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1. Introduction

Fractional calculus is the study of integrals and derivatives of any arbitrary real or complex order.
Its origin goes far back in 1695 when Leibniz and 1’Hospital started discussion on the meaning of
semi-derivative. The 17 century witnessed the attention of this debate by many researchers working
in the field of mathematics. Seeking in the formulation of fractional derivative/integral formulas
Riemann and Liouville obtained their definitions with complementary functions. Later by Sonin and
Letnikov along with others worked out the final form of fractional integral operator named
Riemann-Liouville fractional integral/derivative operator, see [1,2]. After this definition of fractional
integral/derivative operator the subject of fractional calculus become prominent in generalizing and
extending the concepts of calculus and their applications. From the last few years, use of fractional
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calculus is also followed by scientists from various fields of engineering, sciences and economics.
Some fractional integral operators have also been introduced in recent past see [3-5]. By applying
fractional operators, extensive research has been carried out to establish various inequalities with
motivating results, see [6-9].

Definition 1. [10] Let ¢ € Li[01,0:]. Then left-sided and right-sided Riemann-Liouville fractional
integrals of a function ¢ of order { where R(() > 0 are given by

Ko =5 [ @ e 1> o (11)
and ,
1 2

o= pm | (-0 ewdr x<on (12)

The k-analogue of the Riemann-Liouville fractional integral is defined as follows:
Definition 2. [11] Let ¢ € Li[o1,0>]. Then k-fractional Riemann-Liouville integrals of order { where
R() >0, k >0, are given by

1 * .
kléﬁ"(x) = mL (x— f)%_l<ﬁ(f)df, x> 01, (1.3)

and

1 <2 ¢
o) = 15 f (t= ) p(dr, x <o, (14)

where I'y(.) is defined by [12]:

() = f ootf-le-%dr, R() > 0.
0

The generalized Riemann-Liouville fractional integrals via a monotonically increasing function are
given as follows:

Definition 3. [/] Let ¢ € Li[01,0,]. Also let Y be an increasing and positive monotone function on
(01,021, further  has a continuous derivative ' on (01, 02). The left as well as right fractional integral
operators of order { where R({) > 0 of ¢ with respect to s on [p1, 02] are given by

I, "D(x)_l"(g)f W (O — @)Y edt, x> o, (1.5)

and

‘”IE;QD(X) = F(g)f YO0 — Y0y pdr,  x < 0. (1.6)

The k-analogues of the above generalized Riemann-Liouville fractional integrals are defined as
follows:
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Definition 4. [13] Let ¢ € L[01,02]. Also let Y be an increasing and positive monotone function on
(01,021, further ¥ has a continuous derivative ' on (01, 0,). Therefore left as well as right k-fractional
integral operators of order  where R({) > 0 of ¢ with respect to  on (01, 0,] are given by

e |
e = i | v Ow —u0) ewdr x> o 0w
o1
and
1 : »
(L) = kL) fg WO -y edr, x <. (1.8)

For a detailed study of fractional integrals we refer the readers to [2,14]. Next, we give the definition
of exponentially (e, h — m)-convex function as follows:

Definition 5. [15] Let J C R be an interval containing (0, 1) and let h : J — R be a non-negative
function. A function ¢ : [0,0,] — R is called exponentially (a,h — m)-convex function, if for all
x,y € [0,05], t € (0, 1), (o, m) € (0, 1]> and n € R one has

o(tx + m(1 = £)y) < 12X 4 (1 - z“)¢—®. (1.9)
enx emn

The above definition provides some kinds of exponential convexities as follows:

Remark 1. (i) If we substitute « = 1 and h(t) = t°, then exponentially (s, m)-convex function in the
second sense introduced by Qiang et al. in [16] can be obtained.

(ii) If we substitute « = m = 1 and h(t) = t*, then exponentially s-convex function introduced by
Mehreen et al. in [17] can be obtained.

(iii) If we substitute « = m = 1 and h(t) = t, then exponentially convex function introduced by Awan
etal. in [18] can be obtained.

