

AIMS Mathematics, 6(8): 9100-9108. DOI:10.3934/math.2021528 Received: 26 April 2021 Accepted: 11 June 2021 Published: 17 June 2021

http://www.aimspress.com/journal/Math

Ground state solution for a class of magnetic equation with general convolution nonlinearity

Li Zhou^{1,2} and Chuanxi Zhu^{1,*}

¹ Department of Mathematics, Nanchang University, Nanchang, Jiangxi, 330031, China

² Department of Basic discipline, Nanchang JiaoTong Institute, Nanchang, Jiangxi, 330031, China

* Correspondence: Email: zhuchuanxi@ncu.edu.cn; Tel: +8613970815298.

Abstract: In this paper, we consider the following magnetic Laplace nonlinear Choquard equation

$$-\Delta_A u + V(x)u = (I_\alpha * F(|u|))\frac{f(|u|)}{|u|}u, \text{ in } \mathbb{R}^N,$$

where $u: \mathbb{R}^N \to C, A: \mathbb{R}^N \to \mathbb{R}^N$ is a vector potential, $N \ge 3, \alpha \in (N-2, N), V: \mathbb{R}^N \to \mathbb{R}$ is a scalar potential function and I_{α} is a Riesz potential of order $\alpha \in (N-2, N)$. Under certain assumptions on A(x), V(x) and f(t), we prove that the equation has at least a ground state solution by variational methods.

Keywords: magnetic Laplace operator; ground state solution; Nehari manifold Mathematics Subject Classification: 35A15, 35J35, 35J60, 35R11

1. Introduction

In this article, we study the following magnetic Laplace nonlinear Choquard equation

$$\begin{cases} -\Delta_A u + V(x)u = (I_\alpha * F(|u|))\frac{f(|u|)}{|u|}u, \text{ in } \mathbb{R}^N, \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
(1.1)

where $\Delta_A u := (\nabla - iA)^2 u$ is the magnetic Laplace operator. Here $u : \mathbb{R}^N \to C, A : \mathbb{R}^N \to \mathbb{R}^N$ is a vector magnetic potential, $N \ge 3$, $F(t) = \int_0^t f(s) ds$, $V : \mathbb{R}^N \to \mathbb{R}$ is a scalar potential function and I_{α} is a Riesz potential whose order is $\alpha \in (N-2, N)$ defined by $I_{\alpha} = \frac{\Gamma(\frac{N-\alpha}{2})}{\Gamma(\frac{\alpha}{2})\pi^{\frac{N}{2}}2^{\alpha}|x|^{N-\alpha}}$, where Γ is the Gamma function. $V(x) : \mathbb{R}^N \to \mathbb{R}$ is a continuous, bounded potential function satisfying:

 $(V1)\inf_{\mathbb{R}^N}V(x)>0,$

(V2) there exist a constant $V_{\infty} > 0$ such that for all $x \in \mathbb{R}^N$,

$$0 < V(x) \le \liminf_{|y| \to +\infty} V(y) = V_{\infty} < +\infty.$$

We also suppose A satisfies: (A1) $\liminf_{|x|\to+\infty} A(x) = A_{\infty}$, (A2) $A \in L^{\nu}(\mathbb{R}^{N}, \mathbb{R}^{N}), \nu > N \ge 3$, (AV) $|A(y)|^{2} + V(y) < |A_{\infty}|^{2} + V_{\infty}$. Moreover, we assume that the function $f \in C^{1}(\mathbb{R}, \mathbb{R})$ verifies: (f1) $f(t) = o(t^{\frac{\alpha}{N}})$ as $t \to 0$, (f2) $\lim_{|t|\to+\infty} \frac{f(t)}{t^{\frac{\alpha+2}{N-2}}} = 0$, (f3) $\frac{f(t)}{t}$ is increasing on $(0, +\infty)$ and decreasing on $(-\infty, 0)$.

(*f*4) f(t) is increasing on \mathbb{R} .

It should be noted that there is a lot of literature on the competition phenomena for elliptic equations without magnetic potential in different situations, i.e. $A \equiv 0$. Actually, when $A \equiv 0$ it conduces to the Choquard equation. There is a huge collections of articles on the subject and some good reviews of the Choquard equation can be found in [1–9].

