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1. Previous contributions to the inclusion problem

Assume that C is a nonempty closed convex subset of a Hilbert space .ג A self-mapping T : C → C
is called nonexpansive if

‖Tκ − Tω‖ ≤ ‖κ − ω‖ ,

for all κ, ω ∈ C. The set F(T ) = {κ ∈ C : Tκ = κ} denote the set of fixed points of a mapping T.
In this paper, we discuss the following inclusion problem: Find κ̃ ∈ ג such that

0 ∈ Ξκ̃ + Πκ̃, (1.1)

where Ξ : ג → ג is an operator and Π : ג → {ג2} is a set-valued operator. There are many real-
world applications to various mappings in the fixed point theory, for example, many problems can be

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021522


9001

revisited as: Convex optimization and feasibility problems, image restoration problems, and monotone
variational inequalities (see [1–3]). To be more precise, some concrete problems in machine learning
and the linear inverse problem can be modeled mathematically with this formulation.

The classical approach to problem (1.1) (which is denoted by ((Ξ+Π)−1(0)) is the forward-backward
splitting method [4–8], which is presented as follows: κ1 ∈ ג and

κn+1 = (I + τΠ)−1(κn − τΞκn), n ≥ 1, (1.2)

where τ > 0 and I is the identity mapping. In this visibility, the step containing Ξ refers to the forward
step and Π is the backward step, but not the sum of Ξ and Π. In special cases, this technique includes
exciting results in the gradient method [9, 10] and the proximal point algorithm [11, 12].

In 1979, a strong splitting algorithms in a real Hilbert space were built by Lions and Mercier [13]
as follows:

κn+1 = (2JΞ
τ − I)(2JΠ

τ − I)κn, n ≥ 1, (1.3)

and
κn+1 = JΞ

τ (2JΠ
τ − I)κn + (I − JΠ

τ )κn, n ≥ 1, (1.4)

where JΩ
τ = (I + τΩ)−1. Mostly, the two kinds of algorithms (1.3) and (1.4) called a

Peaceman-Rachford algorithm [7] and Douglas-Rachford algorithm [14], respectively. Generally,
both algorithms are weakly convergent [15].

Another direction concerning with the problem (1.1) of two monotone and accretive mappings in
Hilbert and Banach spaces, a stationary solution to the following initial value-problem:

0 ∈
∂℘

∂t
−<℘, ℘(0) = ℘0,

can be rewritten as (1.1) when the governing maximal monotone< takes the form< = Ξ + Π [13]. In
optimization, it often needs [4] to solve a minimization problem of the form

min
κ∈ג

h(κ) + m(κ), (1.5)

where h,m : ג → (−∞,∞] are proper (that is, the inverse image of a compact set is compact) and
lower semi-continuous convex functions such that h is differentiable with L-Lipschitz gradient, and the
proximal mapping of m is

κ 7−→ arg min
ω∈ג

m(ω) +
‖κ − ω‖2

2τ
.

In particular, if Ξ = ∇h and Π = ∂m, where ∇h is the gradient of h and ∂m is the subdifferential of m
which is defined by ∂m(κ) = {q ∈ ג : m(ω) ≥ m(κ) + 〈q, ω − κ〉, for all ω ∈ ,{ג therefore problem (1.1)
becomes (1.5) and (1.2) becomes

κn+1 = proxτm(κn − τ∇h(κn)), n ≥ 1,

where τ > 0 is the step-size and proxτm = (I + τ∂m)−1 is the proximity operator of m.
The rest of the paper is organized as follows. Section 2 describes a compilation of previously

existing algorithms related to the well-known Mann iteration and some of its modifications and
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extensions. Section 3 gives some preliminary lemmas and definition which are then used to derive the
main results of Section 4. The new main strong convergence results and their associated iterative
algorithms are given in Section 4. In particular, the so-called inertial CQ-projection algorithm and the
so-called inertial shrinking CQ-projection viscosity algorithm.

2. Compilation of exciting algorithms

The iteration κn+1 = Tκn = ... = T nκ0 is called a Picard iteration where κ0 is a starting point. It is one
of the simplest iterative methods, but it has a defect, that its convergence cannot be guaranteed even in
the weak topology. To overcome this defect, Mann iteration algorithm is one of the effective ways for
that, which generates iterative sequence {κn} through the following convex combination:

κn+1 = ζnκn + (1 − ζn)Tκn, n ≥ 0. (2.1)

For nonexpansive mappings, the iteration (2.1) is useful for solving the fixed point problem and
provides a unified framework for different algorithms. Also it has shortcomings, although it is defined
in a Hilbert space, under certain conditions, the iterative sequence {κn} defined by (2.1) has only weak
convergence. Previously, many attempts to obtain a strong convergence were presented in [16–18].

