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1. Introduction

For two positive numbers a and b, four means

Msin(a, b) =


a − b

2 sin
(

a−b
a+b

) a , b

a a = b

, (sine mean) (1.1)

Mtan(a, b) =


a − b

2 tan
(

a−b
a+b

) a , b

a a = b

, (tangent mean) (1.2)

Msinh(a, b) =


a − b

2 sinh
(

a−b
a+b

) a , b

a a = b

, (hyperbolic sine mean) (1.3)
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and

Mtanh(a, b) =


a − b

2 tanh
(

a−b
a+b

) a , b

a a = b

(hyperbolic tangent mean) (1.4)

are the so-called Seiffert-like means introduced by Witkowski [2], which are the means of the form

M f (a, b) =


|a − b|

2 f
(
|a−b|
a+b

) , a , b,

a, a = b,

(1.5)

where a, b > 0 and the function f : (0, 1) 7→ R (called Seiffert function) satisfies
x

1 + x
≤ f (x) ≤

x
1 − x

.

It is worth mentioning that these new Seiffert-like means have the Seiffert functions sin, tan, sinh
and tanh, the inverse counterparts of which can produce the first Seiffert mean [3], second Seiffert
mean [4], Neuman-Sándor mean [5] and logarithmic mean [6] by (1.5). In fact, these Seiffert-like
means belong essentially to those ones constructed by trigonometric and hyperbolic functions. Such
methods to create new means first appeared in [7] by Yang and embodied in several papers [8–10]. For
more informations on these means, we refer to the literature in [11–23].

Sharp bounds for the Seiffert-like means and their related special functions have attracted the
attention of several researchers [24–26]. In particular, the following chain of inequalities

Mtan(a, b) < Msinh(a, b) < A(a, b) < Msin(a, b) < Mtanh(a, b)

had been established in [2] for all a, b > 0 with a , b, where A(a, b) = (a+b)/2 is the arithmetic mean.
Very recently, Nowicka and Witkowski [1] proved that the double inequalities

M2/3
sin (a, b)M1/3

tan (a, b) < A(a, b) <
2
3

Msin(a, b) +
1
3

Mtan(a, b), (1.6)

M1/3
tanh(a, b)M2/3

sinh(a, b) < A(a, b) <
1
3

Mtanh(a, b) +
2
3

Msinh(a, b) (1.7)

hold for all a, b > 0 with a , b.
Motivated by (1.6) and (1.7), it makes sense to ask about the optimal parameters λ1, λ2, µ1 and µ2

satisfying the following inequalities[
2
3

Msin(a, b) +
1
3

Mtan(a, b)
]λ1 [

M2/3
sin (a, b)M1/3

tan (a, b)
]1−λ1

< A(a, b)

<

[
2
3

Msin(a, b) +
1
3

Mtan(a, b)
]µ1 [

M2/3
sin (a, b)M1/3

tan (a, b)
]1−µ1

,[
1
3

Mtanh(a, b) +
2
3

Msinh(a, b)
]λ2 [

M1/3
tanh(a, b)M2/3

sinh(a, b)
]1−λ2

< A(a, b)

<

[
1
3

Mtanh(a, b) +
2
3

Msinh(a, b)
]µ2 [

M1/3
tanh(a, b)M2/3

sinh(a, b)
]1−µ2

hold for all a, b > 0 with a , b. This paper aims to answer this question.
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2. Lemmas

To prove our main results we need several lemmas, which we present in this section.

Lemma 2.1. ( [27, L’Hospital Monotone Rule]) Suppose f , g : (a, b) → R are differentiable with
g′(x) , 0 such that f (a+) = g(a+) = 0 or f (b−) = g(b−) = 0. If f ′/g′ is (strictly) increasing (decreasing)
on (a, b), then so is f /g .