In [19,20], the following Hadamard inequality for convex function ¢ : [0y, 0,] — R is studied:

01+ 02 i @(01) + ¢(02)
E52) s [ 25

If this inequality holds in reverse order, then the function f is called concave function. This inequality
was first published by Hermite in 1883 and later Hadamard proved it independently in 1893. Since its
occurrence, it is in focus of researchers and had/has been studied for different kinds of convex
functions. In past two decades it is generalized by using various types of fractional integral operators
and authors have investigated a lot of versions of this inequality, see [21-23] and references therein.
Our aim in this article is to apply the generalized Riemann-Liouville fractional integrals with
monotonically increasing function to obtain the Hadamard inequalities for exponentially
(a, h — m)-convex functions. Two fractional integral identities are applied to get the error bounds of
Hadamard type inequalities. Following two theorems give the fractional versions of Hadamard
inequalities for Riemann-Liouville fractional integrals.

(1.10)

Q1

Theorem 1. [24] Let ¢ : [01,02] — R be a positive function with 0 < 0, < 0, and ¢ € Li[01,02]. If ¢
is a convex function on [01,0,], then the following fractional integral inequality holds:
o (Q1 + Qz) e+ @(01) + ¢(02)
2 )7 2A-0) 2 ’

I 0(02) + I_g(on)| < (L11)
with { > 0.
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Theorem 2. [25] Under the assumptions of Theorem 1, the following fractional integral inequality
holds:

@(o1) + ¢(02)
— 5

e

(32)°

(Ql +Q2) < 27"+ 1)

2 (02 —01)¢ (1.12)

p(02) + Iflim )90(91)] <

with { > 0.
The following theorem gives an error estimation of the inequality (1.11).

Theorem 3. [24] Let ¢ : [01,02] — R be a differentiable mapping on (01, 0,) with 0 < 0. If |¢’| is
convex on (01, 02], then the following fractional integral inequality holds:

o) + (o)  T'W(+1)

¢ s
2 2(02 — 01)¢ [191"90(@2) + IQZSD(Ql)] (1.13)
02 — 01 1 , )
< 20+ 1) (1 - g) [l (0D + 19" (e2)I].

The k-analogues of Theorems 1 and 2 are given in the next two results.

Theorem 4. [26] Let ¢ : [01,02] — R be a positive function with 0 < 0, < 0,. If ¢ is a convex function
on [01, 0], then the following inequality for k-fractional integral holds:

(Ql + Qz) < k(¢ + k) (1) + f(02)
2 2 ’

[ o) + 1 g0 < (1.14)
1 2

© 2(02 - 01)f
with { > 0.

Theorem 5. [27] Under the assumptions of Theorem 4, the following inequality for k-fractional
integral holds:

kléM)+¢(Q2) + k1§91+92 QD(QI)]
2

(Ql +Q2) < 25T + k)

< ¢l +¢lo)
2 (02— 01)F

> (1.15)

(%

with > 0.
An error estimation of the inequality (1.14) is given in the following theorem.

Theorem 6. [26] Let ¢ : [01,02] — R be a differentiable mapping on (01, 0,) with 0 < 0, < 0,. If |¢'|
is convex on 01, 02], then the following inequality for k-fractional integral holds:

@01 + (o) Tl +k)

74 {
2 2(02 — 01)f ["191*90(@) * "I@z‘p(gl)] (1.16)
02— 01 1 , ,
< l-— .
< 2(% " 1)( 2i)[lf,o ()l + l¢' (eI

The rest of the paper is organized as follows: In Section 2, we establish Hadamard inequalities for
generalized Riemann-Liouville fractional integrals of exponentially (a, h — m)-convex functions. The
special cases, associated with previously published results are presented in terms of their
generalizations. In Section 3, using two fractional integral identities, the error bounds of fractional
Hadamard inequalities are established. Inequalities proved in this article are in line with the results
established in [24-39].
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2. Main results

We give two fractional versions of the Hadamard inequality for exponentially (a, h — m)-convex
functions, first one is given in the following theorem.