In 2001, a heavy ball method applied to inertial proximal point algorithm by Alvarez and Attouch
[19]. This method under maximal monotone operators was introduced by Poylak [20] for proximal
point algorithm. The algorithm takes the form{

ωn = κn + θn(κn − κn−1),
κn+1 = (I + τnΠ)−1

n ωn, n ≥ 1.
(2.2)

It was proved that if {τn} is nondecreasing and {θn} ⊂ [0, 1) with

∞∑
n=1

θn‖κn − κn−1‖
2 < ∞, (2.3)

then algorithm (2.2) converges weakly to a zero of Π. In particular, the condition (2.3) is true for
θn < 1/3. Here θn is an extrapolation factor and the inertia is represented by the term θn(κn − κn−1).

The concepts of single-valued, co-coercive and Lipschitz continuous operator Ξ added to the inertial
proximal point algorithm by Moudafi and Oliny [21] to built the following algorithm:{

ωn = κn + ~n(κn − κn−1),
κn+1 = (I + τnΠ)−1

n (ωn − τnΞωn), n ≥ 1.
(2.4)

Via condition (2.3) a weak convergence result using algorithm (2.4) was obtained provided that τn <
2
L ,

where L is a Lipschitz constant of Ξ. It is noted that for ~n > 0 the algorithm (2.4) does not take the
form of a forward–backward splitting algorithm, since operator Ξ is still evaluated at the point κn.

Of course, strong convergence is much better than weak convergence because it is often much more
desirable for academic researchers since the obtained convergence results are more efficient and robust
in potential application.
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A strong algorithm for modified Mann algorithm was presented by Nakajo and Takahashi [16],
which is called CQ-algorithm: 

κ0 ∈ C chosen arbitrarily,
ωn = ~nκn + (1 − ~n)Tκn,

Cn = {p ∈ C : ‖ωn − p‖ ≤ ‖κn − p‖},
Qn = {p ∈ C : 〈κ0 − κn, κn − p〉 ≥ 0},
κn+1 = PQn∩Cnκ0,

(2.5)

for each n ≥ 0 and C is defined in the above section. They obtained the strong convergence of the
sequence {κn} to PFix(T )κ0, provided that the sequence {~n} is bounded above by 1. For more good
results of the CQ-algorithms of nonexpansive mappings, we highly mention to [22].

Motivated by the algorithm (2.5), Dong et al. [23] discussed a strong convergence result involving an
inertial forward-backward algorithm for monotone inclusions: Let Ξ : →ג ג be an α−inverse strongly
monotone operator and Π : ג → ג2 be a maximal monotone operator such that (Ξ + Π)−1(0) , ∅. Let
{αn} ∈ R and the sequence {κn} ⊂ ג be generated by κ◦, κ1 ∈ ג and for all n ≥ 1

ωn = κn + αn(κn − κn−1),
υn = (I + τnΠ)−1

n (ωn − τnΞωn),
Cn = {p ∈ ג : ‖υn − p‖2 ≤ ‖κn − p‖2 − 2αn〈κn − p, κn−1 − κn〉

+α2
n ‖κn−1 − κn‖

2
},

Qn = {p ∈ ג : 〈κ0 − κn, κn − p〉 ≤ 0},
κn+1 = PQn∩Cnκ0.

Recently, Kim and Xu [17] proposed the following modified Mann iteration algorithm based on the
Halpern iterative algorithm [24] and the Mann iteration algorithm(2.1):{

ωn = αnκn + (1 − αn)=κn,

κn+1 = ζnκ + (1 − ζn)ωn, n ≥ 0,
(2.6)

for some fixed point κ ∈ C, where = : C → C is a nonexpansive mapping with Fix(=) , ∅ and {αn},
{ζn} are sequences in (0,1). Under mild conditions the sequence {κn} generated by (2.6) converges to a
fixed point of =. Many authors worked in this directions and obtained strong convergence for a fixed
point under a appropriate conditions, see, [25–28].

Chen et al. [18] generalized the results [24] by introducing a new modified Mann iteration
algorithm by combining the viscosity approximation algorithm [29] and the modified Mann iteration
algorithm [17]. They established strong convergence result under fewer restrictions. The above results
were circulated to more general operators and wider Banach spaces such as quasi-nonexpansive,
asymptotically quasi-nonexpansive and strict pseudo-contractions mappings, see for instance [30–36].