On the other hand, there are works concerning the following Schrödinger equations with magnetic field recently:

$$-\Delta_A u + V(x)u = |u|^{p-2}u, \text{ in } \Omega \subset \mathbb{R}^N, N \ge 2.$$

$$(1.2)$$

Here $u : \Omega \to C$, $-\Delta_A u := (-i\nabla + A)^2 u$, $2 , where <math>2^* = \frac{2N}{N-2}$ if $N \ge 3$ and $2^* = \infty$ if N = 1 or 2. Besides, $A : \Omega \to \mathbb{R}^N$ and $V : \Omega \to \mathbb{R}$ are smooth.

To the best of our knowledge, the first paper in which problem (1.2) has been studied maybe Esteban-Lions [10]. They have used the concentration-compactness principle and minimization arguments to prove the existence of solutions for N = 2 and N = 3. More recently, applying constrained minimization and a minimax-type argument, Arioli-Szulkin [11] considered the equation in a magnetic filed. They established the existence of nontrivial solutions both in the critical and in the subcritical case, provided that some technical conditions relating to A and V were assumed. We also refer to [12, 13] for other results related to problem (1.1) in the presence of the magnetic field when the nonlinearity has a subcritical growth. Besides, we must mention the works [14, 15] for the critical case and also refer to the recent papers [16–18] for the study of various classes of PDEs with magnetic potential.

Inspired by the above works, we want to research the Eq (1.2) with general convolution term as the right-hand side, i.e. Eq (1.1). Our aim of this paper is to prove the existence of a ground state solution for problem (1.1), that is a nontrivial solution with minimal energy.

Notice that if we define

$$\tilde{f}(t) = \begin{cases} \frac{f(t)}{t}, & t \neq 0, \\ 0, & t = 0, \end{cases}$$

our assumptions assure that $\tilde{f}(t)$ is continuous. Therefore, Eq (1.1) can be rewritten in the form

$$-\Delta_A u + V(x)u = (I_{\alpha} * F(|u|))f(|u|)u.$$
(1.3)

AIMS Mathematics

The right-hand side of problem (1.3) generalizes the term $(\frac{1}{|x|^{\alpha}} * |u|^{p})|u|^{p-2}u$, which was studied by Cingolani, Clapp and Secchi in [19]. Similar problems were also studied in [20–22]. Especially, it is worth mentioning that in [23], the authors obtained the ground state solution of the following Eq (1.4)

$$-(\nabla + iA)^2 u + V(x)u = \left(\frac{1}{|x|^{\alpha}} * F(|u|)\right) \frac{f(|u|)}{|u|} u, \text{ in } \mathbb{R}^N,$$
(1.4)

which can be rewritten in the form

$$-(\nabla + iA)^{2}u + V(x)u = \left(\frac{1}{|x|^{\alpha}} * F(|u|)\right)\tilde{f}(|u|)u.$$
(1.5)

They considered the "limit problem" of problem (1.4), then by the splitting lemma, they proved that (1.4) has at least a ground state solution. In our paper, we improve the growth condition of f to the critical case, and generalizes the convolution term to a more general case. Most importantly, we get the ground state solution in a more straightforward way which is completely different from [23].

Our main result is as follows:

Theorem 1.1. If $\alpha \in (N - 2, N)$, (A1), (A2), (V1), (V2), (AV) are valid, and $f \in C^1(\mathbb{R}, \mathbb{R})$ verifies (f1)-(f3), then problem(1.1) has at least a ground state solution.

Now we define $\nabla_A u = -i\nabla u - Au$ and consider the space

$$H^1_{A,V} = \{ u \in L^2(\mathbb{R}^N, C) : \nabla_A u \in L^2(\mathbb{R}^N, C) \}$$

equipped with scalar product

$$\langle u, v \rangle_{A,V} = \Re e \int_{\mathbb{R}^N} (\nabla_A u \cdot \overline{\nabla_A v} + V(x) u \overline{v}) \mathrm{d}x.$$

Therefore

$$||u||_{A,V}^{2} = \int_{\mathbb{R}^{N}} (|\nabla_{A}u|^{2} + V(x)|u|^{2}) \mathrm{d}x$$

which is an equivalent norm to the norm obtained by considering $V \equiv 1$, see [6].

Hereafter for the convenience of narration, we will use the following notations:

• $L^r(\mathbb{R}^N)(1 \le r < \infty)$ denotes the Lebesgue space in which the norm is defined as follows

$$|u|_r = (\int_{\mathbb{R}^N} |u|^r \mathrm{d}x)^{1/r}$$

• $C, C_{\varepsilon}, C_1, C_2, ...$ denote positive constants which are possibly different in different lines.

