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Abstract: In the process of large-scale wind farms integration, the time delay is usually caused
by the introduction of wide area control signal, which leads to the unstable operation of integrated
transmission system. In order to solve this problem, using the control principle of interconnection
and damping assignment passivity-based (IDA-PB), this paper puts forward a control method which
applies voltage source converter high voltage direct current (VSC-HVDC) technology to the integrated
system of time-delay wind farm and keeps the system running stably. In this method, the framework
of time-delay port controlled Hamiltonian (PCH) system is constructed, and the energy shaping of the
system is carried out by extending the IDA-PB control principle, thus the feedback controller of the
system is designed. Around the problem of time-delay stabilization, the stability criterion is obtained
by constructing Lyapunov-Krasovskii functional and introducing free weighting matrices. Finally, the
simulation results show that the proposed method can effectively solve the time delay problem of the
integrated transmission system and avoid the performance deterioration of the system.
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1. Introduction

At present, the magnitude of wind farms in China has reached tens of millions, and large-scale wind
farms are usually located at the far end of the load center. Considering the economy and reliability of
grid connection, VSC-HVDC technology is a good technical choice. As a commutation-modulated
direct current transmission technology with many advantages [1,2], VSC-HVDC technology has been
used in the grid-connection process of many wind farm systems [3–5]. However, the power input of
remote large-scale wind farm will cause power oscillation between power grids. Wide area damping
control can suppress the oscillation, but it will also lead to the existence of time-delay factors in the
wind farm side [6–9], making the wind generation system outputs voltage with time-delay, affecting
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the performance of the wind farm integrated VSC-HVDC system, and even leading to the system out
of control. In order to avoid this kind of situation, it is necessary to choose an appropriate control
method to ensure the stable operation of the integrated system.

In recent years, many scholars have studied the control problems of time-delay systems [10–13],
and have even obtained some results on practical systems, including robotic systems [14–16], aircraft
control systems [17, 18], vehicle control systems [19–21], and power systems [22–27]. In the research
field of power systems, when considering the time delay factor, [22] has proposed a control method
which can ensure the stable operation of the electrical system when using wide area control. In [24],
the H∞ control problem of electrical systems is investigated in the case of considering more than one
time delay. The problem of time-delay stabilization for multi-region electrical systems is considered
in [25] when the frequency of the controller is constrained. References [26, 27] make different studies
on the stability of power load frequency control system with time delay, and the corresponding
stability conclusions are obtained. Most of the existing research results are processed by approximate
linearization of the actual power system, which inevitably deviates from the attributes of the actual
system itself, and the designed controller is not completely suitable for the original actual power
system. Therefore, it is indispensable to adopt a system model which can fully express and maintain
the structural characteristics of the original system in order to put forward a more suitable controller
design scheme.

As a special passive nonlinear processing method, the control method based on PCH model has
certain control flexibility and brilliant application characteristics, and has been widely used in the
research of practical systems [28–36]. In [32], the rotation rate control problem of permanent magnet
synchronous motor is solved based on Hamiltonian theory. A full-order observer design scheme for
practical physical applications such as mechanical power systems is provided in [33] with the
Hamiltonian model as the framework. The control method based on PCH model is adopted in [34] to
ensure the stability of the converter system. However, most of the existing literatures on power grid
integrated transmission only analyze the grid-connected part independently and do not take into
account the time-delay input voltage transmitted by the front-end wide-area wind power system. In
fact, there have been some research results on the stability and control of time-delay Hamiltonian
systems [37–39]. For example, in [37], based on the Hamiltonian method, the authors propose an
adaptive controller design strategy for nonlinear systems with input time-delay. As far as the author
knows, there are no Hamiltonian control results for the integrated VSC-HVDC system of time-delay
wind farms.

Based on the above analysis, the stabilization problem of wind farm integrated VSC-HVDC system
with input delay is studied in this paper. To start with, the system model is transformed into PCH model
by selecting energy function and state variables. Then, the controller is designed by extending IDA-PB
control principle, and the time-delay stability criterion is obtained by using free weight matrix and
Lyapunov-Krasovskii functional method. Finally, the effectiveness of the proposed method in solving
the control problem of wind farm integrated VSC-HVDC system with input time delay is verified by
experimental simulation.