Inspired by the contributions of [16, 17, 23], new algorithms by overlapping the concepts of inertial
Mann forward-backward method, CQ-Shrinking projection method and the viscosity algorithm were
obtained and strong convergence results under these algorithms were discussed. At the last, numerical
results are discussed to present the applications and a good acceleration performance of our algorithms.
Our results extend and unify a lot of papers in this direction like Kim and Xu [17], Chen et al. [18],
Suzuki [37] and the paper cited [38–40].
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3. Necessary lemmas and definition

In this paper, we shall refer to {κn} is a sequence in ,ג ” → ” is the strong convergence, ” ⇀ ” is
the weak convergence and PC : ג → C is the nearest point projection, that is for all κ ∈ ג and ω ∈ C,
‖κ − PCκ‖ ≤ ‖κ − ω‖. PC is called the metric projection. It’s obvious that PC achieves the following
inequality,

‖PCκ − PCω‖
2 ≤ 〈PCκ − PCω, κ − ω〉,

for all κ, ω ∈ .ג In other words, the metric projection PC is firmly nonexpansive. Hence 〈κ − PCκ, ω −

PCω〉 ≤ 0 holds for all κ ∈ ג and ω ∈ C, see [41].

Lemma 3.1. [41] Suppose that ג is a real Hilbert space. Then for each κ, ω ∈ ג and a real number f,
we have

(i) ‖κ + ω‖2 ≤ ‖κ‖2 + 2〈ω, κ + ω〉,

(ii) ‖fκ + (1 −f)ω‖2 = f ‖κ‖2 + (1 −f) ‖ω‖2 −f(1 −f) ‖κ − ω‖2.

Lemma 3.2. [42, Theorem 1.9.10, p. 39 and Theorem 2.2.13, p. 57] Suppose that ג is a real Hilbert
space and {κn} is a sequence in .ג Then the following properties are fulfilled:

(i) If κn ⇀ κ and ‖κn‖ → ‖κ‖ as n→ ∞, then limn→∞ κn = κ; that is, ג has the Kadec-Klee property.
(ii) If κn ⇀ κ as n→ ∞, then ‖κ‖ ≤ lim infn→∞ ‖κn‖.

Lemma 3.3. [43] Let C , ∅ be closed convex subset of a real Hilbert space .ג Then for each κ, ω, υ ∈ ג
and ð ∈ R, the following set is closed and convex:

{η ∈ C : ‖ω − η‖2 ≤ ‖κ − η‖2 + 〈υ, η〉 + ð}.

Lemma 3.4. [21] Let C , ∅ be closed convex subset of a real Hilbert space ג and PC : ג → C be the
metric projection. Then

‖ω − PCκ‖
2 + ‖κ − PCκ‖

2
≤ ‖κ − ω‖2

for all κ ∈ ג and ω ∈ C.

Lemma 3.5. [44] Let T be a nonexpansive self-mapping of a closed convex subset C of a Hilbert
space .ג Then the mapping I − T is demiclosed; that is, whenever {κn} is a sequence in C which weakly
converges to some κ ∈ C and the sequence {(I − T )(κn)} strongly converges to some ω, it follows that
(I − T )(κ) = ω.

Definition 3.6. Suppose that D(Ξ) ⊂ ג and R(Ξ) ⊂ ג are the domain and the range of an operator Ξ,

respectively. An operator Ξ is called:
1). monotone if

〈κ − ω,Ξκ − Ξω〉 ≥ 0 for all κ, ω ∈ D(Ξ),

2). maximal monotone if it is monotone and its graph

G(Ξ) = {(κ,Ξκ) : κ ∈ {ג

is not a proper subset of one of any other monotone mapping,
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3). β−strongly monotone if there exists β > 0 such that

〈κ − ω,Ξκ − Ξω〉 ≥ β ‖κ − ω‖2 for all κ, ω ∈ D(Ξ),

4). α−inverse strongly monotone (for short α-ism) if there exists α > 0 such that

〈κ − ω,Ξκ − Ξω〉 ≥ α ‖Ξκ − Ξω‖2 for all κ, ω ∈ D(Ξ).

Lemma 3.7. [5] Let ג be a real Hilbert space, Ξ : →ג ג be an α-inverse strongly monotone operator
and Π : →ג ג2 be a maximal monotone operator. For each τ > 0, we define

Tτ = JΠ
τ (I − τΞ) = (I + τΠ)−1(I − τΞ),

then, we get

(i) For τ > 0, F(Tτ) = (Ξ + Π)−1(0);
(ii) For 0 < s ≤ τ and κ ∈ ,ג ‖κ − Tsκ‖ ≤ 2 ‖κ − Tτκ‖ .

Lemma 3.8. [45] Let ג be a real Hilbert space, Ξ : →ג ג be an α−inverse strongly monotone operator
and Π : →ג ג2 be a maximal monotone operator. For each τ > 0, we have

‖Tτκ − Tτω‖
2
≤ ‖κ − ω‖2 − τ(2α − τ) ‖Ξκ − Ξω‖2 ,

for all κ, ω ∈ .ג

4. Inertial shrinking projection and CQ-Mann-Halpern with viscosity algorithms

According to the notions of inertial CQ and shrinking projection technique with the Halpern
algorithm and viscosity algorithm, respectively, we build two new algorithms in this section and their
strong convergence in a Hilbert space is discussed.