2. Preliminaries

In this section, we will give some very important inequalities and lemmas.

Lemma 2.1. [10] Assume $u \in H^1_{A,V}$, then $|u| \in H^1(\mathbb{R}^N)$ and the diamagnetic inequality holds $|\nabla|u|(x)| \leq |\nabla_A u(x)|$.

Remark 2.2. It is well known that the embedding $H^1_{A,V} \hookrightarrow L^r(\mathbb{R}^N, C)$ is continuous for $r \in [1, 2^*]$. **Lemma 2.3.** *Assume (f1)–(f4) hold, then we have*

AIMS Mathematics

- (1) for all $\varepsilon > 0$, there is a $C_{\varepsilon} > 0$ such that $|f(t)| \le \varepsilon |t|^{\frac{\alpha}{N}} + C_{\varepsilon}|t|^{\frac{\alpha+2}{N-2}}$ and $|F(t)| \le \varepsilon |t|^{\frac{N+\alpha}{N}} + C_{\varepsilon}|t|^{\frac{N+\alpha}{N-2}}$,
- (2) for all $\varepsilon > 0$, there is a $C_{\varepsilon} > 0$ such that for every $p \in (2, 2^*)$, $|F(t)| \le \varepsilon(|t|^{\frac{N+\alpha}{N}} + |t|^{\frac{N+\alpha}{N-2}}) + C_{\varepsilon}|t|^{\frac{p(N+\alpha)}{2N}}$, and $|F(t)|^{\frac{2N}{N+\alpha}} \le \varepsilon(|t|^2 + |t|^{\frac{2N}{N-2}}) + C_{\varepsilon}|t|^p$,
- (3) for any $s \neq 0$, sf(s) > 2F(s) and F(s) > 0.

Proof. One can easily obtain the results by elementary calculation.□

Lemma 2.4. [23] Let $O \subset \mathbb{R}^N$ be any open set, for $1 , and <math>\{f_n\}$ be a bounded sequence in $L^p(O, C)$ such that $f_n(x) \rightarrow f(x)$ a.e., then $f_n(x) \rightarrow f(x)$.

Lemma 2.5. [23] Suppose that $u_n \rightarrow u_0$ in $H^1_{A,V}(\mathbb{R}^N, C)$, and $u_n(x) \rightarrow u_0(x)$ a.e. in \mathbb{R}^N , then $I_\alpha * F(|u_n(x)|) \rightarrow I_\alpha * F(|u_0(x)|)$ in $L^{\frac{2N}{\alpha}}(\mathbb{R}^N)$.

Corollary 2.6. Suppose that $u_n \to u_0$ in $H^1_{A,V}(\mathbb{R}^N, C)$, then $\Re e \int_{\mathbb{R}^N} I_\alpha * F(|u_n|) \tilde{f}(|u_n|) u_n \overline{\varphi} \to \Re e \int_{\mathbb{R}^N} I_\alpha * F(|u_0|) \tilde{f}(|u_0|) u_0 \overline{\varphi}$ for $\varphi \in C_c^{\infty}(\mathbb{R}^N, C)$.

Lemma 2.7. (*Hardy-Littlewood-Sobolev inequality* [6]). Let $0 < \alpha < N$, p, q > 1 and $1 \le r < s < \infty$ be such that

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{\alpha}{N}, \ \frac{1}{r} - \frac{1}{s} = \frac{\alpha}{N}$$

(1) For any $f \in L^{p}(\mathbb{R}^{N})$ and $g \in L^{q}(\mathbb{R}^{N})$, one has

$$\left|\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{f(x)g(y)}{|x-y|^{N-\alpha}}\mathrm{d}x\mathrm{d}y\right| \le C(N,\alpha,p)||f||_{L^p(\mathbb{R}^N)}||g||_{L^q(\mathbb{R}^N)}.$$

(2) For any $f \in L^r(\mathbb{R}^N)$ one has

$$\left\|\frac{1}{|\cdot|^{N-\alpha}}*f\right\|_{L^{s}(\mathbb{R}^{N})}\leq C(N,\alpha,r)\|f\|_{L^{r}(\mathbb{R}^{N})}.$$