The contributions of this paper are mainly reflected in the following aspects: (1) for the actual
object of wind farm integrated transmission system, the stability control problem under the influence
of time-varying delay is studied for the first time; (2) in the process of controller design, the traditional
IDA-PB control principle is extended and used in the case of time delay. Compared with the controller
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given in the previous research on time-delay PCH system, the controller designed in this paper doesn’t
adopt a single output feedback control, in addition, it also takes into account the non-zero operating
point characteristics under the actual working conditions, which can effectively restrain the impact of
time delay on wind farm integrated transmission system; (3) the relationship between time-varying
delay, time-delay upper bound and their difference is fully taken into account when constructing the
Lyapunov-Krasovskii functional, and the conservatism of the conclusion is reduced to some extent by
introducing the free weight matrix method.

2. Problem formulation and preliminaries

A wind farm integrated VSC-HVDC system with input delay is studied in this paper. In this part,
the research object is elicited and the research ideas are expounded.

2.1. Mathematical model of integrated VSC-HVDC system for single-ended wind farm with input
time delay

During the integrated transmission process, the complete integrated VSC-HVDC system of input
delay wind farm is shown in Figure 1.

Uzd1

Us1(t-b(t))

is1

R1 L1

Uz

izd1

2C1

2C1

Uzd2

2C2

2C2
R2L2
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Figure 1. Topology of wind farm integrated VSC-HVDC system with input delay.

In Figure 1, R1 and R2 are the alternating current side resistance of rectifier and inverter respectively,
and izd1 and izd2 are the alternating current side current of rectifier and inverter respectively. Us1(t−b(t))
is the time-delay voltage at the wind farm side, Us2(t−b(t)) is the time-delay voltage at the grid side, L1

and L2 are the alternating current side inductance of the rectifier converter and the alternating current
side inductance of the inverter converter, Uz and Un are the alternating current side voltage of the
rectifier converter and the alternating current side voltage of the inverter converter respectively, Uzd1

and Uzd2 are the direct current voltage of the rectifier converter and the direct current voltage of the
inverter converter respectively, C1 and C2 are direct current side capacitors of rectifier and inverter
respectively. Rω is the line transmission resistance on the direct current side of the converter.

Because the power input of long-distance large-scale wind farm will cause power oscillation
between power grids, wide-area damping control is usually used to suppress the oscillation, but at the
same time, there is a time delay on the side of the wind farm ( [6–9]), As a result, the wind power
generation system outputs voltage with time delay. This time-delay voltage is a single-ended (wind
farm side) input time-delay factor for the wind farm integrated system with VSC-HVDC. In order to
prevent the time-delay factor from continuing to pass downwards, we need to deal with it in time on
the wind farm side and design an appropriate controller to ensure the stable operation of the system.
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Therefore, this paper investigates stabilization of the system in the case of single-ended (wind farm
side) input voltage Us1 with time delay. Firstly, the mathematical model of the integrated VSC-HCDC
system of single-ended wind farm with input time delay in dq synchronous rotating coordinate system
is established as follows

L1
disd1

dt
= Usd1(t − b(t)) − S dUzd1 − R1isd1 − ωL1isq1,

L1
disq1

dt
= Usq1(t − b(t)) − S qUzd1 − R1isq1 + ωL1isd1,

2
3

C1
dUzd1

dt
= S disd1 + S qisq1 −

2
3

izd1,

(2.1)

where Usd1(t − b(t)) and Usq1(t − b(t)) are the d-axis and q-axis components of the time-delay voltages
on the wind farm side, S d and S q are respectively the d-axis and q-axis components of the switching
function, ω is the angular frequency, and the time-delay b(t) is a continuous time-varying function and
satisfies

0 ≤ b(t) ≤ τ, ḃ(t) ≤ µ < 1, (2.2)

where τ and µ are constants.
Because of izd1 = Uzd1/Rzd1, the Eq (2.1) is further written as follows