Theorem 4.1. (Inertial shrinking projection algorithm). Let ג be a real Hilbert space, Ξ : ג → ג
be an α−inverse strongly monotone operator, Π : ג → ג2 be a maximal monotone operator such that
Θ = (Ξ + Π)−1(0) , ∅ and {αn} is a bounded sequence. For given two sequences {λn} and {ρn} in (0, 1).
A sequence {κn} is generated by

ωn = κn + αn(κn − κn−1),
$n = λnωn + (1 − λn)Υnωn

υn = ρnκ1 + (1 − ρn)$n,

Cn+1 =

{
p ∈ Cn : ‖υn − p‖2 ≤ ‖κn − p‖2 + α2

n ‖κn−1 − κn‖
2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈κ1 − p, υn − p〉

}
,

κn+1 = PCn+1(κ1),

(4.1)

for each n ≥ 1 and κ◦, κ1 ∈ ,ג where Υn = (I + τnΠ)−1(I − τnΞ). If the following hypotheses hold:
(I1)

∑∞
n=0 ρn = ∞ and limn→∞ ρn = 0,

(I2) 0 < lim infn→∞ τn ≤ lim supn→∞ τn < 2α,
then the sequence {κn} generated by (4.1) converges strongly to a point θ = PΘ(κ1).

AIMS Mathematics Volume 6, Issue 8, 9000–9019.
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Proof. We split the proof into the following steps:
Step (i). Show that PCn+1κ1 is bounded for each κ1 ∈ ,ג n ≥ 1 and Θ ⊂ Cn+1. It follows from the

condition (I2) and Lemma 3.8 that Tτn = (I + τnΠ)−1(I − τnΞ) is a nonexpansive mapping. Lemma 3.7
guarantees that Θ is closed and convex set, and Lemma 3.3, clarifies that Cn+1 is closed and convex,
for all n ≥ 1.

Let p ∈ Θ, we have

‖ωn − p‖2 = ‖(κn − p) − αn(κn−1 − κn)‖2

≤ ‖κn − p‖2 − 2αn〈κn − p, κn−1 − κn〉 + α2
n ‖κn−1 − κn‖

2 . (4.2)

Furthermore, by Lemma 3.1 (ii) and Lemma 3.8, we can write

‖$n − p‖2 =
∥∥∥λnωn + (1 − λn)(I + τnΠ)−1(ωn − τnΞωn) − p

∥∥∥2

=
∥∥∥λn(ωn − p) + (1 − λn)(Tτnωn − p)

∥∥∥2

= (1 − λn)
∥∥∥Tτnωn − p

∥∥∥2
+ λn ‖ωn − p‖2 − λn(1 − λn)

∥∥∥Tτnωn − ωn

∥∥∥2

≤ λn ‖ωn − p‖2 + (1 − λn)
∥∥∥Tτnωn − p

∥∥∥2

= λn ‖ωn − p‖2 + (1 − λn)
∥∥∥Tτnωn − Tτn p

∥∥∥2

≤ λn ‖ωn − p‖2 + (1 − λn)
(
‖ωn − p‖2 − τn(2α − τn) ‖Ξωn − Ξp‖2

)
≤ λn ‖ωn − p‖2 + (1 − λn) ‖ωn − p‖2

= ‖ωn − p‖2 . (4.3)

Also, by Lemma 3.1 (i), we have

‖υn − p‖2 = ‖(1 − ρn) ($n − p) + ρn (κ1 − p)‖2

= (1 − ρn) ‖$n − p‖2 + 2ρn〈κ1 − p, υn − p〉. (4.4)

Applying (4.2) and (4.3) in (4.4), and since (1 − ρn) < 1, we get

‖υn − p‖2 ≤ (1 − ρn) ‖κn − p‖2 + α2
n(1 − ρn) ‖κn−1 − κn‖

2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈κ1 − p, υn − p〉

≤ ‖κn − p‖2 + α2
n ‖κn−1 − κn‖

2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈κ1 − p, υn − p〉. (4.5)

It is clear that Θ ⊂ C1 = .ג Assume that Θ ⊂ Cn for some n ≥ 1. Then p ∈ Cn and by (4.5), we have for
all n ≥ 1, p ∈ Cn+1. Thus Θ ⊂ Cn+1 for all n ≥ 1, that is, PCn+1κ1 is well-defined.

Step (ii). Prove that {κn} is bounded. Since Θ , ∅, closed and convex subset of ,ג there is a unique
℘ ∈ Θ such that ℘ = PΘκ1. This implies that, κn = PCnκ1, Cn+1 ⊂ Cn and κn+1 ∈ Cn for all n ≥ 1, we can
get

‖κn − κ1‖ ≤ ‖κn+1 − κ1‖, for all n ≥ 1. (4.6)

Further, as Θ ⊂ Cn, we obtain

‖κn − κ1‖ ≤ ‖℘ − κ1‖, for all n ≥ 1. (4.7)
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It follows by (4.6) and (4.7), that limn→∞ ‖κn − κ1‖ exists. This leads to {κn} is bounded.
Step (iii). Fulfillment limn→∞ κn = θ. By the definition of Cn, for m > n, we observe that κm =

PCmκ1 ∈ Cm ⊂ Cn. From Lemma 3.4, we have

‖κm − κn‖
2 ≤ ‖κm − κ1‖

2 − ‖κn − κ1‖
2.

