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Abstract: Nowadays, it is an important task to find extremal values on any molecular descriptor
with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and
the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular
graphs of some chemical compounds are unicyclic graphs or bicyclic graphs, such as benzene
compounds, napthalene, cycloalkane, et al. For another, the symmetric division deg index is proven
to be a potentially useful molecular descriptor in quantitative structure-property/activity relationships
(QSPR/QSAR) studies recently. Therefore, we present the maximum symmetric division deg indices
of unicyclic graphs and bicyclic graphs with given matching number. Furthermore, we identify the
corresponding extremal graphs.
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1. Introduction

As a numerical parameter of molecular structure, topological molecular descriptors play an
important role in chemistry, pharmacology and materials science, etc. (see [1–3]). Symmetric division
deg (S DD for short) index is one of the 148 discrete Adriatic indices that showed good predictive
abilities on the testing sets provided by International Academy of Mathematical Chemistry
(IAMC) [4]. This graph invariant has a good correlation with the total surface area of
polychlorobiphenyls [4], and its extremal graphs which have a particularly elegant and simple
structure are obtained with the help of MathChem [5]. Let us write the definition of S DD index again,
that is

S DD(G) =
∑

uv∈E(G)

( min{dG(u), dG(v)}
max{dG(u), dG(v)}

+
max{dG(u), dG(v)}
min{dG(u), dG(v)}

)
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=
∑

uv∈E(G)

(dG(u)
dG(v)

+
dG(v)
dG(u)

)
,

where dG(u) denotes the degree of vertex u in G. Recently, Furtula et al. [6] found that S DD index is an
applicable and viable topological index, whose predictive capability is better than that of some popular
topological indices, such as the famous geometric-arithmetic index and the second Zagreb index. Gupta
et al. [7] determined some upper and lower bounds of S DD index on some classes of graphs and
characterized the corresponding extremal graphs. For other recent mathematical investigations, the
readers can refer [8–16].

At present, studying the behavior of topological indices is an essential subject. S DD index has been
studied extensively since it was proved to be an applicable and viable molecular descriptor in 2018.
Furthermore, unicyclic graphs and bicyclic graphs are two kinds of important graphs in mathematical
chemistry because they can be seen as the molecular graphs of some chemical compounds. There are
many papers on topological indices of unicyclic graphs and bicyclic graphs. Recent results can be
referred to [17–19] et al. So we study the extremal values of S DD indices on unicyclic graphs and
bicyclic graphs with given matching number and find the corresponding extremal graphs. Our results
may be used to detect the chemical compounds that may have desirable properties. Namely, if one can
find some properties well-correlated with this descriptor (S DD index has a good correlation with the
total surface area of polychlorobiphenyls), the extremal graphs should correspond to molecules with
minimum or maximum value of that property.

We only deal with connected graphs without multiple edges and loops. We use G = (V(G), E(G))
to denote the graph with vertex set V(G) and edge set E(G). Let NG(x) be the set of all neighbours
of x ∈ V(G) in G, and dG(x) = |NG(x)|. If dG(x) = 1, we call x is a pendant vertex, and denoted
by PV(G) the set of all pendant vertices in G. We denote the distance between vertices u and v of
G by dG(u, v). Let G − xy and G − x be the graph obtained from G by deleting the edge xy ∈ E(G)
and the vertex x ∈ V(G), respectively. Similarly, G + uv is the graph obtained from G by adding an
edge uv < E(G), where u, v ∈ V(G). Unicyclic graphs U and bicyclic graphs B are connected graphs
satisfying |E(U)| = |V(U)| and |E(B)| = |V(B)| + 1, respectively. As usual, let’s denote the path, the
cycle and the star on n vertices by Pn, Cn and S n, respectively.
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Figure 1. The graphs∞(p, l, q), θ(a, b, c) and∞(p, 0, q).

There are two categories of bases of bicyclic graphs, as described here. Denoted by ∞(p, l, q) the
graph obtained from two vertex-disjoint cycles Cp and Cq by connecting one vertex u∗ of Cp and one
vertex v∗ of Cq with a path Pl+1 = u∗ · · · v∗ of length l (if l = 0, identifying u∗ with v∗), as depicted in
Figure 1. Denoted by θ(a, b, c) the union of three internally disjoint paths Pa+1, Pb+1, Pc+1 of length
a, b, c (a, b, c ≥ 1 and at most one of them is 1) respectively with common end vertices u∗ and v∗, as
depicted in Figure 1. Notice that any bicyclic graph is obtained from a θ(a, b, c) or an ∞(p, l, q) by
attaching trees to some of its vertices. The bicyclic graphs containing∞(p, l, q) and θ(r, s, t) as its base
are called∞-graph and θ-graph, respectively.
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A subset M ⊆ E(G) is called a matching of G if no pair of edges in M share a common vertex. The
matching number a graph G is the maximum cardinality of a matching in G. If vertex x ∈ V(G) is
incident with some edges of M, where M is a matching of G, then x is said to be M-saturated. M is
called a perfect matching if each vertex of G is M-saturated. We can refer [20] for other terminologies
and notations.

2. Preliminaries

Let S (x, y) = x
y +

y
x , where x, y ≥ 1. One can easily get the Lemmas 2.1 and 2.2.

Lemma 2.1. Let ht(x) = S (x, t + 1) − S (x, t) = x
t+1 −

x
t + 1

x , where x, t ≥ 1. Then ht(x) is decreasing for
x.