Remark 2.8. By Lemma 2.3 (1), Lemma 2.7 (1) and Sobolev imbedding theorem, we can get

$$\left| \int_{\mathbb{R}^{N}} (I_{\alpha} * F(u)) F(u) dx \right| \leq C |F(u)|_{\frac{2N}{N+\alpha}}^{2}$$

$$\leq C \left[\int_{\mathbb{R}^{N}} (|u|^{\frac{N+\alpha}{N}} + |u|^{\frac{N+\alpha}{N-2}})^{\frac{(2N)}{N+\alpha}} dx \right]^{\frac{N+\alpha}{N}}$$

$$\leq C \left[\int_{\mathbb{R}^{N}} (|u|^{2} + |u|^{\frac{2N}{N-2}}) dx \right]^{\frac{N+\alpha}{N}}$$

$$\leq C (||u||_{A,V}^{\frac{2N+2\alpha}{N}} + ||u||_{A,V}^{\frac{2N+2\alpha}{N-2}}).$$

(2.1)

3. Variational formulation

The energy functional associated to problem (1.1) is given by:

$$J_{A,V}(u) = \frac{1}{2} \int_{\mathbb{R}^N} [|\nabla_A u|^2 + V(x)u^2] dx - \frac{1}{2} \int_{\mathbb{R}^N} (I_\alpha * F(|u|))F(|u|) dx.$$
(3.1)

The derivative of the energy functional $J_{A,V}(u)$ is given by

$$\langle J'_{A,V}(u),\varphi\rangle = \langle u,\varphi\rangle_{A,V} - \Re e \int_{\mathbb{R}^N} (I_\alpha * F(|u|))\tilde{f}(|u|)u\overline{\varphi} \mathrm{d}x.$$
(3.2)

AIMS Mathematics

Thus,

$$J'_{A,V}(u), u\rangle = \int_{\mathbb{R}^N} [|\nabla_A u|^2 + V(x)u^2] dx - \int_{\mathbb{R}^N} (I_\alpha * F(|u|))f(|u|)|u| dx.$$
(3.3)

Now, we can prove the following results.

<

Lemma 3.1. The functional $J_{A,V}$ possesses the mountain-pass geometry, that is

- (1) there exist $\rho, \delta > 0$ such that $J_{A,V} \ge \delta$ for all $||u|| = \rho$;
- (2) for any $u \in H^1_{A,V}(\mathbb{R}^N, C) \setminus \{0\}$, there exist $\tau \in (0, +\infty)$ such that $\|\tau u\| > \rho$ and $J_{A,V}(\tau u) < 0$.

Proof. (1) By Lemma 2.7 (1) and Lemma 2.3, one can get

$$J_{A,V}(u) \ge \frac{1}{2} ||u||_{A,V}^2 - C(||u||_{A,V}^{\frac{2N+2\alpha}{N}} + ||u||_{A,V}^{\frac{2N+2\alpha}{N-2}})$$

Thus there exist $\rho, \delta > 0$ such that $J_{A,V} \ge \delta$ for all $||u|| = \rho > 0$ small enough.

(2) For any fixed $u_0 \in H^1_{A,V} \setminus \{0\}$, consider the function $g_{u_0}(t) : (0, +\infty) \to \mathbb{R}$ given by

$$g_{u_0}(t) = \frac{1}{2} \int_{\mathbb{R}^N} \left(I_\alpha * F(\frac{t|u_0|}{||u_0||_{A,V}}) \right) F(\frac{t|u_0|}{||u_0||_{A,V}}) \mathrm{d}x,$$
(3.4)

then

$$g_{u_{0}}'(t) = \int_{\mathbb{R}^{N}} \left(I_{\alpha} * F(\frac{t|u_{0}|}{||u_{0}||_{A,V}}) \right) f(\frac{t|u_{0}|}{||u_{0}||_{A,V}}) \frac{|u_{0}|}{||u_{0}||_{A,V}} dx$$

$$= \frac{4}{t} \int_{\mathbb{R}^{N}} \frac{1}{2} \left(I_{\alpha} * F(\frac{t|u_{0}|}{||u_{0}||_{A,V}}) \right) \frac{1}{2} f(\frac{t|u_{0}|}{||u_{0}||_{A,V}}) \frac{t|u_{0}|}{||u_{0}||_{A,V}} dx$$

$$\geq \frac{4}{t} g_{u_{0}}(t) > 0, (t > 0).$$
(3.5)