The following lemma is a useful tool for dealing with the monotonicity of the ratio of two power
series. The first part of Lemma 2.2 is first established by Biernacki and Krzyz [28], while the second
part comes from Yang et al. [29, Theorem 2.1]. But we cite the latest version of the second part [30,
Lemma 2], where the authors have corrected a bug in the previous version [29, Theorem 2.1].

Lemma 2.2. ( [30]) Suppose that the power series f (x) =
∑∞

n=0 anxn and g(x) =
∑∞

n=0 bnxn have the
radius of convergence r > 0 with bn > 0 for all n ∈ N0 = N ∪ {0}. Let h(x) = f (x)/g(x) and
H f ,g = ( f ′/g′)g − f . Then the following statements hold true:

(1) If the non-constant sequences {an/bn}
∞
n=0 is increasing (decreasing) for all n ≥ 0, then h(x) is

strictly increasing (decreasing) on (0, r);

(2) If for certain m ∈ N, the sequence {ak/bk}0≤k≤m and {ak/bk}k≥m both are non-constant, and they are
increasing (decreasing), respectively. Then h(x) is strictly increasing (decreasing) on (0, r) if and
only if H f ,g(r−) ≥ (≤)0. Moreover, if H f ,g(r−) < (>)0, then there exists x0 ∈ (0, r) such that h(x) is
strictly increasing (decreasing) on (0, x0) and strictly decreasing (increasing) on (x0, r).

Let us recall the Taylor series expansions for cot x and csc x, which can be found in [31].

Lemma 2.3. For |x| < π, then we have the Taylor series formulas

cot x =
1
x
−

∞∑
n=1

22n

(2n)!
|B2n|x2n−1 and csc x =

1
x

+

∞∑
n=1

22n − 2
(2n)!

|B2n|x2n−1,

where B2n is the even-index Bernoulli numbers for n ∈ N.

For the readers’ convenience, recall from [31, p.804, 23.1.1] that the Bernoulli numbers Bn may be
defined by the power series expansion

z
ez − 1

=

∞∑
n=0

Bn
zn

n!
= 1 −

z
2

+

∞∑
k=1

B2k
z2k

(2k)!
, |z| < 2π.

The first few Bernoulli numbers B2k are

B2 =
1
6
, B4 = −

1
30
, B6 =

1
42
, , B8 = −

1
30
, B10 =

5
66
, B12 = −

691
2730

with the property (−1)k+1B2k > 0 for k ≥ 1.

Lemma 2.4. ( [32]) For k ∈ N, the Bernoulli numbers B2k satisfy

22k−1 − 1
22k+1 − 1

(2k + 1)(2k + 2)
π2 <

∣∣∣∣∣B2k+2

B2k

∣∣∣∣∣ < 22k − 1
22k+2 − 1

(2k + 1)(2k + 2)
π2 .
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Some other Taylor series formulas for the functions involving cot x and csc x can be obtained from
Lemma 2.3 by differentiation.

Lemma 2.5. Let B2n be the even-index Bernoulli numbers for n ∈ N. Then

csc2 x =
1
x2 +

∞∑
n=1

(2n − 1)22n

(2n)!
|B2n|x2n−2,

csc2 x cot x =
1
x3 −

∞∑
n=1

n(2n + 1)22n+2

(2n + 2)!
|B2n+2|x2n−1,

csc x cot x =
1
x2 −

∞∑
n=1

(2n − 1)(22n − 2)
(2n)!

|B2n|x2n−2

and

csc x cot2 x = −
1
2x

+
1
x3 −

∞∑
n=1

(2n + 1)
[
(n + 1)(22n − 2)|B2n| − n(22n+2 − 2)|B2n+2|

]
(2n + 2)!

x2n−1

for |x| < π.