Lemma 2.2. Let ϕ1(t) = t + 1
t+1 −

1
t+2 and ϕ2(t) = t + 1

t+2 −
1

t+3 , where t ≥ 1. Then ϕ1(t) and ϕ2(t) are
increasing for t.

Lemma 2.3. Let ψ(m) = m2

2 −
4
3m − 1

m+1 . Then ψ(m) > 0 for m ≥ 3.

Proof. Notice that for m ≥ 3,

ψ′(m) = m −
4
3

+
1

(m + 1)2 > 0.

So ψ(m) ≥ ψ(3) = 1
4 > 0. �

Lemma 2.4. Let l(t, r) = 3
2 t + r−1

t−1 −
r
t = 3

2 t + r−t
t(t−1) , where r, t ≥ 2 and r < t. Then l(t, r) is increasing

for t and r, respectively.

Proof. It is evident that l(t, r) is increasing for r. Furthermore, since

∂l
∂t

=
3
2

+
t2 − (2t − 1)r

t2(t − 1)2 >
3
2

+
t2 − (2t − 1)t

t2(t − 1)2

=
3
2
−

1
(t − 1)t

≥
3
2
−

1
2
> 0,

then l(t, r) is increasing for t. �

Lemma 2.5. [14] Among the set of n-vertex (n ≥ 3) unicyclic graphs, the cycle Cn is the unique graph
with the minimum S DD index.

3. S DDS DDS DD index of unicyclic graphs with given matching number

For integers m ≥ 2, denoted by UUU n,m the set of n-vertex unicyclic graphs with matching number
m.

rr r
rrr
rrr
rrr�

��
   
b
bb

Q
QQ
``̀
"

"" J
J






...
...{ }n − 2m + 1 m − 2

Figure 2. The graph UUU∗n,m.
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Let UUU∗n,m be the unicyclic graphs on n vertices arisen from C3 by attaching n− 2m + 1 pendant edges
and m − 2 paths of length 2 to its one vertex, as depicted in Figure 2. Let S DD(UUU∗n,m) = f (n,m), where

f (n,m) = n2 + 2n +
3m2

2
−

5mn
2
− 1 +

m
n − m + 1

.

Lemma 3.1. [21] Let U ∈UUU 2m,m and T be a tree in U attached to a root r, where m ≥ 3. If y ∈ V(T )
is a vertex furthest from the root r with dU(y, r) ≥ 2, then y is a pendant vertex and adjacent to a vertex
x of degree 2.

Lemma 3.2. [22] Let U ∈UUU 2m,m. If PV(U) , ∅, then for any vertex x ∈ V(G), | NU(x)∩ PV(U) |≤ 1.

Lemma 3.3. [23] Let U ∈ UUU n,m (n > 2m) and U � Cn. Then there exist an m-matching M and a
pendant vertex y such that M does not saturate y.

Theorem 3.4. Let U ∈UUU 2m,m, where m ≥ 2. Then

S DD(U) ≤ f (2m,m) =
m2

2
+ 4m −

1
m + 1

with equality if and only if U � UUU∗2m,m.

Proof. By induction on m. If m = 2, then U � UUU∗4,2 or U � C4. Notice that S DD(C4) = 8 <

S DD(UUU∗4,2) = f (4, 2) = 29
3 . Thus for m = 2, the theorem is true.

We assume that m ≥ 3 and the result holds for all unicyclic graphs on fewer than 2m vertices with
a perfect matching. Suppose M is a perfect matching of U. If U � C2m, by Lemma 2.5, it follows
that S DD(C2m) < S DD(UUU∗2m,m) = f (2m,m). So we assume that U � C2m in the following proof. This
implies that PV(U) , ∅.

Let y ∈ PV(U), then U contains a tree Tr attached on a root r ∈ V(C) such that y ∈ V(Tr), where C
is the cycle of U. Let dTr (r, z) = max{dTr (r, y)|y ∈ V(Tr)} and TTT U be the set of all pendant trees in U.
We discuss in three cases.
Case 1. max{dTr (r, z)|Tr ∈ TTT U} = 1.

In view of Lemma 3.2, then U is obtained from a cycle, say Cs = x1x2 · · · xsx1, by adding a pendant
edge to some vertices on Cs. If just one pendant edge is attached to every vertex of Cs, then S DD(U) =

m(S (1, 3) + S (3, 3)) = 16
3 m. By Lemma 2.3, for m ≥ 3, S DD(UUU∗2m,m) − S DD(U) = f (2m,m) − 16

3 m =
m2

2 −
4
3m − 1

m+1 > 0.
Otherwise, there exists at least one vertex, say x, with dU(x) = 2 on Cs. Since U � C2m, there

exist i ∈ {1, 2, · · · , s} such that dU(xi) = 3 and dU(xi+1) = 2, where xs+1 = x1. Assume without loss
of generality that dU(x2) = 3 and dU(x3) = 2 . Let y2 be the pendant vertex adjacent to x2. Since
U ∈ UUU 2m,m, it can be seen that a two-degree vertex can not be adjacent to two three-degree vertices.
Thus dU(x4) = 2 and x3x4 ∈ M. Let U′ = U − {y2, x3} + x2x4, then U′ ∈ UUU 2m−2,m−1. By the definition
of S DD index, induction hypothesis and Lemma 2.1, it follows that

S DD(U) =S DD(U′) + S (dU(x2), dU(y2)) + S (dU(x2), dU(x3))
+ [S (dU(x2), dU(x1)) − S (dU(x2) − 1, dU(x1))]
+ S (dU(x3), dU(x4)) − S (dU(x2) − 1, dU(x4))
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=S DD(U′) + S (3, 1) + S (3, 2) + [S (3, dU(x1)) − S (2, dU(x1))]
≤ f (2m − 2,m − 1) + S (3, 1) + S (3, 2) + [S (3, 2) − S (2, 2)]

= f (2m − 2,m − 1) +
17
3

< f (2m,m)

since f (2m,m) − f (2m − 2,m − 1) − 17
3 = m − 13

6 + 1
m −

1
m+1 > 0 for m ≥ 3.