L1
disd1

dt
=Usd1(t − b(t)) − S dUzd1 − R1isd1 − ωL1isq1,

L1
disq1

dt
=Usq1(t − b(t)) − S qUzd1 − R1isq1 + ωL1isd1,

2
3

C1
dUzd1

dt
=S disd1 + S qisq1 −

2
3

Uzd1

Rzd1
,

(2.3)

where Rzd1 is the direct current side equivalent resistance of the rectifier converter.
The time delay voltage on the side of the wind farm is regarded as the control input. In order to

research the stability control problem of the system with input time delay, the next work is to design
the feedback controller

u(t) =

[
u1(t)
u2(t)

]
=

[
Usd1(t − b(t))
Usq1(t − b(t))

]
to reduce the impact of time delay on the system, and finally ensure the stable operation of the system.

2.2. PCH modeling of integrated VSC-HVDC system for single-ended wind farm with input time
delay

A general PCH system can be described as follows{
ẋ = (J(x) − R(x))∂H(x)

∂x + G(x)u,
y = GT(x)∂H(x)

∂x ,
(2.4)

where x ∈ Rn is a state variable, u ∈ Rm and y ∈ Rm are input and output vectors, respectively,
R(x) ∈ Rn×n is a non-negative symmetric matrix, G(x) ∈ Rn×m represents a gain matrix, J(x) ∈ Rn×n is
an antisymmetric matrix, and H(x) is the energy function of the system, which satisfies H(x) ≥ 0 and
H(0) = 0.
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Let
x =

[
x1 x2 x3

]T
= A

[
isd1 isq1 Uzd1

]T

be the state variable of the system and select the energy function as

H(x) =
1
2

xTA−1x =
1
2

(
1
L1

x2
1 +

1
L1

x2
2 +

3
2C1

x2
3) (2.5)

which satisfies Assumption 1, where A = diag{L1, L1,
2
3C1}.

Assumption 1. The function H(x), the gradient ∂H(x)
∂x and the Hessian matrix Hess(H(x)) of H(x) satisfy

ε1‖xb(0)‖2 := ε1‖x(t − b(t))‖2t=0 ≤ H(x) ≤ ε2‖x‖2,

σ1‖x‖ ≤
∥∥∥∥∂H(x)

∂x

∥∥∥∥ ≤ σ2‖x‖,

‖Hess(H(x)) · Hess
T
(H(x))‖ ≤ ψ2,

where ε1, ε2, σ1, σ2, ψ are nonnegative constants.

By combining Eq (2.3) with Eq (2.4), the PCH model of the integrated VSC-HCDC system of
single-ended wind farm with input time delay in dq synchronous rotating coordinate system can be
obtained as shown below {

ẋ = (J − R)∂H(x)
∂x + Gu(t),

y = GT ∂H(x)
∂x ,

(2.6)

where u(t) =
[

u1(t) u2(t)
]T
, y =

[
isd1 isq1

]T
,

J =


0 −ωL1 −S d

ωL1 0 −S q

S d S q 0

 , R =


R1 0 0
0 R1 0
0 0 2

3Rzd1

 , G =


1 0
0 1
0 0

 .
The expected balance point is

x∗ =
[

x∗1 x∗2 x∗3
]T

=
[

L1i∗sd1 L1i∗sq1
2
3C1U∗zd1

]T
.

The goal of this paper is to design a stabilization controller for wind farm systems with input time
delay (2.1). The specific steps are as follows: firstly, based on the IDA-PB control energy shaping
principle, a controller u(t) is designed for the system with input time delay (2.6). Then, the stability
criterion of the closed-loop system is given by dealing with the time delay of the closed-loop system.
Finally, for the wind power grid-connected transmission system (2.1), the effectiveness of the proposed
method is verified by combining with the simulation platform.

In order to achieve the above purpose, it is necessary to give the following lemmas.

Lemma 1. (Schur complement) The following linear matrix inequality holds[
Λ1 Λ2

∗ Λ3

]
> 0 (2.7)

if and only if
Λ1 − Λ2Λ

−1
3 Λ

T

2 > 0, Λ3 > 0,

where Λ1 = Λ
T

1 , Λ3 = Λ
T

3 , and Λi (i = 1, 2, 3) are constant matrices.
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Lemma 2. For given τ > 0, a time varying function b(t) that satisfies 0 ≤ b(t) ≤ τ, any positive definite
matrix Z and the vector function ω : [−τ,∞)→ Rn, the following relation is satisfied.