Proof. Differentiation yields

(cot x)′ = − csc2 x, (cot x)′′ = 2 csc2 x cot x,

(csc x)′ = − csc x cot x, (csc x)′′ = 2 csc x cot2 x + csc x,

which in conjunction with Lemma 2.3 gives the desired results. �

Lemma 2.6. Let σ = [(2 + cos 1)(1 + 3 cot2 1− 3 cot 1)]/[2(1− cos 1)] = 0.8581 · · · . Then the function

f (x) =
(2 + cos x)(3x − 2x sin2 x − 3 sin x cos x)

2x(1 − cos x) sin2 x

is strictly increasing from (0, 1) onto (4/5, σ).

Proof. Let

f1(x) = 2x csc x + 6x csc x cot2 x − 2x cot x + 3x csc2 x cot x − 3 csc2 x − 6 csc x cot x + 3

and
f2(x) = 2x csc x − 2x cot x.

Then we clearly see that f (x) = f1(x)/ f2(x).
By Lemma 2.3 and Lemma 2.5, we can rewrite f (x) in terms of power series as follows

f (x) =

∑∞
n=1 anx2n∑∞
n=1 bnx2n , (2.1)

where

an =
(22n + 2)|B2n| + 6(22n − 1)|B2n+2|

(2n)!
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and

bn =
4(22n − 1)

(2n)!
|B2n|.

It can be easily seen from (2.1) and Lemma 2.2(1) that Lemma 2.6 will be proved if we can show
that the sequence {

an

bn
=

22n−1 + 1
2(22n − 1)

+
3
2
|B2n+2|

|B2n|

}
(2.2)

is strictly increasing for n ≥ 1.
Simple calculations with (2.2) and Lemma 2.4 yield

an+1

bn+1
−

an

bn
=

[
22n+1 + 1

2(22n+2 − 1)
+

3
2
|B2n+4|

|B2n+2|

]
−

[
22n−1 + 1
2(22n − 1)

+
3
2
|B2n+2|

|B2n|

]
>

[
22n+1 + 1

2(22n+2 − 1)
+

3(n + 2)(2n + 3)
π2

22n+1 − 1
22n+3 − 1

]
−

[
22n−1 + 1
2(22n − 1)

+
3(n + 1)(2n + 1)

π2

22n − 1
22n+2 − 1

]
=

3αn

4π2(22n−1)(22n+2 − 1)(22n+3 − 1)
, (2.3)

where

αn = 24n+2
[
(4n + 5)22n+3 + 6n2 − 47n − (67 + 6π2)

]
− 22n

[
24n2 − 76n − (128 + 3π2)

]
− 4(4n + 5). (2.4)

By using the Bernoulli inequality, we obtain

(4n + 5)22n+3 + 6n2 − 47n − (67 + 6π2) > 8(4n + 5)(2n + 1) + 6n2 − 47n − 127
= 70n2 + 65n − 87 > 0

for n ≥ 1. According to this with (2.4), it follows that

αn > 24n+2(70n2 + 65n − 87
)
− 22n(24n2 − 76n − 155

)
− 4(4n + 5)

> 22n
[
24(70n2 + 65n − 87

)
−

(
24n2 − 76n − 155

)]
− 4(4n + 5)

= 22n(1096n2 + 1116n − 1237
)
− 4(4n + 5)

> 22(1096n2 + 1116n − 1237
)
− 4(4n + 5)

= 8(548n2 + 556n − 621) > 0

for n ≥ 1. This together with (2.3) implies that the sequence {an/bn} is strictly increasing for n ≥ 1. So
is f (x) from Lemma 2.2(1).

By L’Hopital rule, we obtain

f (0+) = lim
x→0+

f ′1(x)
f ′2(x)

=
a1

b1
=

4
5
,

f (1−) = lim
x→1−

f (x) =
(2 + cos 1)(1 + 3 cot2 1 − 3 cot 1)

2(1 − cos 1)
= σ.

This completes the proof. �
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Lemma 2.7. Let τ = [(2 + cosh 1)(3 coth2 1 − 3 coth 1 − 1)]/[2(cosh 1 − 1)] = 0.7603 · · · . Then the
function

g(x) =
(2 + cosh x)(3x + 2x sinh2 x − 3 sinh x cosh x)

2x(cosh x − 1) sinh2 x

is strictly decreasing from (0, 1) onto (τ, 4/5).