Apply Step (ii), we conclude that limn,m→∞ ‖κm − κn‖
2 = 0. Thus {κn} is a Cauchy sequence. Hence,

limn→∞ κn = θ, as n→ ∞. As well as, we get

lim
n→∞
‖κn+1 − κn‖ = 0. (4.8)

Step (iv). Prove that θ ∈ Θ. It follows from the boundedness of the sequence {αn} and (4.8) that

‖ωn − κn‖ = |αn| ‖κn − κn−1‖ → 0 as n→ ∞. (4.9)

By (4.5), (4.8) and the condition (I1), we get

‖υn − κn‖
2 ≤ ‖κn − κn‖

2 + α2
n ‖κn−1 − κn‖

2

−2αn(1 − ρn)〈κn − κn, κn−1 − κn〉 + 2ρn〈κ1 − κn, υn − κn〉

= α2
n ‖κn−1 − κn‖

2 + 2ρn〈κ1 − p, υn − κn〉 → 0 as n→ ∞. (4.10)

Applying (4.8)–(4.10), we can write

‖κn+1 − ωn‖ ≤ ‖κn+1 − κn‖ + ‖ωn − κn‖ → 0 as n→ ∞, (4.11)

‖κn+1 − υn‖ ≤ ‖κn+1 − κn‖ + ‖υn − κn‖ → 0 as n→ ∞. (4.12)

By (4.3) and (4.11), we observe that

‖$n − κn+1‖ ≤ ‖ωn − κn+1‖ → 0 as n→ ∞. (4.13)

The inequalities (4.12) and (4.13) lead to

‖υn − ωn‖ ≤ ‖υn − κn+1‖ + ‖κn+1 − ωn‖ → 0 as n→ ∞, (4.14)

and
‖υn −$n‖ ≤ ‖υn − κn+1‖ + ‖$n − κn+1‖ → 0 as n→ ∞. (4.15)

Now, we have ∥∥∥Tτnωn − ωn

∥∥∥ =

∥∥∥∥∥ 1
(1 − λn)

[$n − λnωn] − ωn

∥∥∥∥∥
=

1
(1 − λn)

‖$n − λnωn − (1 − λn)ωn‖

=
1

(1 − λn)
‖$n − ωn‖

≤
1

(1 − λn)
[‖$n − υn‖ + ‖υn − ωn‖] .
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It follows from (4.14) and (4.15) that

lim
n→∞

∥∥∥Tτnωn − ωn

∥∥∥ = 0. (4.16)

Since lim infn→∞ τn > 0, there is ε > 0 such that τn ≥ ε and ε ∈ (0, 2α) for all n ≥ 1. Then by Lemma
3.7 (ii) and (4.16), we have

‖Tεωn − ωn‖ ≤ 2‖Tτnωn − ωn‖ → 0 as n→ ∞. (4.17)

From (4.10), since κn → θ, we also have ωn → θ. Since Tε is a nonexpansive and continuous mapping,
from (4.17), we have θ ∈ Θ.

Step (v). Show that θ = PΘ(κ1). Since κn = PCnκ1, and Θ ⊂ Cn, we can get

〈κ1 − κn, κn − p〉 ≥ 0, ∀p ∈ Θ. (4.18)

Setting n→ ∞ in (4.18), we have

〈κ1 − θ, θ − p〉 ≥ 0, ∀p ∈ Θ.

This show that θ = PΘ(κ1). The proof is finished. �

Theorem 4.2. (Inertial CQ-projection algorithm) (ICQMHA). Assume that all requirements of
Theorem 4.1 are met. Then the sequence {κn} generated by

ωn = κn + αn(κn − κn−1),
$n = λnωn + (1 − λn)Υnωn

υn = ρnκ1 + (1 − ρn)$n,

Cn =

{
p ∈ ג : ‖υn − p‖2 ≤ ‖κn − p‖2 + α2

n ‖κn−1 − κn‖
2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈κ1 − p, υn − p〉

}
,

Qn = {p ∈ ג : 〈p − κn, κ1 − κn〉 ≤ 0} ,
κn+1 = PCn∩Qn(κ1), n ≥ 1,

(4.19)

converges strongly to a point θ = PΘ(κ1).

Proof. The proof is divided into the following steps:
Step (1). Demonstrate that {κn}

∞
n=0 is well-defined for each κ1 ∈ ג and for all n ≥ 1, Θ ⊂ Qn ∩Cn.