Thus, $lng_{u_0}(t)|_1^{\tau ||u_0||_{A,V}} \ge 4lnt|_1^{\tau ||u_0||_{A,V}}$. So $\frac{g_{u_0}(\tau ||u_0||_{A,V})}{g_{u_0}(1)} \ge (||u_0||_{A,V})^4$ which implies that $g_{u_0}(\tau ||u_0||_{A,V}) \ge M(||u_0||_{A,V})^4$ for a constant M > 0. Then we can get

$$J_{A,V}(\tau u_0) = \frac{\tau^2}{2} ||u_0||^2_{A,V} - g_{u_0}(\tau ||u_0||_{A,V}) \le C_1 \tau^2 - C_2 \tau^4$$
(3.6)

yields that $J_{A,V}(\tau u_0) < 0$ when τ is large enough.

Hence we can define the mountain-pass level of $J_{A,V}$:

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J_{A,V}(\gamma(t)) > 0,$$

where: $\Gamma = \{\gamma \in C([0, 1], H^1_{A,V}(\mathbb{R}^N, C)) : \gamma(0) = 0, J_{A,V}(\gamma(1)) < 0\}.$ Now we recall the Nehari manifold

$$\mathcal{N}_{\alpha} := \{ u \in H^1_{A,V}(\mathbb{R}^N, C) \setminus \{0\} : \langle J'_{A,V}(u), u \rangle = 0 \}$$

Let $c_{\alpha} = \inf_{u \in N_{\alpha}} J_{A,V}(u)$, Moreover by the similar argument as Chapter 4 [24], we have the following characterization

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J_{A,V}(\gamma(t)) = c_{\alpha} = \inf_{u \in \mathcal{N}_{\alpha}} J_{A,V}(u) = c^* = \inf_{u \in H^1_{A,V}(\mathbb{R}^N, C) \setminus \{0\}} \max_{t \ge 0} J_{A,V}(tu).$$

AIMS Mathematics

Remark 3.2. If we set $\Phi(t) = \frac{1}{2} ||tu||_{A,V}^2 - \frac{1}{2} \int_{\mathbb{R}^N} (I_\alpha * F(|tu|))F(|tu|) dx$, the proof of Lemma 3.1 assures that $\Phi(t) > 0$ for *t* small enough, and $\Phi(t) < 0$ for *t* large enough. Besides $g'_u(t) > 0$ if t > 0, we can get that $\max_{t \ge 0} \Phi(t)$ is achieved at a unique $t_u > 0$. Furthermore, $\Phi'(t_u) = 0$ implies that $t_u u \in N_\alpha$ and the map $u \to t_u(u \ne 0)$ is continuous.

4. Ground state solution for problem (1.1)

In this section, we prove the main theorem.

Proof of Theorem 1.1. Let $\{u_n\}$ be minimizing sequence given as a consequence of Lemma 3.1 i.e. $\{u_n\} \subset H^1_{A,V}$ such that $J'_{A,V}(u_n) \to 0$, $J_{A,V}(u_n) \to c$, where $c = c_\alpha = \inf_{u \in N_\alpha} J_{A,V}(u) = c^* = \inf_{u \in H^1_{A,V}(\mathbb{R}^N, C) \setminus \{0\}} \max_{t \ge 0} J_{A,V}(tu)$. Then we have

$$c_{\alpha} + o(1) = J_{A,V}(u_n) - \frac{1}{4} \langle J'_{A,V}(u_n), u_n \rangle$$

= $\frac{1}{4} \int_{\mathbb{R}^N} [|\nabla_A u_n|^2 + V(x)|u_n|^2] dx + \frac{1}{4} \int_{\mathbb{R}^N} (I_{\alpha} * F(|u_n|))[f(|u_n|)|u_n| - 2F(|u_n|)] dx$ (4.1)
 $\geq \frac{1}{4} ||u_n||^2_{A,V}.$

Consequence, $\{u_n\}$ is bounded. Then by standard methods we can get the convergence of $\{u_n\}$.