Proof. Let

g1(x) = 16x + 10x cosh x + 8x cosh(2x) + 2x cosh(3x) − 3 sinh x − 12 sinh(2x) − 3 sinh(3x)

and
g2(x) = 2x

[
2 − cosh x − 2 cosh(2x) + cosh(3x)

]
.

Then it is easy to see that g(x) = g1(x)/g2(x).
Recall the Taylor series expansions of sinh x and cosh x are

sinh x =

∞∑
n=0

1
(2n + 1)!

x2n+1 and cosh x =

∞∑
n=0

1
(2n)!

x2n.

According to this, we can rewrite g(x), in terms of power series, as

g(x) =

∑∞
n=0 unx2n∑∞
n=0 vnx2n , (2.5)

where

un =
(n + 1)22n+8 + (4n + 1)32n+4 + 20n + 47

(2n + 5)

and

vn =
2(32n+4 − 22n+5 − 1)

(2n + 4)!
.

From (2.5) and Lemma 2.2(1), it suffices to consider the monotonicity of the sequence {un/vn}
∞
n=0.

Simple calculations lead to

un+1

vn+1
−

un

vn
=

12βn

(2n + 5)(2n + 7)(32n+4 − 22n+5 − 1)(32n+6 − 22n+7 − 1)
, (2.6)

where

βn = −(40n2 + 170n + 127)62n+4 + 32n+4[32n+7 − 2(32n2 + 176n + 237)
]

− 22n+4[22n+10 − (24n2 + 162n + 239)
]
− 1.

It can be easily verified that

β0 = −38400 and β1 = −2257920. (2.7)

We now prove that βn > 0 for n ≥ 2.

AIMS Mathematics Volume 6, Issue 8, 9036–9047.
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By binomial theorem, elementary calculations lead to
βn

32n+4 = −(40n2 + 170n + 127)22n+4 + 32n+7 − 2(32n2 + 176n + 237)

−

(
2
3

)2n+4 [
22n+10 − (24n2 + 162n + 239)

]
−

1
32n+4

> −(40n2 + 170n + 127)22n+4 + 32n+7 − 2(32n2 + 176n + 237)

−

(
2
3

)8 [
22n+10 − (24n2 + 162n + 239)

]
−

1
38

= 32n+7 −
1
38

[
(262440n2 + 1115370n + 849631)22n+4

+ 418880n2 + 2268000n + 3048731
]

> 37
[
22n + (2n)22n−1 +

2n(2n − 1)
2!

22n−2 +
2n(2n − 1)(2n − 2)

3!
22n−3

]
−

1
38

[
(262440n2 + 1115370n + 849631)22n+4

+ 418880n2 + 2268000n + 3048731
]

>
1
38

[
1
4

(9565938n3 − 2447253n2 − 23553990n + 3019244)(1 + 2n)

− (418880n2 + 2268000n + 3048731)
]

>
(n − 2)(42691728 + 34639615n + 42935184n2 + 19131876n3)

4 · 38 > 0

for n ≥ 2. Combining this with (2.6) and (2.7), it follows that un/vn is strictly decreasing for 0 ≤ n ≤ 2
and strictly increasing for n ≥ 2.

