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Abstract: In this paper, we consider the following magnetic Laplace nonlinear Choquard equation

−∆Au + V(x)u = (Iα ∗ F(|u|))
f (|u|)
|u|

u, in RN ,

where u : RN → C, A : RN → RN is a vector potential, N ≥ 3, α ∈ (N − 2,N), V : RN → R is a
scalar potential function and Iα is a Riesz potential of order α ∈ (N−2,N). Under certain assumptions
on A(x), V(x) and f (t), we prove that the equation has at least a ground state solution by variational
methods.
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1. Introduction

In this article, we study the following magnetic Laplace nonlinear Choquard equation−∆Au + V(x)u = (Iα ∗ F(|u|)) f (|u|)
|u| u, in RN ,

u ∈ H1(RN),
(1.1)

where ∆Au := (∇ − iA)2u is the magnetic Laplace operator. Here u : RN → C, A : RN → RN is a
vector magnetic potential, N ≥ 3, F(t) =

∫ t

0
f (s)ds, V : RN → R is a scalar potential function and Iα

is a Riesz potential whose order is α ∈ (N − 2,N) defined by Iα=
Γ( N−α

2 )

Γ( α2 )π
N
2 2α |x|N−α

, where Γ is the Gamma

function. V(x) : RN → R is a continuous, bounded potential function satisfying:
(V1) inf

RN
V(x) > 0,
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(V2) there exist a constant V∞ > 0 such that for all x ∈ RN ,

0 < V(x) ≤ lim inf
|y|→+∞

V(y) = V∞ < +∞.

We also suppose A satisfies:
(A1) lim inf

|x|→+∞
A(x) = A∞,

(A2) A ∈ Lυ(RN ,RN), υ > N ≥ 3,
(AV) |A(y)|2 + V(y) < |A∞|2 + V∞.
Moreover, we assume that the function f ∈ C1(R,R) verifies:
( f 1) f (t) = o(t

α
N ) as t → 0,

( f 2) lim
|t|→+∞

f (t)

t
α+2
N−2

= 0,

( f 3) f (t)
t is increasing on (0,+∞) and decreasing on (−∞, 0).

( f 4) f (t) is increasing on R.
It should be noted that there is a lot of literature on the competition phenomena for elliptic equations

without magnetic potential in different situations, i.e. A ≡ 0. Actually, when A ≡ 0 it conduces to the
Choquard equation. There is a huge collections of articles on the subject and some good reviews of the
Choquard equation can be found in [1–9].

On the other hand, there are works concerning the following Schrödinger equations with magnetic
field recently:

−∆Au + V(x)u = |u|p−2u, in Ω ⊂ RN , N ≥ 2. (1.2)

Here u : Ω → C, −∆Au := (−i∇ + A)2u, 2 < p ≤ 2∗, where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = ∞ if N = 1 or

2. Besides, A : Ω→ RN and V : Ω→ R are smooth.
To the best of our knowledge, the first paper in which problem (1.2) has been studied maybe

Esteban-Lions [10]. They have used the concentration-compactness principle and minimization
arguments to prove the existence of solutions for N = 2 and N = 3. More recently, applying
constrained minimization and a minimax-type argument, Arioli-Szulkin [11] considered the equation
in a magnetic filed. They established the existence of nontrivial solutions both in the critical and in the
subcritical case, provided that some technical conditions relating to A and V were assumed. We also
refer to [12, 13] for other results related to problem (1.1) in the presence of the magnetic field when
the nonlinearity has a subcritical growth. Besides, we must mention the works [14, 15] for the critical
case and also refer to the recent papers [16–18] for the study of various classes of PDEs with
magnetic potential.

Inspired by the above works, we want to research the Eq (1.2) with general convolution term as the
right-hand side, i.e. Eq (1.1). Our aim of this paper is to prove the existence of a ground state solution
for problem (1.1), that is a nontrivial solution with minimal energy.

Notice that if we define

f̃ (t) =

 f (t)
t , t , 0,
0, t = 0,

our assumptions assure that f̃ (t) is continuous. Therefore, Eq (1.1) can be rewritten in the form

− ∆Au + V(x)u = (Iα ∗ F(|u|)) f̃ (|u|)u. (1.3)
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The right-hand side of problem (1.3) generalizes the term
( 1
|x|α ∗ |u|

p)|u|p−2u, which was studied by
Cingolani, Clapp and Secchi in [19]. Similar problems were also studied in [20–22]. Especially, it is
worth mentioning that in [23], the authors obtained the ground state solution of the following Eq (1.4)

−(∇ + iA)2u + V(x)u =
( 1
|x|α
∗ F(|u|)

) f (|u|)
|u|

u, in RN , (1.4)

which can be rewritten in the form

− (∇ + iA)2u + V(x)u =
( 1
|x|α
∗ F(|u|)

)
f̃ (|u|)u. (1.5)

They considered the ”limit problem” of problem (1.4), then by the splitting lemma, they proved that
(1.4) has at least a ground state solution. In our paper, we improve the growth condition of f to the
critical case, and generalizes the convolution term to a more general case. Most importantly, we get
the ground state solution in a more straightforward way which is completely different from [23].