Next, let $\delta := \limsup_{n \to \infty} \sup_{y \in \mathbb{R}^N} \int_{B_1(y)} |u_n|^2 dx$. We claim $\delta > 0$. On the contrary, by Lions' concentration compactness principle we have $\mu \to 0$ in $L^p(\mathbb{R}^N)$ for $2 \le n \le 2^*$. By Lemma 2.3(2) for any $\varepsilon \ge 0$

compactness principle, we have $u_n \to 0$ in $L^p(\mathbb{R}^N)$ for $2 . By Lemma 2.3(2), for any <math>\varepsilon > 0$ there exist a constant $C_{\varepsilon} > 0$ such that

$$\begin{split} &\limsup_{n \to \infty} \int_{\mathbb{R}^{N}} (I_{\alpha} * F(|u_{n}|)) f(|u_{n}|) |u_{n}| \mathrm{d}x \\ &\leq C \limsup_{n \to \infty} \left[\varepsilon (\int_{\mathbb{R}^{N}} |u_{n}|^{2} \mathrm{d}x + \int_{\mathbb{R}^{N}} |u_{n}|^{\frac{2N}{N-2}} \mathrm{d}x) + C_{\varepsilon} \int_{\mathbb{R}^{N}} |u_{n}|^{p} \mathrm{d}x \right]^{\frac{N+\alpha}{N}} \\ &\leq C \left[\varepsilon C_{1} + C_{\varepsilon} \limsup_{n \to \infty} \int_{\mathbb{R}^{N}} |u_{n}|^{p} \mathrm{d}x \right]^{\frac{N+\alpha}{N}} \\ &= C (\varepsilon C_{2})^{\frac{N+\alpha}{N}}. \end{split}$$

Note that ε is arbitrary, we get

$$\int_{\mathbb{R}^N} (I_\alpha * F(|u_n|)) f(|u_n|) |u_n| \mathrm{d}x = o(1).$$

Combining with $J'_{A,V}(u_n) \to 0$, we can get

$$o(1) = \langle J'_{A,V}(u_n), u_n \rangle$$

= $\int_{\mathbb{R}^N} [|\nabla_A u_n|^2 + V(x)u_n^2] dx - \int_{\mathbb{R}^N} (I_\alpha * F(|u_n|))f(|u_n|)|u_n| dx,$ (4.2)

which implies that

$$\int_{\mathbb{R}^{N}} [|\nabla_{A} u_{n}|^{2} + V(x)u_{n}^{2}] dx = \int_{\mathbb{R}^{N}} (I_{\alpha} * F(|u_{n}|))f(|u_{n}|)|u_{n}| dx + o(1) = 2o(1)$$
(4.3)

AIMS Mathematics

Then we have $\int_{\mathbb{R}^N} [|\nabla_A u_n|^2 + V(x)|u_n|^2] dx \to 0$, which implies $u_n \to 0$ in $H^1_{A,V}$. We deduce that $c_\alpha = 0$, which contradicts to the fact that $c_\alpha > 0$. Hence $\delta > 0$ and there exist $\{y_n\} \subset \mathbb{R}^N$ such that $\int_{B_1(y_n)} |u_n|^p dx \ge \frac{\delta}{2} > 0$. We set $v_n(x) = u_n(x + y_n)$, then $||u_n|| = ||v_n||, \int_{B_1(0)} |v_n|^p dx > \frac{\delta}{2}$ and $J_{A,V}(v_n) \to c_\alpha = c, J'_{A,V}(v_n) \to 0$. Thus there exist a $v_0 \neq 0$ such that

$$\begin{cases} v_n \rightarrow v_0 \text{ in } H^1_{A,V}, \\ v_n \rightarrow v_0 \text{ in } L^s(\mathbb{R}^N), \forall s \in [2, 2^*) \\ v_n \rightarrow v_0 \text{ a.e. on } \mathbb{R}^N. \end{cases}$$

Then for any $\varphi \in C_0^{\infty}(\mathbb{R}^N)$ we have $0 = \langle J'_{A,V}(v_n), \varphi \rangle + o(1) = \langle J'_{A,V}(v_0), \varphi \rangle$, which means v_0 is a solition of Eq (1.1).

On the other hand, combining with the Fatou Lemma, we can obtain

$$\begin{aligned} c_{\alpha} &= J_{A,V}(v_n) - \frac{1}{4} \langle J'_{A,V}(v_n), v_n \rangle + o(1) \\ &= \frac{1}{4} \int_{\mathbb{R}^N} [|\nabla_A v_n|^2 + V(x)|v_n|^2] dx + \frac{1}{4} \int_{\mathbb{R}^N} (I_{\alpha} * F(|v_n|)) [f(|v_n|)|v_n| - 2F(|v_n|)] dx + o(1) \\ &\geq \frac{1}{4} \int_{\mathbb{R}^N} [|\nabla_A v_0|^2 + V(x)|v_0|^2] dx + \frac{1}{4} \int_{\mathbb{R}^N} (I_{\alpha} * F(|v_0|)) [f(|v_0|)|v_0| - 2F(|v_0|)] dx + o(1) \end{aligned}$$
(4.4)
$$&= J_{A,V}(v_0) - \frac{1}{4} \langle J'_{A,V}(v_0), v_0 \rangle + o(1) \\ &= J_{A,V}(v_0) + o(1). \end{aligned}$$