Further, differentiation yields

Hg1,g2(x) =
g′1(x)
g′2(x)

g2(x) − g1(x)

=
4x sinh2 x(6x sinh2 x + 8x cosh x − 7 sinh x cosh x − 8 sinh x + 7x)

x + 3x cosh x + sinh x
−

[
16x + 10x cosh x + 8x cosh(2x) + 2x cosh(3x)

− 3 sinh x − 12 sinh(2x) − 3 sinh(3x)
]
,

which gives
Hg1,g2(1) = −0.06789 · · · < 0. (2.8)

Lemma 2.2(2) and (2.8) together with the piecewise monotonicity of un/vn lead to the conclusion
that g(x) is strictly decreasing on (0, 1). Finally, since

g(0+) =
c0

d0
=

4
5
, g(1−) =

(2 + cosh 1)(3 coth2 1 − 3 coth 1 − 1)
2(cosh 1 − 1)

= τ,

the proof is completed. �
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3. Main results

Theorem 3.1. The double inequality[
2
3

Msin(a, b) +
1
3

Mtan(a, b)
]λ1 [

M2/3
sin (a, b)M1/3

tan (a, b)
]1−λ1

< A(a, b)

<

[
2
3

Msin(a, b) +
1
3

Mtan(a, b)
]µ1 [

M2/3
sin (a, b)M1/3

tan (a, b)
]1−µ1

holds for all a, b > 0 with a , b if and only if λ1 ≤ 4/5 and µ1 ≥ µ∗1 := [3 log(sin 1) −
log(cos 1)]/[3 log

(
2+cos 1

3

)
− log(cos 1)] = 0.8386 · · · .

Proof. Since Msin(a, b),Mtan(a, b) and A(a, b) are symmetric and homogeneous of degree one, without
loss of generality, we may assume that a > b > 0.

Let x = (a − b)/(a + b) ∈ (0, 1). Then from (1.1) and (1.2) we clearly see that

Msin(a, b)
A(a, b)

=
x

sin x
,

Mtan(a, b)
A(a, b)

=
x

tan x
. (3.1)

According to (3.1), we obtain

log A(a, b) − log
[
M2/3

sin (a, b)M1/3
tan (a, b)

]
log

[
2
3Msin(a, b) + 1

3Mtan(a, b)
]
− log

[
M2/3

sin (a, b)M1/3
tan (a, b)

]
=

log
(

sin x
x

)
− 1

3 log(cos x)

log
(

2+cos x
3

)
− 1

3 log(cos x)
:= ϕ(x). (3.2)

Let

ϕ1(x) = log
(
sin x

x

)
−

1
3

log(cos x) and ϕ2(x) = log
(
2 + cos x

3

)
−

1
3

log(cos x).

Then we clearly see from (3.2) that ϕ(x) = ϕ1(x)/ϕ2(x).
Simple calculations lead to

ϕ1(0+) = ϕ2(0+) = 0, (3.3)

ϕ′1(x)
ϕ′2(x)

=
(2 + cos x)

(
3x − 2x sin2 x − 3 sin x cos x

)
2x(1 − cos x) sin2 x

= f (x), (3.4)

where f (x) is defined as in Lemma 2.6.
Lemma 2.1 and Lemma 2.6 together with (3.3), (3.4) lead to the conclusion that ϕ(x) is strictly

increasing on (0, 1).
Therefore, Theorem 3.1 follows easily from (3.2) and the monotonicity of ϕ(x) together with

ϕ(0+) = lim
x→0+

ϕ′1(x)
ϕ′2(x)

=
4
5
, ϕ(1−) =

3 log(sin 1) − log(cos 1)

3 log
(

2+cos 1
3

)
− log(cos 1)

= µ∗1.

�
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Theorem 3.2. The double inequality[
1
3

Mtanh(a, b) +
2
3

Msinh(a, b)
]λ2 [

M1/3
tanh(a, b)M2/3

sinh(a, b)
]1−λ2

< A(a, b)

<

[
1
3

Mtanh(a, b) +
2
3

Msinh(a, b)
]µ2 [

M1/3
tanh(a, b)M2/3

sinh(a, b)
]1−µ2

holds for all a, b > 0 with a , b if and only if λ2 ≤ λ
∗
2 := [3 log(sinh 1) − log(cosh 1)]/

[3 log
(

2+cosh 1
3

)
− log(cosh 1)] = 0.7730 · · · and µ2 ≥ 4/5.