Our main result is as follows:
Theorem 1.1. If α ∈ (N − 2,N), (A1), (A2), (V1), (V2), (AV) are valid, and f ∈ C1(R,R) verifies
(f1)-(f3), then problem(1.1) has at least a ground state solution.

Now we define ∇Au = −i∇u − Au and consider the space

H1
A,V = {u ∈ L2(RN ,C) : ∇Au ∈ L2(RN ,C)}

equipped with scalar product

〈u, v〉A,V = Re
∫
RN

(∇Au · ∇Av + V(x)uv)dx.

Therefore
‖u‖2A,V =

∫
RN

(|∇Au|2 + V(x)|u|2)dx

which is an equivalent norm to the norm obtained by considering V ≡ 1, see [6].
Hereafter for the convenience of narration, we will use the following notations:

• Lr(RN)(1 ≤ r < ∞) denotes the Lebesgue space in which the norm is defined as follows

|u|r = (
∫
RN
|u|rdx)1/r,

• C,Cε,C1,C2, ... denote positive constants which are possibly different in different lines.

2. Preliminaries

In this section, we will give some very important inequalities and lemmas.
Lemma 2.1. [10] Assume u ∈ H1

A,V , then |u| ∈ H1(RN) and the diamagnetic inequality holds
∣∣∣∇|u|(x)

∣∣∣ ≤
|∇Au(x)|.
Remark 2.2. It is well known that the embedding H1

A,V ↪→ Lr(RN ,C) is continuous for r ∈ [1, 2∗].
Lemma 2.3. Assume (f1)–(f4) hold, then we have
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(1) f or all ε > 0, there is a Cε > 0 such that | f (t)| ≤ ε|t|
α
N + Cε|t|

α+2
N−2 and |F(t)| ≤ ε|t|

N+α
N + Cε|t|

N+α
N−2 ,

(2) f or all ε > 0, there is a Cε > 0 such that f or every p ∈ (2, 2∗), |F(t)| ≤ ε(|t|
N+α

N + |t|
N+α
N−2 ) +

Cε|t|
p(N+α)

2N , and |F(t)|
2N

N+α ≤ ε(|t|2 + |t|
2N

N−2 ) + Cε|t|p,
(3) f or any s , 0, s f (s) > 2F(s) and F(s) > 0.

Proof. One can easily obtain the results by elementary calculation.�
Lemma 2.4. [23] Let O ⊂ RN be any open set, for 1 < p < ∞, and { fn} be a bounded sequence in
Lp(O,C) such that fn(x) ⇀ f (x) a.e., then fn(x) ⇀ f (x).
Lemma 2.5. [23] Suppose that un ⇀ u0 in H1

A,V(RN ,C), and un(x) → u0(x) a.e. in RN , then Iα ∗
F(|un(x)|) ⇀ Iα ∗ F(|u0(x)|) in L

2N
α (RN).

Corollary 2.6. Suppose that un ⇀ u0 in H1
A,V(RN ,C), then Re

∫
RN Iα ∗ F(|un|) f̃ (|un|)unϕ → Re

∫
RN Iα ∗

F(|u0|) f̃ (|u0|)u0ϕ for ϕ ∈ C∞c (RN ,C).
Lemma 2.7. (Hardy-Littlewood-Sobolev inequality [6]). Let 0 < α < N, p, q > 1 and 1 ≤ r < s <
∞ be such that

1
p

+
1
q

= 1 +
α

N
,

1
r
−

1
s

=
α

N
.

(1) For any f ∈ Lp(RN) and g ∈ Lq(RN), one has∣∣∣∣∣ ∫
RN

∫
RN

f (x)g(y)
|x − y|N−α

dxdy
∣∣∣∣∣ ≤ C(N, α, p)‖ f ‖Lp(RN )‖g‖Lq(RN ).

(2) For any f ∈ Lr(RN) one has∥∥∥∥∥ 1
| · |N−α

∗ f
wwwwwwwwLs(RN )

≤ C(N, α, r)‖ f ‖Lr(RN ).