It is clear that by Lemma 3.3, Cn is closed and convex subset of .ג Also, if we rewrite the set Qn as
shown

Qn = {p ∈ ג : 〈κ1 − κn, p〉 ≤ 〈κ1 − κn, κn〉},

we obtain that Qn is also closed and convex subset of .ג So Qn ∩Cn is closed and convex, for all n ≥ 1.
Assume that p ∈ Θ. By the same manner of Theorem 4.1, we have

‖υn − p‖2 ≤ ‖κn − p‖2 + α2
n ‖κn−1 − κn‖

2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈κ1 − p, υn − p〉.

Thus, p ∈ Cn for all n ≥ 1, it implies that Θ ⊂ Cn for all n ≥ 1.
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For n = 1, we have Q1 = ג and hence Θ ⊂ C1 ∩Q1. Suppose that Θ ⊂ Cl ∩Ql for some l ≥ 1. Since
κl+1 = PCl∩Ql(κ1). Then we get

〈b − κl+1 − b, κ0 − κl+1〉 ≥ 0,

for each b ∈ Cl ∩ Ql. Since Θ ⊆ Cl ∩ Ql, and p ∈ Θ, we have

〈p − κl+1 − p, κ0 − κl+1〉 ≥ 0.

This leads to p ∈ Ql+1, and hence Θ ⊆ Ql+1. Hence, we get Θ ⊆ Cl+1∩Ql+1. Based on the above results,
{κn} is well defined and Θ ⊂ Cn ∩ Qn.

Step (2). Clarify that {κn} is bounded. By Algorithm (4.19), we can write

〈ξ − κn, κ1 − κn〉 ≤ 0, for all ξ ∈ Qn, n ≥ 1.

This implies that, κn = PQn(κ1). Since Θ ⊂ Qn, we get

‖κn − κ1‖ ≤ ‖κ1 − ξ‖, for all ξ ∈ Θ. (4.20)

Again, since κn+1 ∈ Qn, we have
‖κn − κ1‖ ≤ ‖κn+1 − κ1‖. (4.21)

It follows from (4.20) and (4.21) that limn→∞ ‖κn − κ1‖ exists. Hence {κn} is bounded.
Step (3). Prove that limn→∞ ‖κn+1 − κn‖ = 0. Since κn+1 ∈ Qn and κn = PQn(κ1), it follows from

Lemma 3.4 that
‖κn+1 − κn‖

2 ≤ ‖κn+1 − κ1‖
2 − ‖κn − κ1‖

2 → 0 as n→ ∞.

This implies that limn→∞ ‖κn+1 − κn‖ = 0.
Step (4). Show that θ ∈ Θ. Follows immediately by Step (iv) Theorem 4.1.
Step (5). Illustrate that θ = PΘ(κ1). By the same scenario of Step (iv) Theorem 4.1, we obtain that

‖Tεωn − ωn‖ → 0, ‖ωn − κn‖ → 0 as n→ ∞, (4.22)

where ε ∈ (0, 2α). The nonexpansivity of Tε yields,

‖Tεκn − κn‖ ≤ ‖Tεκn − Tεωn‖ + ‖Tεωn − ωn‖ + ‖ωn − κn‖

≤ 2‖ωn − κn‖ + ‖Tεωn − ωn‖. (4.23)

From (4.22) and (4.23), we can obtain

‖Tεκn − κn‖ → 0 as n→ ∞. (4.24)

Since {κn} is bounded, there is a subsequence {κnk} of {κn} such that κnk ⇀ κ∗. This combines with (4.24)
and by using Lemma 3.5, we obtain that κ∗ ∈ F(Tε), that is, κ∗ ∈ Θ.

Since θ = PΘ(κ1) and κ∗ ∈ Θ, (4.20) and Lemma 3.2 (ii) imply that

‖κ1 − θ‖ ≤ ‖κ1 − κ
∗‖ ≤ lim inf

k→∞
‖κnk − κ1‖

≤ lim sup
k→∞

‖κnk − κ1‖ ≤ ‖κ1 − θ‖.

Using the uniqueness of the nearest point θ, we now see that θ = κ∗. We also have ‖κnk − κ1‖ → ‖κ1 − θ‖

and from Lemma 3.2 (i), we get that κnk → θ as k → ∞. Using again the uniqueness of θ, we deduce
that κn → θ as n→ ∞.
This ends the proof. �
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If we replace κ1 with =(κ1), where = : C → C is a contractive mapping in (4.1) and (4.19) we have
the following inertial shrinking CQ-projection viscosity algorithms:

Theorem 4.3. (Inertial shrinking projection viscosity algorithm) Assume that all requirements of
Theorem 4.1 are satisfied. Let = : C → C be a µ−contraction with µ ∈ [0, 1), that is

∥∥∥=κ − =ω∥∥∥ ≤
µ ‖κ − ω‖ for all κ, ω ∈ C. Then the sequence {κn} generated by

ωn = κn + αn(κn − κn−1),
$n = λnωn + (1 − λn)Υnωn

υn = ρn=(κ1) + (1 − ρn)$n,

Cn+1 =

{
p ∈ Cn : ‖υn − p‖2 ≤ ‖κn − p‖2 + α2

n ‖κn−1 − κn‖
2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈=(κ1) − p, υn − p〉

}
,

κn+1 = PCn+1(=(κ1)), n ≥ 1,

(4.25)

converges strongly to a point θ = PΘ(κ1).