Case 2. U contains a pendant tree Tr ∈ TTT U such that dTr (r, z) = 2.
Since z ∈ PV(U), then denote NU(z) = {u}, by Lemma 3.1, we have dU(u) = 2. Let NU(u) = {r, z}

and NU(r) = {u, x1, x2, v1, v2, · · · , vt}, where xi ∈ V(C), dU(xi) ≥ 2 (i = 1, 2).
Subcase 2.1. There is vi ∈ PV(U), where vi ∈ {v1, v2, · · · , vt}.

Assume without loss of generality that v1 ∈ PV(U), then v1r ∈ M. By Lemma 3.2, (NU(r) \ {v1}) ∩
PV(U) = ∅. Then dU(vi) ≥ 2, i = 2, 3, · · · , t. Since dTr (r, z) = max{dTr (r, y)|y ∈ V(Tr)} = 2, combined
with Lemma 3.1, it follows that dU(vi) = 2 and NU(vi) \ {r} = {zi} ∈ PV(U), where i = 2, 3, · · · , t. Let
U′ = U − z − u. Then U′ ∈ UUU 2m−2,m−1. By the definition of S DD index, induction hypothesis and
Lemmas 2.1, 2.2, we have

S DD(U) =S DD(U′) + S (dU(u), dU(r)) + S (dU(u), dU(z))

+

2∑
i=1

[
S (dU(r), dU(xi)) − S (dU(r) − 1, dU(xi))

]
+ [S (dU(v1), dU(r)) − S (dU(v1), dU(r) − 1)]

+

t∑
i=2

[
S (dU(r), dU(vi)) − S (dU(r) − 1, dU(vi))

]
=S DD(U′) + S (2, t + 3) + S (2, 1) + [S (t + 3, 1) − S (t + 2, 1)]

+

2∑
i=1

[
S (t + 3, dU(xi)) − S (t + 2, dU(xi))

]
+

t∑
i=2

[
S (t + 3, 2) − S (t + 2, 2)

]
≤ f (2m − 2,m − 1) + S (2, t + 3) + S (2, 1) + [S (t + 3, 1) − S (t + 2, 1)]

+ 2[S (t + 3, 2) − S (t + 2, 2)] + (t − 1)[S (t + 3, 2) − S (t + 2, 2)]

= f (2m − 2,m − 1) + t −
1

t + 3
+

1
t + 2

+
11
2

≤ f (2m − 2,m − 1) + m −
1

m + 1
+

1
m

+
7
2

= f (2m,m)

since t ≤ m − 2. The equalities above hold only if S DD(U′) = f (2m − 2,m − 1),
V(U) = {x1, x2, r, v1, u, z} ∪ {z2, z3, · · · , zt} ∪ {v2, v3, · · · , vt} and dU(x1) = dU(x2) = 2, which implies
that U′ � UUU∗2m−2,m−1, and U � UUU∗2m,m.
Subcase 2.2. For all vi ∈ NU(r) \ {u, x1, x2} (i = 1, 2, · · · , t), vi < PV(U).

Then dU(vi) = 2, NU(vi) \ {r} = {zi} ⊂ PV(U), where vizi ∈ M, i = 1, 2, · · · , t. Since U ∈ UUU 2m,m,
there exists a vertex x j ∈ {x1, x2} such that x jr ∈ M. Let U′′ = U − z − u. Then U′′ ∈ UUU 2m−2,m−1. By
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the definition of S DD index, induction hypothesis and Lemma 2.1, it follows that

S DD(U) =S DD(U′′) + S (dU(u), dU(r)) + S (dU(u), dU(z))

+

2∑
i=1

[
S (dU(r), dU(xi)) − S (dU(r) − 1, dU(xi))

]
+

t∑
i=1

[
S (dU(r), dU(vi)) − S (dU(r) − 1, dU(vi))

]
=S DD(U′′) + S (2, t + 3) + S (2, 1) +

t∑
i=1

[
S (t + 3, 2) − S (t + 2, 2)

]
+

2∑
i=1

[
S (t + 3, dU(xi)) − S (t + 2, dU(xi))

]
≤ f (2m − 2,m − 1) + S (2, t + 3) + S (2, 1) + (t + 2)[S (t + 3, 2) − S (t + 2, 2)]
= f (2m − 2,m − 1) + t + 5
< f (2m − 2,m − 1) + m + 3
< f (2m,m)

since t < m − 2 and f (2m,m) − f (2m − 2,m − 1) − m − 3 = 1
m −

1
m+1 + 1

2 > 0 for m ≥ 3.
Case 3. For all Tr ∈ TTT U , dTr (r, z) , 2 and max{dTr (r, z)|Tr ∈ TTT U} ≥ 3.

Similar to Case 2, as z ∈ PV(U), denote NU(z) = {u}, by Lemma 3.1, dU(u) = 2. NU(u) = {v, z} and
NU(v) = {u,w, v1, v2, · · · , vt} (maybe w = r), then dU(w) ≥ 2.
Subcase 3.1. There exists vi ∈ PV(U), where vi ∈ {v1, v2, · · · , vt}.