τ

∫ t

t−b(t)
ω

T
(s)Zω(s)ds ≥

∫ t

t−b(t)
ω

T
(s)ds · Z ·

∫ t

t−b(t)
ω(s)ds, t ≥ 0.

3. Main results

This section puts forward the main results of this paper. Specifically, a feedback controller for
single-ended VSC-HVDC systems with input time-delay is designed in subsection A, and stability
criterion of time-delay are given in subsection B.

3.1. Controller design

Through energy shaping, a feedback controller u(t) = c(t) will be designed and the related closed-
loop system will be the following form

ẋ = (Jd − Rd)(
∂Hd(x)
∂x

+
∂Hd(x(t − b(t)))

∂x
), (3.1)

where, Jd = J+Ja and Rd = R+Ra are skew symmetric and nonnegative symmetric matrices separately,
Hd(x) = H(x) + Ha(x) is a new energy function, Hd(x(t − b(t))) = H(x(t − b(t))) + Ha(x(t − b(t))).

The closed loop system (3.1) is expanded to obtain the following equation

ẋ =(J − R)
∂H(x)
∂x

+ (Ja − Ra)
∂H(x)
∂x

+ (Jd − Rd)
∂Ha(x)
∂x

+ (Jd − Rd) ·
∂Hd(x(t − b(t)))

∂x
. (3.2)

To make the Eq (2.6) equal to the Eq (3.1), the following equation is necessary:

Gu(t) =(Ja − Ra)
∂H(x)
∂x

+ (Jd − Rd)
∂Ha(x)
∂x

+ (Jd − Rd)
∂Hd(x(t − b(t)))

∂x
. (3.3)

Note K(x) := ∂Ha(x)
∂x and take Ja = 0. From Eq (2.6), it is known that the damping matrix R contains

the direct current side equivalent resistance Rzd1 of the converter. Consider offsetting Rzd1 in the process
of damping matrix configuration, we select

Ra =


0 0 0
0 0 0
0 0 − 2

3Rzd1

 . (3.4)

Take

K(x) =


kα(x1)
kβ(x2)
kγ(x3)

 .
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By substituting J, R, K(x), Ja, Ra, G, u(t) and H(x) into (3.3), we get the following results

u1(t) = − R1 · kα(x1) − ωL1 · kβ(x2) − S d · kγ(x3) − R1[
1
L1

x1(t − b(t))+ kα(x1(t − b(t)))]

− ωL1[
1
L1

x2(t − b(t)) + kβ(x2(t − b(t)))] − S d[
3

2C1
x3(t − b(t)) + kγ(x3(t − b(t)))],

u2(t) =ωL1 · kα(x1) − R1 · kβ(x2) − S q · kγ(x3) + ωL1[
1
L1

x1(t − b(t)) + kα(x1(t − b(t)))]

− R1[
1
L1

x2(t − b(t)) + kβ(x2(t − b(t)))] − S q[
3

2C1
x3(t − b(t)) + kγ(x3(t − b(t)))].

(3.5)

Then the IDA-PB principle is extended to design the controller u(t) for the system. In order to
achieve this goal and ensure the asymptotic stability of the closed-loop system, so as to ensure the
stable operation of the original integrated transmission system (2.1) in the presence of time delay, the
following assumptions are made for K(x).

At x∗, it satisfies
(a1)

∂K(x)
∂x
|x=x∗ > −

∂2H(x)
∂x2 |x=x∗ ,

(a2)

K(x∗) = −
∂H(x)
∂x
|x=x∗ .

According to (a1) and (a2), we get
kα(x∗1) = −

x∗1
L1

= −i∗sd1,

kβ(x∗2) = −
x∗2
L1

= −i∗sq1,

kγ(x∗3) = −
3x∗3
2C1

= −U∗zd1.