Theorem 4.4. (Inertial shrinking CQ-projection viscosity algorithm) (ICQMVA). Suppose that all
requirements of Theorem 4.1 are verified. Let = : C → C be a µ−contraction with µ ∈ [0, 1). Then the
sequence {κn} generated by

ωn = κn + αn(κn − κn−1),
$n = λnωn + (1 − λn)Υnωn

υn = ρn=(κ1) + (1 − ρn)$n,

Cn =

{
p ∈ ג : ‖υn − p‖2 ≤ ‖κn − p‖2 + α2

n ‖κn−1 − κn‖
2

−2αn(1 − ρn)〈κn − p, κn−1 − κn〉 + 2ρn〈=(κ1) − p, υn − p〉

}
,

Qn =
{
p ∈ ג : 〈p − κn,=(κ1) − κn〉 ≤ 0

}
,

κn+1 = PCn∩Qn(=(κ1)), n ≥ 1,

(4.26)

converges strongly to a point θ = PΘ(κ1).

Remark 4.5. If we neglect CQ-shrinking projection terms, then the proposed algorithms in this
manuscript extend and improve the results of [38–40], Kim and Xu [17] (if αn = 0 and Υn = I
(Identity mapping) in algorithms (4.1) and (4.19)), Chen et al. [18] (if αn = 0 and Υn = I in (4.25) and
(4.26)) and Suzuki [37].

5. Computational experiments

In this section, the numerical comparison between strong convergence of our algorithms and the
modified inertial Mann Halpern and viscosity algorithms [46] are illustrated. Through numerical
calculations we found that our methods accelerate and more effective than methods of [46]. The codes
used here to obtain numerical results are the MATLAB codes run in MATLAB version 9.5 (R2018b)
on Intel(R) Core(TM)i5-6200 CPU PC @ 2.30GHz 2.40GHz, RAM 8.00 GB.

For simplicity:

(1) For Tan et. al. [46] (shortly, MIMHA) (shortly, MIMVA);
(2) For our proposed algorithms (shortly, ICQMHA) (shortly, ICQMVA).
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Example 5.1. For any nonempty closed convex set Ci ⊂ R
n for each i = 0, 1, ...,m. We are now

considering the convex feasibility problem of finding

κ∗ ∈ C =

m⋂
i=1

Ci.

Define a map T : Rn → Rn by

T = PC0

( 1
m

m∑
i=1

PCi

)
(5.1)

where PCi (i = 0, 1, · · · ,m) denotes the metric projection upon Ci. Since PCi (i = 0, 1, · · · ,m) is
nonexpansive, then the mapping T defined by (5.1) is also nonexpansive. Moreover, we can see that

Fix(T ) = Fix(PC0)
m⋂

i=1

Fix(PCi) = C0

m⋂
i=1

Ci = C. (5.2)

During this experiment, we use Ci (i = 0, 1, · · · ,m) as a closed ball with center ci ∈ R
n and radius

ri > 0. Thus PCi can be determined as

PCi(κ) =


ci + ri

‖ci−κ‖
(κ − ci) if ‖ci − κ‖ > ri,

κ if ‖ci − κ‖ ≤ ri.

Choose ri = 1 (i = 0, 1, · · · ,m), c0 = (0, 0, · · · , 0), c1 = (1, 0, · · · , 0), and c2 = (−1, 0, · · · , 0).
Moreover, ci ∈

(
−1
√

n ,
−1
√

n

)n
(i = 3, 4, · · · ,m) are randomly chosen. From the choice of c1, c2, r1, r2, given

that Fix(T ) = 0. Moreover, we use κ0 = κ1 = (1, 1, · · · , 1), αn = 10
(n+1)2 , η = 4, λn = 1

100(n+1)2 , ρn = 1
n+1

and f (κ) = 0.1κn. The numerical results are shown in Figures 1–2.
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Figure 1. Example 5.1 for n = 30 and m = 30.
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Figure 2. Example 5.1 for n = 100 and m = 30.

Example 5.2. Let F : C ⊂ →ג ג be an operator and the variational inequality problem is define in the
following way:

Find κ∗ ∈ C such that
〈
F(κ∗), ω − κ∗

〉
≥ 0, ∀ω ∈ C.

