

A b a b b a b b b b a b b a b b b

A b a b a b b

A b a b a b b a b b

A a b

A a b b

A a b b

A b b a b b a b

+ + − − −

− + +

−

−

− +

     (51) 

This equation with given initial and terminal conditions, P(0)=P0 and P(T)=PT, can be 

approximately solved by either the variational iteration method [36,37] or the homotopy perturbation 
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method [38–45]. 

3.2. Nonlinear demand function 

In this paper we consider the following nonlinear demand function 

2 2

00 10 20 01 02 11( )Q t b b P b P b P b P b PP  = − + + + + ,     (52) 

where ijb  (i=0,1; j=0,1) are constants. 

The first variation of Q is 

10 20 01 02 11 11

10 20 11 01 02 11

( ) 2 2 '

=( 2 ) ( 2 )

Q t b P b P P b P b P P b P P b P P

b b P b P P b b P b P P

      

 

   = − + + + + +

  − + + + + +
  (53) 

Substituting Eq (53) into Eq (47) results in 





 

 

2

1 2 3 10 20 11
0

01 02 11

2

1 2 3 10 20 11
0

2

1 2 3 01 02 11
0

( ) ( 2 3 ) ( 2 )

( 2 )

+( 2 3 )( 2 )

+ ( 2 3 )( 2 )

0

T

T

T

J P Q P P a a Q a Q b b P b P P

b b P b P P dt

Q P a a Q a Q b b P b P P dt

P a a Q a Q b b P b P P dt

  







= + − − − − + +

 + + +

  = − − − − + + 

  − − − + + 

=







   (54) 

Proceeding a similar way as above, we can obtain the following Euler-Lagrange equation 

 

2

1 2 3 10 20 11

2

1 2 3 01 02 11

+( 2 3 )( 2 )

( 2 3 )( 2 ) 0

Q P a a Q a Q b b P b P

d
P a a Q a Q b b P b P

dt

− − − − + +

− − − − + + =
    (55) 

Solving the nonlinear system of Eqs (52) and (55), we can find the solution of P and Q. 

4. Discussion and conclusions 

The one child policy was mathematically correct according to Ma Yinchu’s population theory as 

discussed above, however, Ma’s basic assumption used a large scale and a smooth population growth 

was obtained, however it becomes invalid for a smaller scale, and various debates arose [46–49]. As 

an illustrative example, we consider a seedling’s growth. When we measure its height every year, it 

grows exponentially, however its prediction deviates greatly, and its error becomes infinitely large 

when time tends to infinity. This deviation arises in its large-scale observation. When we measure its 

height every hour, we can find it stops growing at the night period; if we use a scale of a month, we 

find it stops growing during winter. So the law for the seedling’s growth is scale-dependent, any a 

law based on a single scale assumption will derivate remarkably when observed on a different scale.  

Now we turn to Ma’s population theory, it has sparked furious uproars. In view of the two-scale 

theory, its findings must be flawed on a different scale. The two-scale economics can avoid many 

unnecessary debates.  

To be concluded, this paper, for the first time ever, suggests the basic concepts for a promising 
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two-scale economic theory, all economic laws are scale-dependent. A decision based on a 

single-scale economic law will lead to a large derivation on a different scale, two scales are a must 

for analysis of many economic phenomena, and seeing with a single scale is always 

unbelieving [50–53]. 

Generally the cost function can be written as 

0

N
n

n

i

C a Q
=

= ,           (56) 

and the demand function can be expressed as 

00 0 0

1 1 1 1

( ) ( ) ( )
N M N M

n m n m

n m nm

n m n m

dP dP
Q t b b P b b P

dt dt 
= = = =

= − + +   .    (57) 

This paper shows that the variational principle can deal with complex economic problems with 

ease. An oversimplification assumption might lead to a simple equation as given in Eq (36), but it 

might lose some important facts for future prediction. This paper provides economists with a 

powerful mathematical tool to analysis of complex economic problems. 
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