(3.6)

Then K(x) is as follows 
kα(x1) = −

x∗1
L1

+ m · (x1 − x∗1),
kβ(x2) = −

x∗2
L1

+ n · (x2 − x∗2),
kγ(x3) = −

3x∗3
2C1

+ p · (x3 − x∗3),

(3.7)

where m, n, p > 0 are the error parameters to be evaluated.
Solving the following two equations

∂Ha(x)
∂x

= K(x) (3.8)

and
Hd(x) = H(x) + Ha(x) (3.9)

yield the values of Ha(x) and Hd(x) as

Ha(x) =
m
2

x2
1 − (m +

1
L1

)x∗1x1 +
n
2

x2
2 − (n +

1
L1

)x∗2x2 +
p
2

x2
3 − (p +

3
2C1

)x∗3x3, (3.10)
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9184

Hd(x) =
1
2

(m +
1
L1

)x2
1 − (m +

1
L1

)x∗1x1 +
1
2

(n +
1
L1

)x2
2

− (n +
1
L1

)x∗2x2 +
1
2

(p +
1

2C1
)x2

3 − (p +
3

2C1
)x∗3x3.

(3.11)

Finally, by substituting Eq (3.7) into Eq (3.5), the controller can be obtained as follows

u1(t) = − mR1x1 − nωL1x2 − p · S d · x3 − R1(m +
1
L1

)x1(t − b(t)) − ωL1 · (n +
1
L1

)x2(t − b(t))

− S d · (p +
3

2C1
) · x3(t − b(t)) + 2R1(m +

1
L1

)x∗1 + 2ω(1 + nL1)x∗2 + 2S d(p +
3

2C1
)x∗3,

u2(t) =mωL1x1 − nR1x2 − p · S q · x3 + ωL1 · (m +
1
L1

)x1(t − b(t)) − R1 · (n +
1
L1

)x2(t − b(t))

− S q · (p +
3

2C1
) · x3(t − b(t)) − 2ω(1 + mL1)x∗1 + 2R1(n +

1
L1

)x∗2 + 2S q(p +
3

2C1
)x∗3.

(3.12)
The above form can be abbreviated as

u(t) = − E · ∆
∂H(x)
∂x

− Φ · B ·
∂H(x(t − b(t)))

∂x
+ Φx∗, (3.13)

where ∆ = diag{m, n, p},

E =

[
R1L1 ωL2

1
2
3C1S d

−ωL2
1 R1L1

2
3C1S q

]
,

Φ=

[
2R1(m + 1

L1
) 2ω(1 + nL1) 2S d(p + 3

2C1
)

−2ω(1 + mL1) 2R1(n + 1
L1

) 2S q(p + 3
2C1

)

]
,

B =


1
2 L1 0 0
0 1

2 L1 0
0 0 1

3C1

 .
3.2. Stability analysis

A time-delay stabilization results of the wind farm integrated transmission system (2.1) will be given
in this section. Following Theorem 1 provides conditions to guarantee the time-delay stabilization of
the system (2.6).

Theorem 1. Consider the system (2.6). For given constants τ > 0, µ < 1, if there exist positive definite
matrices Q, Z and matrices Y, Ω with appropriate dimensions, such that the following inequality (3.14)
holds, then the system (2.6) is asymptotically stable under the feedback controller (3.13).

Λ =


Υ11 Y

T
Υ13 GΦ · B Υ15

∗ Υ22 −Ω
T

− Y Υ25

∗ ∗ 0 −Ω Υ35

∗ ∗ ∗ − Z 0
∗ ∗ ∗ 0 − Z−1


< 0, (3.14)
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where

Υ11 = − 2R −G(E · ∆ + Φ · B) − (E · ∆ + Φ · B)
T
G

T
+ Q,

Υ13 =Ω
T

+ GΦ,

Υ15 =τψ(J − R −GE · ∆)
T
,

Υ22 = − Y − Y
T
− (1 − µ)Q,

Υ25 = − τψ(Φ · B)
T
G

T
,

Υ35 =τψΦ
T
G

T
.