Assume without loss of generality that v1 ∈ PV(U), then v1v ∈ M. Similar to Subcase 2.1, we
have dU(vi) = 2 and NU(vi) \ {v} = {zi} ⊂ PV(U), where i = 2, 3, · · · , t. Let U′ = U − z − u. Then
U′ ∈UUU 2m−2,m−1. By the definition of S DD index, induction hypothesis and Lemmas 2.1, 2.2, we have

S DD(U) =S DD(U′) + S (dU(u), dU(v)) + S (dU(u), dU(z))
+ [S (dU(v), dU(w)) − S (dU(v) − 1, dU(w))]

+

t∑
i=2

[
S (dU(v), dU(vi)) − S (dU(v) − 1, dU(vi))

]
+ S (dU(v1), dU(v)) − S (dU(v1), dU(v) − 1)

=S DD(U′) + S (2, t + 2) + S (2, 1) + [S (t + 2, dU(w)) − S (t + 1, dU(w))]

+

t∑
i=2

[
S (t + 2, 2) − S (t + 1, 2)

]
+ S (1, t + 2) − S (1, t + 1)

≤ f (2m − 2,m − 1) + S (2, t + 2) + S (2, 1) + t[S (t + 2, 2) − S (t + 1, 2)]
+ S (1, t + 2) − S (1, t + 1)

= f (2m − 2,m − 1) + t −
1

t + 2
+

1
t + 1

+
9
2

< f (2m − 2,m − 1) + m −
1
m

+
1

m − 1
+

5
2
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< f (2m,m)

since t < m−2 and f (2m,m)− f (2m−2,m−1)−m− 5
2−

1
m−1 + 1

m = 1+( 1
m−

1
m+1 )− 1

m−1 + 1
m > 1− 1

m−1 + 1
m > 0

for m ≥ 3.
Subcase 3.2. For all vi ∈ NU(v) \ {u,w} (i = 1, 2, · · · , t), vi < PV(U).

Similar to Subcase 2.2, we have dU(vi) = 2, NU(vi) \ {v} = {zi} ⊂ PV(U), where vizi ∈ M, i =

1, 2, · · · , t. Since U ∈ UUU 2m,m, then vw ∈ M. Let U′′ = U − z − u. Then U′′ ∈ UUU 2m−2,m−1. By the
definition of S DD index, induction hypothesis and Lemma 2.1, we have

S DD(U) =S DD(U′′) + S (dU(u), dU(v)) + S (dU(u), dU(z))
+ [S (dU(v), dU(w)) − S (dU(v) − 1, dU(w))]

+

t∑
i=1

[
S (dU(v), dU(vi)) − S (dU(v) − 1, dU(vi))

]
=S DD(U′′) + S (2, t + 2) + S (2, 1) + [S (t + 2, dU(w)) − S (t + 1, dU(w))]

+

t∑
i=1

[
S (t + 2, 2) − S (t + 1, 2)

]
≤ f (2m − 2,m − 1) + S (2, t + 2) + S (2, 1) + (t + 1)[S (t + 2, 2) − S (t + 1, 2)]
= f (2m − 2,m − 1) + t + 4
< f (2m − 2,m − 1) + m + 2
< f (2m,m)

since t < m − 2 and f (2m,m) − f (2m − 2,m − 1) − m − 2 = 3
2 + 1

m −
1

m−1 > 0 for m ≥ 3. �

Theorem 3.5. Suppose U ∈UUU n,m, where m ≥ 2. Then

S DD(U) ≤ f (n,m)

with equality if and only if U � UUU∗n,m.

Proof. By induction on n. If n = 2m, by Theorem 3.4, the result holds. Now suppose that n > 2m. If
U � Cn, it can be seen that n = 2m + 1. By Lemma 2.5, it follows that S DD(C2m+1) < S DD(UUU∗2m+1,m).
The theorem holds. Thus we suppose that U � Cn in the following proof. By Lemma 3.3, it follows
that there is a pendant vertex y and an m-matching M such that y is not M-saturated. Let xy ∈ E(U) and
dU(x) = t. Let NU(x)∩ PV(U) = {y1, y2, · · · , yr−1, yr = y} and NU(x) \ PV(U) = {u1, u2, · · · , ut−r}. Then
dU(ui) ≥ 2 for each i = 1, 2, · · · , t− r. Furthermore, since U is a unicyclic graph and there exist at least
m−2 M-saturated vertices in V(U)\{x, y1, y2, · · · , yr−1, yr, u1, u2, · · · , ut−r}, then n = |V(U)| ≥ t+1+m−2,
that is t ≤ n − m + 1. Let U′ = U − y. Then U′ ∈UUU n−1,m. We discuss in two cases.
Case 1. r = 1.

Now, y = y1. By the induction hypothesis and Lemma 2.1, for n > 2m, it follows that

S DD(U) =S DD(U′) + S (1, t) +

t−1∑
i=1

[
S (dU(x), dU(ui)) − S (dU(x) − 1, dU(ui))

]
AIMS Mathematics Volume 6, Issue 8, 9020–9035.
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≤S DD(U′) + S (1, t) +

t−1∑
i=1

[
S (t, 2) − S (t − 1, 2)

]
≤ f (n − 1,m) + t +

1
t

+ (t − 1)
(1
2

+
2
t
−

2
t − 1

)
= f (n − 1,m) +

3
2

t −
1
t
−

1
2

≤ f (n,m) − 2n +
5
2

m − 1 +
m

n − m
−

m
n − m + 1

+
3
2

(n − m + 1) −
1

n − m + 1
−

1
2

= f (n,m) −
n
2

+ m −
n − 2m

(n − m)(n − m − 1)
< f (n,m).