Proof. Since Msinh(a, b),Mtanh(a, b) and A(a, b) are symmetric and homogeneous of degree one, without
loss of generality, we may assume that a > b > 0.

Let x = (a − b)/(a + b) ∈ (0, 1). Then it is easy to see from (1.3) and (1.4) that

Msinh(a, b)
A(a, b)

=
x

sinh x
,

Mtanh(a, b)
A(a, b)

=
x

tanh x
. (3.5)

According to (3.1), it follows that

log A(a, b) − log
[
M2/3

sinh(a, b)M1/3
tanh(a, b)

]
log

[
2
3Msinh(a, b) + 1

3Mtanh(a, b)
]
− log

[
M2/3

sinh(a, b)M1/3
tanh(a, b)

]
=

log
(

sinh x
x

)
− 1

3 log(cosh x)

log
(

2+cosh x
3

)
− 1

3 log(cosh x)
:= φ(x). (3.6)

Let

φ1(x) = log
(
sinh x

x

)
−

1
3

log(cosh x) and φ2(x) = log
(
2 + cosh x

3

)
−

1
3

log(cosh x).

Then we clearly see from (3.6) that φ(x) = φ1(x)/φ2(x).
Simple calculations lead to

φ1(0+) = φ2(0+) = 0, (3.7)

φ′1(x)
φ′2(x)

=
(2 + cosh x)

(
3x + 2x sinh2 x − 3 sinh x cosh x

)
2x(cosh x − 1) sinh2 x

= g(x), (3.8)

where g(x) is defined as in Lemma 2.7.
Lemma 2.1 and Lemma 2.7 together with (3.7), (3.8) lead to the conclusion that φ(x) is strictly

decreasing on (0, 1).
Moreover, by L’Hopital rule and (3.8), one has

φ(0+) = lim
x→0+

φ′1(x)
φ′2(x)

=
4
5
, φ(1−) =

3 log(sinh 1) − log(cosh 1)

3 log
(

2+cosh 1
3

)
− log(cosh 1)

= λ∗2. (3.9)

Therefore, Theorem 3.2 follows easily from (3.6) and (3.9). �
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As a consequence of Theorem 3.1 and Theorem 3.2, new bounds for the sine and hyperbolic sine
function are given in the following corollary.

Corollary 3.3. Let µ∗1 and λ∗2 be defined as in Theorem 3.1 and Theorem 3.2 respectively. Then the
double inequalities (

2 + cos x
3

)4/5

(cos x)1/15 <
sin x

x
<

(
2 + cos x

3

)µ∗1
(cos x)(1−µ∗1)/3,(

2 + cosh x
3

)λ∗2
(cosh x)(1−λ∗2)/3 <

sinh x
x

<

(
2 + cosh x

3

)4/5

(cosh x)1/15

hold for all x ∈ (0, 1).

4. Conclusions

In the paper, we establish sharp upper and lower bounds for the arithmetic mean in terms of new
Seiffert-like means, more precisely, the double inequalities[

2
3

Msin(a, b) +
1
3

Mtan(a, b)
]4/5 [

M2/3
sin (a, b)M1/3

tan (a, b)
]1/5

< A(a, b)

<

[
2
3

Msin(a, b) +
1
3

Mtan(a, b)
]µ∗1 [

M2/3
sin (a, b)M1/3

tan (a, b)
]1−µ∗1

and [
1
3

Mtanh(a, b) +
2
3

Msinh(a, b)
]λ∗2 [

M1/3
tanh(a, b)M2/3

sinh(a, b)
]1−λ∗2 < A(a, b)

<

[
1
3

Mtanh(a, b) +
2
3

Msinh(a, b)
]4/5 [

M1/3
tanh(a, b)M2/3

sinh(a, b)
]1/5

hold for all a, b > 0 with a , b, where µ∗1 and λ∗2 are given as in Theorem 3.1 and Theorem 3.2,
respectively.
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