Proof. For the system (2.6), the following closed-loop system can be obtained under the feedback
controller (3.13):

ẋ = (J − R −GE · ∆)
∂H(x)
∂x

−GΦ · B
∂H(xb)
∂x

+ GΦx∗, (3.15)

where xb := x(t − b(t)).
Select a Lyapunov-Krasovskii functional as

V(xb) = Va + Vb + Vc, (3.16)

where, Va = 2H(x),

Vb =

∫ t

t−b(t)

∂H
T
(x(θ))
∂x

Q
∂H(x(θ))

∂x
dθ,

Vc = τ

∫ 0

−τ

∫ t

t+β
[
∂H

T
(x(α))
∂x

]′Z[
∂H(x(α))

∂x
]′dαdβ,

Q and Z are nonnegative definite matrices to be determined.
For given

H(x) =
1
2

xTD−1x =
1
2

(
1
L1

x2
1 +

1
L1

x2
2 +

3
2C1

x2
3) ≥ 0,

there must be
σ1‖x‖ ≤ ‖

∂H(x)
∂x
‖ ≤ σ2‖x‖,

and according to Assumption 1, we can get

ε1‖xb(0)‖2 ≤ V(xb) ≤ ε‖xb‖
2, (3.17)

where ε = 2ε2 + τλmax(Q)σ2
2 + τλmax(Z).

From Newton-Leibniz formula, we have∫ t

t−b(t)
[
∂H(x(s))

∂x
]′ds =

∂H(x(t))
∂x

−
∂H(xb)
∂x

. (3.18)

Thus, for matrices Y and Ω of any appropriate dimensions, the following equation

2[
∂H

T
(xb)
∂x

Y + (x∗)
T
Ω] × {

∂H(x)
∂x

−

∫ t

t−b(t)
[
∂H(x(s))

∂x
]′ds −

∂H(xb)
∂x

} = 0 (3.19)
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holds.
From Eq (3.18), the system (3.15) can be rewritten as

ẋ =(J − R −G(E · ∆ + Φ · B))
∂H(x)
∂x

+ GΦ · B ·
∫ t

t−b(t)
[
∂H(x(s))

∂x
]′ds + GΦx∗. (3.20)

Next, the derivatives of Va, Vb and Vc along the trajectory of the system (3.20) are calculated
respectively

V̇a =2
∂H

T
(x)

∂x
(J − R −G(E · ∆ + Φ · B))

∂H(x)
∂x

+ 2
∂H

T
(x)

∂x

·GΦ · B ·
∫ t

t−b(t)
[
∂H(x(s))

∂x
]′ds + 2

∂H
T
(x)

∂x
GΦx∗,

(3.21)

V̇b =
∂H

T
(x)

∂x
Q
∂H(x)
∂x

− (1 − ḃ(t)) ·
∂H

T
(xb)
∂x

Q
∂H(xb)
∂x

≤
∂H

T
(x)

∂x
Q
∂H(x)
∂x

− (1 − µ) ·
∂H

T
(xb)
∂x

Q
∂H(xb)
∂x

,

(3.22)

V̇c =τ2 ẋ
T
· Hess(H(x)) · Z · Hess

T
(H(x)) · ẋ − τ

∫ t

t−τ
[
∂H

T
(x(α))
∂x

]′Z[
∂H(x(α))

∂x
]′dα

≤τ2 ẋ
T
· Hess(H(x)) · Z · Hess

T
(H(x)) · ẋ − τ

∫ t

t−b(t)
[
∂H

T
(x(α))
∂x

]′Z[
∂H(x(α))

∂x
]′dα

≤τ2ψ2[(J − R −GE · ∆)
∂H(x)
∂x

−GΦ · B ·
∂H(xb)
∂x

+ GΦx∗]
T
Z[(J − R −GE · ∆)

·
∂H(x)
∂x

−GΦ · B ·
∂H(xb)
∂x

+ GΦx∗] −
∫ t

t−b(t)
[
∂H

T
(x(α))
∂x

]′dα · Z ·
∫ t

t−b(t)
[
∂H(x(α))

∂x
]′dα.