Case 2. r ≥ 2.
Notice that there exist at least r − 1 vertices which are not M-saturated, then n − (r − 1) ≥ 2m, that

is r ≤ n − 2m + 1. By the induction hypothesis and Lemmas 2.1, 2.4, it follows that

S DD(U) =S DD(U′) + S (1, t) +

r−1∑
i=1

[
S (dU(x), dU(yi)) − S (dU(x) − 1, dU(yi))

]
+

t−r∑
j=1

[
S (dU(x), dU(u j)) − S (dU(x) − 1, dU(u j))

]
≤S DD(U′) + S (1, t) + (r − 1)[S (1, t) − S (1, t − 1)]

+ (t − r)[S (t, 2) − S (t − 1, 2)]

≤ f (n − 1,m) +
3
2

t +
r
2
−

r
t

+
r − 1
t − 1

− 1

≤ f (n,m) − 2n +
5
2

m +
m

n − m
−

m
n − m + 1

− 1

+
3
2

(n − m + 1) +
1
2

(n − 2m + 1) −
n − 2m + 1
n − m + 1

+
n − 2m
n − m

− 1

= f (n,m).

With the equalities hold only if S DD(U′) = f (n − 1,m), t = n − m + 1, r = n − 2m + 1 and dU(u j) = 2
for j = 1, 2, · · · , t − r, which implies that U′ � UUU∗n−1,m, and U � UUU∗n,m. �

4. S DDS DDS DD index of bicyclic graphs with given matching number

For integers m ≥ 3, denoted by BBBn,m the set of n-vertex bicyclic graphs with matching number m.

rr r
r rrrr
rrr
rrr�

��
   
b
bb

Q
QQ
``̀
"

"" J
J











J
J

...
...{ }n − 2m + 1 m − 3

Figure 3. The graph BBB∗n,m.
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Let BBB∗n,m be the bicyclic graphs on n vertices arisen from∞(3, 0, 3) by attaching n − 2m + 1 pendant
edges and m − 3 paths of length 2 to the vertex of degree 4 in ∞(3, 0, 3), as depicted in Figure 3. Let
S DD(BBB∗n,m) = g(n,m), where

g(n,m) = n2+
7n
2

+
3m2

2
−

5mn
2
−2m+

1
2

+
m + 1

n − m + 2
.

Lemma 4.1. [24] Let B ∈BBB2m,m and T be a tree in B attached to a root r, where m ≥ 3. If y ∈ V(T )
is a vertex furthest from the root r with dB(y, r) ≥ 2, then y is a pendant vertex and adjacent to a vertex
x of degree 2.

Lemma 4.2. [25] Let B ∈BBB2m,m. If PV(B) , ∅, then for any vertex x ∈ V(B), | NB(x) ∩ PV(B) |≤ 1.

Lemma 4.3. [24] Let B ∈ BBBn,m (n > 2m) and B has at least one pendant vertex. Then there is an
m-matching M and a pendant vertex y such that M does not saturate y.
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Figure 4. The graphs B1, B2, · · · , B6 and B7.

Theorem 4.4. Let B ∈BBB2m,m, where m ≥ 3. Then

S DD(B) ≤ g(2m,m) =
m2

2
+ 5m −

1
m + 2

+
3
2

with equality if and only if B � BBB∗2m,m.

Proof. If PV(B) = ∅, B belongs to the type of ∞(p, l, q) or θ(a, b, c) (see Figure 1). It is easy to
check that for m ≥ 3, S DD(∞(p, l, q)) = S DD(θ(a, b, c)) = 4m + 3 < g(2m,m) (l , 0) when u∗v∗ < B,
S DD(∞(p, l, q)) = S DD(θ(a, b, c)) = 4m+ 8

3 < g(2m,m) (l , 0) when u∗v∗ ∈ B and S DD(∞(p, 0, q)) =

4m + 4 < g(2m,m). So we suppose that PV(B) , ∅ in the following proof.
By induction on m. If m = 3, then B ∈ {B1, B2, · · · , B7}, where B1, B2, · · · , B7 are depicted in Figure

4. By direct calculation, S DD(Bi) < S DD(B1) = S DD(BBB∗6,3) = g(6, 3), where i = 2, · · · , 7. Thus for
m = 3, the theorem is true.

We assume that m ≥ 4 and the result holds for all bicyclic graphs on fewer than 2m vertices with a
perfect matching. Suppose M is a perfect matching of B. For y ∈ PV(B), there exists a tree Tr attached
on a root r ∈ V(θ(a, b, c)) or r ∈ V(∞(p, l, q) in B such that y ∈ V(Tr), where Tr is a pendant tree in B.
Let dTr (r, z) = max{dTr (r, y)|y ∈ V(Tr)} and TTT B be the set of all pendant trees in B. We discuss in three
cases.
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Case 1. max{dTr (r, z)|Tr ∈ TTT B} = 1.
Now, B is a graph arisen from ∞(p, l, q) or θ(a, b, c) by attaching some pendant edges to its some

vertices. In view of Lemma 4.2, it follows that every vertex of ∞(p, l, q) or θ(a, b, c) is attached by at
most one pendant edge.

B1
m B2

m B3
m B4

m

B5
m B6

m B7
m

Figure 5. The graphs B1
m, B

2
m, · · · B

6
m and B7

m.