Remark 2.8. By Lemma 2.3 (1), Lemma 2.7 (1) and Sobolev imbedding theorem, we can get∣∣∣∣∣ ∫
RN

(
Iα ∗ F(u)

)
F(u)dx

∣∣∣∣∣ ≤ C|F(u)|22N
N+α

≤ C
[ ∫
RN

(
|u|

N+α
N + |u|

N+α
N−2

) (2N)
N+α dx

] N+α
N

≤ C
[ ∫
RN

(
|u|2 + |u|

2N
N−2

)
dx

] N+α
N

≤ C(‖u‖
2N+2α

N
A,V + ‖u‖

2N+2α
N−2

A,V ).

(2.1)

3. Variational formulation

The energy functional associated to problem (1.1) is given by:

JA,V(u) =
1
2

∫
RN

[|∇Au|2 + V(x)u2]dx −
1
2

∫
RN

(Iα ∗ F(|u|))F(|u|)dx. (3.1)

The derivative of the energy functional JA,V(u) is given by

〈J′A,V(u), ϕ〉 = 〈u, ϕ〉A,V − Re
∫
RN

(Iα ∗ F(|u|)) f̃ (|u|)uϕdx. (3.2)
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Thus,

〈J′A,V(u), u〉 =

∫
RN

[|∇Au|2 + V(x)u2]dx −
∫
RN

(Iα ∗ F(|u|)) f (|u|)|u|dx. (3.3)

Now, we can prove the following results.
Lemma 3.1. The functional JA,V possesses the mountain-pass geometry, that is

(1) there exist ρ, δ > 0 such that JA,V ≥ δ for all ‖u‖ = ρ;
(2) for any u ∈ H1

A,V(RN ,C)\{0}, there exist τ ∈ (0,+∞) such that ‖τu‖ > ρ and JA,V(τu) < 0.

Proof. (1) By Lemma 2.7 (1) and Lemma 2.3, one can get

JA,V(u) ≥
1
2
‖u‖2A,V −C(‖u‖

2N+2α
N

A,V + ‖u‖
2N+2α

N−2
A,V ).

Thus there exist ρ, δ > 0 such that JA,V ≥ δ for all ‖u‖ = ρ > 0 small enough.
(2) For any fixed u0 ∈ H1

A,V\{0}, consider the function gu0(t) : (0,+∞)→ R given by

gu0(t) =
1
2

∫
RN

(
Iα ∗ F

( t|u0|

‖u0‖A,V

))
F
( t|u0|

‖u0‖A,V

)
dx, (3.4)

then
g′u0

(t) =

∫
RN

(
Iα ∗ F

( t|u0|

‖u0‖A,V

))
f
( t|u0|

‖u0‖A,V

) |u0|

‖u0‖A,V
dx

=
4
t

∫
RN

1
2

(
Iα ∗ F

( t|u0|

‖u0‖A,V

))1
2

f
( t|u0|

‖u0‖A,V

) t|u0|

‖u0‖A,V
dx

≥
4
t
gu0(t) > 0, (t > 0).

(3.5)

Thus, lngu0(t)
∣∣∣τ‖u0‖A,V

1
≥ 4lnt

∣∣∣τ‖u0‖A,V

1
. So

gu0 (τ‖u0‖A,V )
gu0 (1) ≥ (‖u0‖A,V)4 which implies that

gu0(τ‖u0‖A,V) ≥ M(‖u0‖A,V)4 for a constant M > 0. Then we can get

JA,V(τu0) =
τ2

2
‖u0‖

2
A,V − gu0(τ‖u0‖A,V) ≤ C1τ

2 −C2τ
4 (3.6)

yields that JA,V(τu0) < 0 when τ is large enough.�
Hence we can define the mountain-pass level of JA,V :

c = inf
γ∈Γ

max
t∈[0,1]

JA,V(γ(t)) > 0,

where: Γ = {γ ∈ C([0, 1],H1
A,V(RN ,C)) : γ(0) = 0, JA,V(γ(1)) < 0}.

Now we recall the Nehari manifold

Nα := {u ∈ H1
A,V(RN ,C)\{0} : 〈J′A,V(u), u〉 = 0}.

Let cα = inf
u∈Nα

JA,V(u), Moreover by the similar argument as Chapter 4 [24], we have the following

characterization

c = inf
γ∈Γ

max
t∈[0,1]

JA,V(γ(t)) = cα = inf
u∈Nα

JA,V(u) = c∗ = inf
u∈H1

A,V (RN ,C)\{0}
max

t≥0
JA,V(tu).
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Remark 3.2. If we set Φ(t) = 1
2‖tu‖

2
A,V −

1
2

∫
RN (Iα ∗ F(|tu|))F(|tu|)dx, the proof of Lemma 3.1 assures

that Φ(t) > 0 for t small enough, and Φ(t) < 0 for t large enough. Besides g′u(t) > 0 if t > 0, we can
get that max

t≥0
Φ(t) is achieved at a unique tu > 0. Furthermore, Φ′(tu) = 0 implies that tuu ∈ Nα and the

map u→ tu(u , 0) is continuous.