(3.23)

By combining (3.19), (3.21)– (3.23), we can obtain

V̇(xb) =V̇a + V̇b + V̇c ≤ ξ
T
(t)Θξ(t), (3.24)

where

ξ(t)=
[

∂H
T

(x)
∂x

∂H
T

(xb)
∂x x∗

T ∫ t

t−b(t)
[∂H

T
(x(α))
∂x ]′dα

]T

,

Θ =


Θ11 Θ12 Θ13 GΦ · B
∗ Θ22 Θ23 −Y
∗ ∗ Θ33 −Ω

∗ ∗ ∗ −Z

 ,
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Θ11 =− 2R −G(E · ∆ + Φ · B) − (E · ∆ + Φ · B)
T
·G

T
+ Q

+ τ2ψ2(J − R −G · E · ∆)
T
Z · (J − R −GE · ∆),

Θ12 =Y
T
− τ2ψ2(J − R −GE · ∆)

T
ZGΦ · B,

Θ13 =Ω
T

+ GΦ + τ2ψ2(J − R −GE · ∆)
T
ZGΦ,

Θ22 =− Y − Y
T
− (1 − µ)Q + τ2ψ2(Φ · B)

T
·G

T
ZGΦ ·B,

Θ23 =−Ω
T
− τ2ψ2(Φ · B)

T
G

T
ZGΦ,

Θ33 =τ2ψ2Φ
T
G

T
ZGΦ.

From inequality (3.14) and Lemma 1, it is easy to get Θ < 0 and V̇(xb) < 0. According to Lyapunov-
Krasovskii stability theorem, the closed-loop system (3.15) is asymptotically stable, that is, the system
(2.6) is asymptotically stable under the feedback controller (3.13). The proof is complete.

For the wind farm integrated transmission system (2.1), the following theorem provides sufficient
conditions of stabilization.

Theorem 2. Considering the wind farm integrated transmission system (2.1). For given constants
τ > 0, µ < 1, if there exist positive definite matrices Q, Z and matrices Y and Ω with appropriate
dimensions, such that inequality (3.14) holds, and the wind farm side delay voltages Usd1(t − b(t)) and
Usq1(t − b(t)) of the integrated transmission system (2.1) are maintained in the form of (3.25), then the
system (2.1) can overcome the influence of time delay and maintain stable operation.

Usd1(t − b(t)) = − mR1L1isd1 − nωL2
1isq1 −

2
3
· p ·C1 · S d · Uzd1 − R1(mL1 + 1) · isd1(t − b(t))

− ωL1(nL1 + 1) · isq1(t − b(t)) − S d(
2
3

pC1 + 1) · Uzd1(t − b(t)) + 2R1(mL1

+ 1)i∗sd1 + 2ωL1(1 + nL1) · i∗sq1 + 2S d(
2
3

p ·C1 + 1)U∗zd1,

Usq1(t − b(t)) =mωL2
1isd1 − nR1L1isq1 −

2
3

p ·C1 · S q · Uzd1 + ωL1(mL1 + 1) · isd1(t − b(t))

− R1(nL1 + 1) · isq1(t − b(t)) − S q(
2
3

pC1 + 1) · Uzd1(t − b(t)) − 2ωL1(mL1

+ 1)i∗sd1 + 2R1(nL1 + 1) · i∗sq1 + 2S q(
2
3

p ·C1 + 1)U∗zd1.

(3.25)

4. Illustrative examples

In order to verify the effectiveness of the proposed method, a simulation model of the two-machine
and two-region wind farm integrated transmission system with input delay is established on the
simulation platform, as shown in Figure 2. There is a wind farm in area A (wide area signal is
introduced into the wind power generation link). The main parameters of the integrated transmission
system are set as follows: The inductance of the alternating current side of the rectifying converter
L1 = 0.15pu, the resistance of the alternating current side of the rectifying converter R1 = 2.5pu,
S d = 0.15, S q = 0.05, the capacitor of the direct current side of the rectifying converter C1 = 0.04pu,
the equivalent resistance of the direct current side of the rectifying converter Rzd1 = 5.1pu, the
frequency ω = 5pu.
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Wind farm

Wide-area 

signals

Area A

Area B

Us1(t-b(t))

G2

Uzd1G1

Figure 2. Two-machine and two-region wind farm integrated transmission system with input
delay.