Subcase 1.1. For any w ∈ V(B), dB(w) , 2.
Since B has a perfect matching, then B ∈ {Bi

m|i = 1, 2, · · · , 7}, where Bi
m (i = 1, 2, · · · , 7) are

depicted in Figure 5. It is not difficult to get that S DD(B1
m) = 16

3 m + 2
3 (m ≥ 3), S DD(B3

m) = 16
3 m + 2

3
(m ≥ 5), S DD(B2

m) = 16
3 m + 25

6 (m ≥ 4), S DD(B4
m) = 16

3 m + 25
6 (m ≥ 6), S DD(B5

m) = 16
3 m + 74

15
(m ≥ 5), S DD(B6

m) = 16
3 m + 13

3 (m ≥ 5) and S DD(B7
m) = 16

3 m + 13
3 (m ≥ 7). One can easily check that

S DD(BBB∗2m,m) = m2

2 + 5m − 1
m+2 + 3

2 > S DD(Bi
m), where i = 1, 2, · · · , 7.

Subcase 1.2. B contains one vertex w with dB(w) = 2.
Subsubcase 1.2.1. w belongs to the vertices in one of the cycles of B.

Denote NB(w) = {w1,w2}. Since B ∈ BBB2m,m, then ww1 < M or ww2 < M. Suppose without loss of
generality that ww1 < M. Let dB(w1) = t, NB(w1) \ {w} = {u1, u2, · · · , ut−1}. Since B ∈ BBB2m,m, then
2 ≤ t ≤ 5, 2 ≤ dB(w2) ≤ 5 and dB(ui) ≥ 1, where i = 1, 2, · · · , t − 1. In view of Lemma 4.2, there exists
at most one vertex of {u1, u2, · · · , ut−1} with degree 1. Let U′ = B − ww1. Obviously, U′ ∈ UUU 2m,m. By
Theorem 3.4 and Lemmas 2.1, 2.2, for 2 ≤ t ≤ 5 and m ≥ 4, it follows that

S DD(B) =S DD(U′) + S (2, dB(w2)) − S (1, dB(w2)) + S (2, t)

+

t−1∑
i=1

[
S (t, dB(ui)) − S (t − 1, dB(ui))

]
≤S DD(U′) + S (2, 2) − S (1, 2) + S (2, t) + S (t, 1) − S (t − 1, 1)

+ (t − 2)[S (2, t) − S (2, t − 1)]

≤
m2

2
+ 4m −

1
m + 1

+ t +
1

t − 1
−

1
t
−

1
2

≤
m2

2
+ 4m −

1
m + 1

+
9
2

+
1

20
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=g(2m,m) − m +
1

m + 2
−

1
m + 1

+ 3 +
1
20

<g(2m,m) − m + 3 +
1

20
<g(2m,m).

Subsubcase 1.2.2. w lie in the path of a∞-graph.
Now B contains an edge uv which belongs to a cycle such that dB(u) = dB(v) = 3. Denote NB(u) =

{v, u1, u2} and NB(v) = {u, v1, v2}. Assume without loss of generality that dB(u1) = dB(v1) = 1 and
3 ≤ dB(u2), dB(v2) ≤ 4. Let U′′ = B − uv. Then U′′ ∈ UUU 2m,m. By Theorem 3.4 and Lemma 2.1, it
follows that

S DD(B) =S DD(U′′) + S (3, 3) + 2(S (3, 1) − S (2, 1)) + S (3, dB(u2)) − S (2, dB(u2))
+ S (3, dB(v2)) − S (2, dB(v2))
≤S DD(U′′) + S (3, 3) + 2[S (3, 1) − S (2, 1)] + 2[S (3, 3) − S (2, 3)]

≤
m2

2
+ 4m −

1
m + 1

+ 3 +
1
3

=g(2m,m) − m +
1

m + 2
−

1
m + 1

+
11
6

<g(2m,m) − m +
11
6

<g(2m,m).

Case 2. There is a pendant tree Tr ∈ TTT B such that dTr (r, z) = 2.
Since z ∈ PV(B), let NB(z) = {u}, by Lemma 4.1, we have dB(u) = 2. Let NB(u) = {r, z}, NB(r) =

{u, x1, x2, · · · , xs, v1, v2, · · · , vt}, where xi belongs to the vertices of the cycles in B and dB(xi) ≥ 2
(i = 1, 2, · · · , s and s = 2, 3 or 4).
Subcase 2.1. PV(B) ∩ NB(r) , ∅.

Suppose without loss of generality that v1 ∈ PV(B), then v1r ∈ M. By Lemma 4.2, (NB(r) \ {v1}) ∩
PV(B) = ∅. Then dB(v j) ≥ 2 for 2 ≤ j ≤ t. Since dTr (r, z) = max{dTr (r, y)|y ∈ V(Tr)} = 2, combine with
Lemma 4.2, we have dB(v j) = 2 and (NB(v j) \ {r}) = {z j} ∈ PV(B), where 2 ≤ j ≤ t. Let B′ = B− z− u,
then B′ ∈BBB2m−2,m−1. By Lemmas 2.1, 2.2 and induction hypothesis, it follows that

S DD(B) =S DD(B′) + S (t + s + 1, 1) − S (t + s, 1) + S (t + s + 1, 2) + S (1, 2)

+

s∑
i=1

[
S (t + s + 1, dB(xi)) − S (t + s, dB(xi))

]
+

t∑
j=2

[
S (t + s + 1, 2) − S (t + s, 2)