At the same time, we know $c_{\alpha} \leq J_{A,V}(v_0)$ by the definition of c_{α} . Then we can deduce that v_0 is a ground state solution of Eq (1.1).

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 11771198, 11361042, 11901276).

Conflict of interest

There is no conflict of interest.

References

- 1. V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, *J. Funct. Anal.*, **265** (2013), 153–184.
- 2. V. Moroz, J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, *T. Am. Math. Soc.*, **367** (2015), 6557–6579.
- 3. V. Moroz, J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, *J. Differ. Equations*, **254** (2013), 3089–3145.

AIMS Mathematics

- 4. V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, *Commun. Contemp. Math.*, **17** (2015), 1550005.
- 5. V. Moroz, J. Van Schaftingen, A guide to the Choquard equation, *J. Fixed Point Theory Appl.*, **19** (2017), 773–813.
- 6. E. H. Lieb, M. Loss, Analysis, Math. Gazette, 83 (1999), 565–566.
- 7. M. Ghimenti, J. Van Schaftingen, Nodal solutions for the Choquard equation, *J. Funct. Anal.*, **271** (2016), 107–135.
- 8. L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, *Arch Rational Mech. Aral.*, **195** (2010), 455–467.
- 9. D. F. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, *Nonlinear Anal.-Theor.*, **99** (2014), 35–48.
- M. J. Esteban, P. L. Lions, Stationary solutions of a nonlinear Schrödinger equations with an external magnetic field, In: *Partial differential equations and the calculus of variations*, Boston: Birkhäuser, 1989, 401–409.
- 11. G. Arioli, A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field, *Arch. Ration. Mech. Anal.*, **170** (2003), 277–293.
- 12. C. O. Alves, G. M. Figueiredo, M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, *Commun. Part. Diff. Eq.*, **36** (2011), 1565–1586.
- 13. M. Clapp, A. Szulkin, Multiple solutions to a nonlinear Schrödinger equation with Aharonov-Bohm magnetic potential, *Nonlinear Differ. Equ. Appl.*, **17** (2010), 229–248.
- 14. C. O. Alves, G. M. Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, *Milan J. Math.*, **82** (2014), 389–405.
- 15. C. Ji, V. D. Rädulescu, Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \mathbb{R}^2 , *Manuscripta Math.*, **164** (2021), 509–542.
- 16. C. Ji, V. D. Rädulescu, Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation, *Calc. Var.*, **59** (2020), 115.
- 17. H. M. Nguyen, A. Pinamonti, M. Squassina, E. Vecchi, New characterizations of magnetic Soblev spaces, *Adv. Nonlinear Anal.*, **7** (2018), 227–245.
- 18. A. Xia, Multiplicity and concentration results for magnetic relativistic Schrödinger equations, *Adv. Nonlinear Anal.*, **9** (2020), 1161–1186.
- 19. S. Cingolani, M. Clapp, S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, *Z. Angew. Math. Phys.*, **63** (2012), 233–248.
- 20. S. Cingolani, M. Clapp, S. Secchi, Intertwining semiclassical solutions to a Schrödinger-Newton system, *DCDS-S*, **6** (2013), 891–908.
- 21. S. Cingolani, S. Secchi, M. Squassina, Semi-classical limit for Schrödinger equations solutions with magnetic field and Hartree-type nonlinearities, *P. Roy. Soc. Edinb. A*, **140A** (2010), 973–1009.
- M. B. Yang, Y. H. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equations solutions with magnetic field and Hartree type nonlinearities, *J. Math. Anal. Appl.*, 403 (2013), 680–694.

- 23. H. Bueno, G. G. Mamani, G. A. Pereira, Ground state of a magnetic nonlinear Choquard equation, *Nonlinear Anal.*, **181** (2019), 189–199.
- 24. M. Willem, Minimax theorems, In: *Progress in nonlinear differential equations and their applications*, Boston: Birkhäuser, 1996.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)