The time-varying delay b(t) considered in this paper is selected as b(t) = 0.1 sin(3t)+0.2. Obviously,
0 ≤ 0.1 ≤ b(t) ≤ 0.3, ḃ(t) ≤ 0.3 < 1. According to the current research situation, the time delay of
wide area signal is generally 0.1 ∼ 0.3s. Therefore, the input delay in this paper meets the engineering
requirements. Here we set τ = 0.3s, µ = 0.3.

The Hessian matrix of H(x) satisfies ‖Hess(H(x)) · Hess
T
(H(x))‖ ≤ ψ2, so we can get ψ = 0.87.

Next, we intend to verify that the wind farm side delay voltages Usd1(t − b(t)) and Usq1(t − b(t)) in
the form of (3.25) can ensure the stable operation of the system (2.1).

Select

Q =


3 5 10
5 15 0
10 0 3

 , Z =


10 0 10
0 20 1

10 1 10

 ,

Y =


20 2 10
2 20 1

10 0 30

 , Ω =


10 0 3
1 12 0
2 0 5

 .
Then, using MATLAB, we can get

∆ =diag{2.1201, 2.1201, 2.1201},

Φ =

[
43.934 13.18015 11.88603
−13.18015 43.934 3.96201

]
.

Therefore, it can be known that the error parameters m = n = p = 2.1201.

When the system runs stably, the expected results are as follows: the d-axis component isd1 of the
alternating current side current of the rectifier converter is stable at 1pu, the q-axis component isq1 is
stable at 2pu, and the direct current side voltage Uzd1 of the rectifier converter is stable at 2pu, that is,
i∗sd1 = 1pu, i∗sq1 = 2pu, U∗zd1 = 2pu.

Taking the above parameters, the wind farm side delay voltages Usd1(t − b(t)) and Usq1(t − b(t)) are
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as follows



Usd1(t − b(t)) = − 0.7950375isd1 − 0.23851125isq1 − 0.0084804Uzd1

− 3.2950375 · isd1(t − b(t)) − 0.98851125 · isq1(t − b(t))
− 0.1584804 · Uzd1(t − b(t)) + 11.1780416,

Usq1(t − b(t)) =0.23851125isd1 − 0.7950375isq1 − 0.0028268Uzd1

+ 0.98851125 · isd1(t − b(t)) − 3.2950375 · isq1(t − b(t))
− 0.0528268 · Uzd1(t − b(t)) + 11.4144347.

(4.1)

The corresponding waveforms of Usd1(t − b(t)), Usq1(t − b(t)), isd1, isq1 and Uzd1 under time-varying
delay are shown in Figures 3–7, respectively.

0 2 4 6 8 10

t/s

-2

0

2

4

6

8

10

12

Figure 3. The waveform of Usd1(t − b(t)) under time-varying delay.
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Figure 4. The waveform of Usq1(t − b(t)) under time-varying delay.
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Figure 5. The waveform of isd1 under time-varying delay.
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Figure 6. The waveform of isq1 under time-varying delay.
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Figure 7. The waveform of Uzd1 under time-varying delay.

It can be seen from the figures that, in the case of time-varying delay, the proposed method can be
used to reasonably regulate the time-delay voltages Usd1(t − b(t)) and Usq1(t − b(t)) of the wind farm
integrated transmission system, so as to avoid the deterioration of the system performance and make
the system run stably in the case of input time-delay.
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5. Conclusions

In this paper, the stabilization problem of wind farm integrated VSC-HVDC system with input delay
has been researched. Based on the PCH theory, we have transformed the model of wind farm integrated
VSC-HVDC system with input delay, and have designed the feedback controller of the system by
extending IDA-PB control principle. Meanwhile, under the feedback controller, we have proposed
the criterion to ensure the time-delay stabilization of the closed-loop system. Simulation results have
shown that the proposed method can effectively avoid the system performance degradation caused by
time delay. The limitation of this paper is that the proposed conditions are still conservative to a certain
extent, and there is room for further optimization and improvement. The next work of the authors is to
investigate the control problem of wind farm integrated VSC-HVDC system with saturation constraints
under the influence of time-varying input delay.
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