]
≤S DD(B′) + S (t + s + 1, 1) − S (t + s, 1) + S (t + s + 1, 2) + S (1, 2)

+ (t + s − 1)[S (t + s + 1, 2) − S (t + s, 2)]
≤g(2m − 2,m − 1) + (t + 3)[S (t + 5, 2) − S (t + 4, 2)]

+ S (t + 5, 1) − S (t + 4, 1) + S (t + 5, 2) + S (1, 2)
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=g(2m − 2,m − 1) + t +
1

t + 4
−

1
t + 5

+
15
2

≤g(2m − 2,m − 1) + m +
1

m + 1
−

1
m + 2

+
9
2

=g(2m,m)

since S (t + s + 1, k) − S (t + s, k) (k = 1, 2), S (t + s + 1, 2) is increasing for s and t ≤ m − 3. With the
equalities only if V(B)= {x1, · · · , x4, r, v1, u, z}∪ {v2, · · · , vt, z2, · · · , zt}, s = 4, dB(x1) = · · · = dB(x4) = 2
and S DD(B′) = g(2m − 2,m − 1), which implies that B′ � BBB∗2m−2,m−1 and B � BBB∗2m,m.
Subcase 2.2. PV(B) ∩ NB(r) = ∅.

Now we can see that dB(v j) ≥ 2, (NB(v j) \ {r}) = {z j} ∈ PV(B), where 1 ≤ j ≤ t and v jz j ∈ M. Since
B ∈BBB2m,m, then B contains one vertex x j ∈ NB(r) and x j also belongs to the vertices of the cycles in B
such that rx j ∈ M. Let B′ = B − z − u, then B′ ∈BBB2m−2,m−1. By Lemma 2.1 and induction hypothesis,
it follows that

S DD(B) =S DD(B′) + S (t + s + 1, 2) + S (1, 2) +

t∑
j=1

[
S (t + s + 1, 2) − S (t + s, 2)

]
+

s∑
i=1

[
S (t + s + 1, dB(xi)) − S (t + s, dB(xi))

]
≤S DD(B′) + S (t + s + 1, 2) + S (1, 2) + (t + s)[S (t + s + 1, 2) − S (t + s, 2)]
≤g(2m − 2,m − 1) + S (t + 5, 2) + S (1, 2)

+ (t + 4)[S (t + 5, 2) − S (t + 4, 2)]
=g(2m − 2,m − 1) + t + 7
<g(2m − 2,m − 1) + m + 4
<g(2m,m)

since t < m − 3 and g(2m,m) − g(2m − 2,m − 1) − m − 4 = 1
2 + 1

m+1 −
1

m+2 > 0 for m ≥ 4.
Case 3. For all Tr ∈ TTT B, dTr (r, z) , 2 and max{dTr (r, z)|Tr ∈ TTT B} ≥ 3.

Similar to Case 2, as z ∈ PV(B), denote NB(z) = {u}, by Lemma 4.1, dB(u) = 2. Denote NB(u) =

{v, z} and NB(v) = {u,w, v1, v2, · · · , vt} (maybe w = r), then dB(w) ≥ 2.
Subcase 3.1. NB(v) ∩ PV(B) , ∅.

Assume without loss of generality that v1 ∈ PV(U), then v1v ∈ M. Similar to Subcase 2.1, we
have dB(vi) = 2 and NB(vi) \ {v} = {zi} ∈ PV(B), where i = 2, 3, · · · , t. Let B′ = B − z − u. Then
B′ ∈BBB2m−2,m−1. By Lemmas 2.1, 2.2 and induction hypothesis, it follows that

S DD(B) =S DD(B′) + S (t + 2, dB(w)) + S (t + 1, dB(w)) + [S (t + 2, 1) − S (t + 1, 1)]

+ S (t + 2, 2) + S (2, 1) +

t∑
i=2

[
S (t + 2, dB(vi)) − S (t + 1, dB(vi))

]
≤S DD(B′) + t[S (t + 2, 2) − S (t + 1, 2)]

+ [S (t + 2, 1) − S (t + 1, 1)] + S (t + 2, 2) + S (2, 1)

≤g(2m − 2,m − 1) + t +
1

t + 1
−

1
t + 2

+
9
2
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<g(2m − 2,m − 1) + m − 3 +
1

m − 2
−

1
m − 1

+
9
2

<g(2m,m)

since t < m − 3 and g(2m,m) − g(2m − 2,m − 1) − m − 3
2 + 1

m−1 −
1

m−2 = 3 + 1
m+1 −

1
m+2 + 1

m−1 −
1

m−2 >

3 − 1
(m−1)(m−2) > 0 for m ≥ 4.

Subcase 3.2. NB(v) ∩ PV(B) = ∅.
Similar to Subcase 2.2, we have dB(vi) = 2, NB(vi) \ {v} = {zi} ∈ PV(B), where vizi ∈ M, i =

1, 2, · · · , t. Since B ∈ BBB2m,m, then vw ∈ M. Let B′ = B − z − u. Then B′ ∈ BBB2(m−1),m−1. By induction
hypothesis and Lemma 2.1, we have

S DD(B) =S DD(B′) + S (t + 2, 2) + S (2, 1) + S (t + 2, dB(w)) + S (t + 1, dB(w))

+

t∑
i=1

[
S (t + 2, dB(vi)) − S (t + 1, dB(vi))

]
≤S DD(B′) + S (t + 2, 2) + S (2, 1) + (t + 1)[S (t + 2, 2) − S (t + 1, 2)]
≤g(2m − 2,m − 1) + t + 4
<g(2m − 2,m − 1) + m + 1
<g(2m,m)

since t < m − 3 and g(2m,m) − g(2m − 2,m − 1) − m − 1 = 7
2 + 1

m+1 −
1

m+2 > 0. �

Theorem 4.5. Let B ∈BBBn,m, where m ≥ 3. Then

S DD(B) ≤ g(n,m)

with equality if and only if B � BBB∗n,m.