Define T : C ⊂ →ג ג by
T := PC(I − λF) (5.3)

where 0 < λ < 2
L and L is the Lipschitz constant of the mapping F. Let F : H = R2 → R2 defined

by

F
(
κ1

κ2

)
=


2κ1 + 2κ2 + sin(κ1)

−2κ1 + 2κ2 + sin(κ2)

 . (5.4)

The authors in [47] showed that F is Lipschitz continuous with L =
√

26 and strongly monotone.
Therefore the variational inequality (5.4) has a unique solution (see, e.g. [48]) and (0, 0) is its solution.
We use αn = 10

(n+1)2 , η = 4, λn = 1
100(n+1)2 , ρn = 1

n+1 and f (κ) = 0.1κn. The numerical results are shown in
Figures 3–5.
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Figure 3. Example 5.2 for κ0 = κ1 = (1, 1)T .
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Figure 4. Example 5.2 for κ0 = κ1 = (80,−30)T .
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Figure 5. Example 5.2 for κ0 = κ1 = (2,−5)T .

Example 5.3. We assume that the Fermat-Weber (FW) problem, it is a well-known model of location
theory. In mathematical terms, Fermat-Weber is described as follows:

Find κ ∈ Rn such that min f (κ) :=
m∑

i=1

ωi‖κ − ai‖

in which ai ∈ R
n are anchor points as well as ωi were non-negative weights (see [49] for more details).

The above problem can be described as fixed point problems as follows: A mapping T : Rn → Rn is
defined by

T (κ) :=
1∑m

i
ωi
‖κ−ai‖

m∑
i=1

aiωi

‖κ − ai‖

where ωi = 1 for all i. Moreover, we consider a three dimensional example with n = 3, m = 8 and
collection Π of anchor points are

a1 = (0, 0, 0)T , a2 = (10, 0, 0)T , a3 = (0, 10, 0)T , a4 = (10, 10, 0)T ,

a5 = (0, 0, 10)T , a6 = (10, 0, 10)T , a7 = (0, 10, 10)T , a8 = (10, 10, 10)T .

AIMS Mathematics Volume 6, Issue 8, 9000–9019.



9014

From above assumptions it follows that the optimal value of above problem is κ∗ = (5, 5, 5)T . During
this example, we use fixed element κ1 = (1, 2, 3)T and αn = 10

(n+1)2 , η = 4, λn = 1
100(n+1)2 , ρn = 1

n+1 and
f (κ) = 0.19κn. The numerical results are shown in Figures 6–7.
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Figure 6. Example 5.3 for κ0 = κ1 = (10, 20, 30)T .
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Figure 7. Example 5.3 for κ0 = κ1 = (1, 1, 1)T .
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Example 5.4. Let C = {κ ∈ R3 : ‖κ‖ ≤ 1} be the unit closed ball and T : C → C [50] be defined by

T


κ1

κ2

κ3

 =



1
√

3
sin(κ1 + κ3)

1
√

3
sin(κ1 + κ3)

1
√

3
(κ1 + κ2)


. (5.5)

We use αn = 10
(n+1)2 , η = 4, λn = 1

100(n+1)2 , ρn = 1
n+1 and f (κ) = 0.1κn. The numerical results are shown

in Figures 8–9.
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Figure 8. Example 5.4 for κ0 = κ1 = (1, 0, 1)T .

6. Advantages of our methods

In the study of algorithms, the efficiency and effectiveness of algorithms are measured by two main
factors: The first is reaching the desired point with the fewest iterations possible, and the second factor
is the time. When the time taken to obtain strong convergence is short, results are better. There is no
doubt that the paper [46] addressed a lot of algorithms and proved, under suitable stipulation, that its
algorithm accelerates better than the previous one. Here according to Examples 5.1–5.4, we were able
to verify that our algorithm converges faster than the algorithm [46], so it converges faster than all the
algorithms included in the paper [46]. Also, the numerical results (images) shows that our algorithms
need a small number of iterations to get the desired target. This makes our method successful in
speeding up the algorithm presented in Paper [46].
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Figure 9. Example 5.4 for κ0 = κ1 = (1, 1, 1)T .

7. Conclusions

In this manuscript, the strong convergence results for αinverse strongly monotone operators under
new algorithms in the framework of Hilbert spaces have been discussed and several algorithms have
been developed. The proposed algorithms combine the inertial Mann forward-backward method with
the CQ-shrinking projection method and viscosity algorithm. The main algorithms which are presented
and discussed are so-called “Inertial CQ-projection algorithm” (ICQMHA) and “Inertial shrinking CQ-
projection viscosity algorithm ”(ICQMVA). It has been theoretically proved that our algorithms lead to
an acceleration of the previous modified inertial Mann-Halpern and viscosity algorithms. Also, some
numerical examples have been performed to illustrate the applications and to test the computational
performance and its effectiveness of the proposed algorithms.
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