4. Ground state solution for problem (1.1)

In this section, we prove the main theorem.
Proof of Theorem 1.1. Let {un} be minimizing sequence given as a consequence of Lemma 3.1 i.e.
{un} ⊂ H1

A,V such that J′A,V(un) → 0, JA,V(un) → c, where
c = cα = inf

u∈Nα

JA,V(u) = c∗ = inf
u∈H1

A,V (RN ,C)\{0}
max

t≥0
JA,V(tu). Then we have

cα + o(1) = JA,V(un) −
1
4
〈J′A,V(un), un〉

=
1
4

∫
RN

[|∇Aun|
2 + V(x)|un|

2]dx +
1
4

∫
RN

(Iα ∗ F(|un|))[ f (|un|)|un| − 2F(|un|)]dx

≥
1
4
‖un‖

2
A,V .

(4.1)

Consequence, {un} is bounded. Then by standard methods we can get the convergence of {un}.
Next, let δ := lim sup

n→∞
sup
y∈RN

∫
B1(y)
|un|

2dx. We claim δ > 0. On the contrary, by Lions’ concentration

compactness principle, we have un → 0 in Lp(RN) for 2 < p < 2∗. By Lemma 2.3(2), for any ε > 0
there exist a constant Cε > 0 such that

lim sup
n→∞

∫
RN

(Iα ∗ F(|un|)) f (|un|)|un|dx

≤ C lim sup
n→∞

[
ε(

∫
RN
|un|

2dx +

∫
RN
|un|

2N
N−2 dx) + Cε

∫
RN
|un|

pdx
] N+α

N

≤ C
[
εC1 + Cε lim sup

n→∞

∫
RN
|un|

pdx
] N+α

N

= C(εC2)
N+α

N .

Note that ε is arbitrary, we get ∫
RN

(Iα ∗ F(|un|)) f (|un|)|un|dx = o(1).

Combining with J′A,V(un)→ 0, we can get

o(1) = 〈J′A,V(un), un〉

=

∫
RN

[|∇Aun|
2 + V(x)u2

n]dx −
∫
RN

(Iα ∗ F(|un|)) f (|un|)|un|dx,
(4.2)

which implies that∫
RN

[|∇Aun|
2 + V(x)u2

n]dx =

∫
RN

(Iα ∗ F(|un|)) f (|un|)|un|dx + o(1) = 2o(1) (4.3)
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Then we have
∫
RN [|∇Aun|

2 + V(x)|un|
2]dx → 0, which implies un → 0 in H1

A,V . We deduce that cα = 0,
which contradicts to the fact that cα > 0. Hence δ > 0 and there exist {yn} ⊂ R

N such that∫
B1(yn)

|un|
pdx ≥ δ

2 > 0. We set vn(x) = un(x + yn), then ‖un‖ = ‖vn‖,
∫

B1(0)
|vn|

pdx > δ
2 and

JA,V(vn)→ cα = c, J′A,V(vn)→ 0. Thus there exist a v0 , 0 such that
vn ⇀ v0 in H1

A,V ,

vn → v0 in Ls(RN), ∀ s ∈ [2, 2∗)
vn → v0 a.e. on RN .

Then for any ϕ ∈ C∞0 (RN) we have 0 = 〈J′A,V(vn), ϕ〉 + o(1) = 〈J′A,V(v0), ϕ〉, which means v0 is a solition
of Eq (1.1).

On the other hand, combining with the Fatou Lemma, we can obtain

cα = JA,V(vn) −
1
4
〈J′A,V(vn), vn〉 + o(1)

=
1
4

∫
RN

[|∇Avn|
2 + V(x)|vn|

2]dx +
1
4

∫
RN

(Iα ∗ F(|vn|))[ f (|vn|)|vn| − 2F(|vn|)]dx + o(1)

≥
1
4

∫
RN

[|∇Av0|
2 + V(x)|v0|

2]dx +
1
4

∫
RN

(Iα ∗ F(|v0|))[ f (|v0|)|v0| − 2F(|v0|)]dx + o(1)

= JA,V(v0) −
1
4
〈J′A,V(v0), v0〉 + o(1)

= JA,V(v0) + o(1).

(4.4)

At the same time, we know cα ≤ JA,V(v0) by the definition of cα. Then we can deduce that v0 is a
ground state solution of Eq (1.1).�
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