Proof. By induction on n. If n = 2m, by Theorem 4.4, the result holds. Now suppose that n > 2m.
If PV(B) = ∅, B belongs to the type of ∞(p, l, q) or θ(a, b, c) and n = 2m + 1, then p + l + q − 1 =

n = 2m + 1 and a + b + c − 1 = n = 2m + 1. For p + l + q − 1, a + b + c − 1 = 2m + 1, one can
easily check that max{S DD(∞(p, l, q))(l , 0), S DD(θ(a, b, c)), S DD(∞(p, 0, q))} = S DD(∞(p, 0, q))
and S DD(∞(p, 0, q)) = 4m + 6 < S DD(BBB∗2m+1,m) = g(2m + 1,m) = m2

2 + 13m
2 + 5 + m+1

m+3 for m ≥ 3.
The theorem holds. Thus we suppose that PV(B) , ∅ in the following proof. In view of Lemma
4.3, it follows that there is a pendant vertex y and an m-matching M such that y is not M-saturated.
Let xy ∈ E(B) and dB(x) = t. Let NB(x) ∩ PV(B) = {y1, y2, · · · , yr−1, yr = y} and NB(x) \ PV(B) =

{u1, u2, · · · , ut−r}. Then dB(ui) ≥ 2 for each i ∈ {1, 2, · · · , t− r}. Furthermore, since B is a bicyclic graph
and there exist at least m− 3 M-saturated vertices in V(B) \ {x, y1, y2, · · · , yr−1, yr, u1, u2, · · · , ut−r}, then
n = |V(B)| ≥ t + 1 + m − 3, that is t ≤ n − m + 2. Let B′ = B − y. Then B′ ∈BBBn−1,m. We discuss in two
cases.
Case 1. r = 1.

Now, y = y1. By the induction hypothesis and Lemma 2.1, for n > 2m, it follows that

S DD(B) =S DD(B′) + S (1, t) +

t−1∑
i=1

[
S (dU(x), dU(ui)) − S (dU(x) − 1, dU(ui))

]
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≤S DD(B′) + S (1, t) +

t−1∑
i=1

[
S (t, 2) − S (t − 1, 2)

]
≤g(n − 1,m) + t +

1
t

+ (t − 1)
(1
2

+
2
t
−

2
t − 1

)
=g(n − 1,m) +

3
2

t −
1
t
−

1
2

≤g(n,m) − 2n +
5
2

m −
5
2

+ (m + 1)
( 1
n − m + 1

−
1

n − m + 2

)
+

3
2

(n − m + 2) −
1

n − m + 2
−

1
2

=g(n,m) −
n
2

+ m −
n − 2m

(n − m + 1)(n − m + 2)
<g(n,m).

Case 2. r ≥ 2.
Notice that there exist at least r − 1 vertices which are not M-saturated, then n − (r − 1) ≥ 2m, that

is r ≤ n − 2m + 1. By the induction hypothesis and Lemmas 2.1, 2.4, it follows that

S DD(B) =S DD(B′) + S (1, t) +

r−1∑
i=1

[
S (dU(x), dU(yi)) − S (dU(x) − 1, dU(yi))

]
+

t−r∑
j=1

[
S (dU(x), dU(u j)) − S (dU(x) − 1, dU(u j))

]
≤S DD(B′) + S (1, t) + (r − 1)[S (t, 1) − S (t − 1, 1)]

+ (t − r)[S (t, 2) − S (t − 1, 2)]

≤g(n − 1,m) +
3
2

t +
r
2
−

r
t

+
r − 1
t − 1

− 1

≤g(n,m) − 2n +
5
2

m −
5
2

+ (m + 1)
( 1
n − m + 1

−
1

n − m + 2

)
+

3
2

(n − m + 2) +
n − 2m + 1

2
− 1 +

n − 2m
n − m + 1

−
n − 2m + 1
n − m + 2

=g(n,m).

With the equalities hold only if S DD(B′) = g(n − 1,m), r = n − 2m + 1, t = n − m + 2 and dU(u j) = 2
for j = 1, 2, · · · , t − r, which implies that B′ � BBB∗n−1,m, and B � BBB∗n,m. �

5. Conclusions

Nowadays, finding bounds on any topological index with respect to different graph parameters is
an important task. The research of mathematical properties on 20 discrete Adriatic indices selected as
significant predictors of physical-chemical properties is one of open problems proposed by the
International Academy of Mathematical Chemistry [4]. S DD index is one of 20 discrete Adriatic
indices. The mathematical properties of S DD index deserve further study since it may be applied to
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detect the chemical compounds that may have desirable properties. S DD index has been studied
extensively since it was proved to be an applicable and viable molecular descriptor in 2018.
Furthermore, unicyclic graphs and bicyclic graphs are two kinds of important graphs in mathematical
chemistry. In this paper, by using the properties of S DD index and exploring the structures of the
unicyclic graphs and bicyclic graphs with given matching number, we present the maximum S DD
indices of unicyclic graphs and bicyclic graphs with given matching number, and identify the
corresponding extremal graphs.
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