Theorem 7. Let ¢ : [01,02] — R be a positive function with 0 < 01 < mo, and ¢ € Li[01,02]. Also
suppose that ¢ is exponentially (a, h — m)-convex function on 01, 0>], such that %, % € [01,02]. Then,
forn € R, k> 0and (a,m) € (0,11, the following k-fractional integral inequality holds for operators
givenin (1.7) and (1.8):

01 + mo; I + k) v . B 1
"0( 2 ) (mos — 01)f [ i )h(za)kl,p Lo (P 0 VW (mo2)) +g2(n)H(2) 2.1)

i oo (v ()] < Sl (5) 527 e (5) 2]

oL 1
f Ry de + —f[gl( )h( )‘D(QZ) 20 )H(l)(p(n;’f)]f (£ H (),
0 2 0

eneo2 2 en

where { > 0, H(t) = h(1 —t*) and

) = e e ifn <0 ) = e ifn<0
81 e if77>0’ 82(n e% if77>0'

Proof. From exponentially (e, h — m)-convexity of ¢, the following inequality holds:

‘p(x+my)sh(2ia)¢(x)+mh(2a_1)‘f’_(y). (2.2)

2 e~ 22 e

By setting x = o1t + m(1 — t)o,, ¥y = %‘(1 — 1)+ 0t,t € [0,1], in (2.2) and integrating the resulting
inequality over [0, 1] after multiplying with t%“, we get
k (Ql +m92) ( 1 )f (o1t +m(1 —1)0y) ¢

4 2 2% eneit+m(1-002)

1 el —
+mH(l)f ( ( l‘)+92t)t% »
0

2 1 (1=D+at)

7l dr (2.3)

By setting /(1) = o1t + m(1 — t)o, and Y(v) = %(1 — 1) + 0ot in (2.3), we obtain

k 01+ MmO 1 ( 1 )fxwl(mgz) <P(lﬂ(1/l)) -
e = hl5e moE; — rd(y 24
é‘p( 2 ) (Mo, — Ql)i[ VI €M (moz —y))* " diyu)) 24

1\ (77 oy(v) {1
+mH(§) f;_ () emﬁ(\’) (w() ) d(lﬁ(v))]

Further, taking the maximum value of exponential function and using Definition 4, we get

01 + mo; (& + k)
@ <
( 2 ) (mo, — Ql)

<>h( )k o @ 0D (m02)

2a
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+g2(ﬂ)mk+1H(;)k (0 )-(('D lﬁ)(lﬁ_ ( ))]

Again using exponentially (@, h — m)-convexity of ¢, for ¢ € [0, 1], we have

1
gl(n)h( )90(Q11+m(1—I)Qz)+mgz(17)H() (%(1—1)4‘@21) (2.5)
< h(t" )[gl(n)h( Q)‘”(,f;}) mg: )H( )f,f;j)]
1\ ¢(%
+mH(r)[g1(n)h(2(,)“”(f;j) mgz(ﬂ)H(E) e(,ﬂ)].

By integrating (2.5) over the interval [0, 1] after multiplying with t%‘l, we get
gi(mh e @(tor + m(1 — De)t* ™ dt + mg(n)H 3 90(%(1 -0+ sz)f" dt (2.6)
0 0

[81( ' ( 0)90(91) s )H( )<p(9)]f hy- 1dt+m[g1(n)h( a)so(gz)

e'el e'nez e’z

o (%)

1
+mgz(n)H(l) - ] f (7 H(t) L.
2] =],

e m

Again using substitutions as considered in (2.3), the inequality (2.6) leads to the second inequality of
(2.1). ]

The following remark states the connection of Theorem 7 with already established results.

Remark 2. (i) If we substitute n = 0, « = 1 and y(t) = t in (2.1), then [32, Theorem 2.1] can be
obtained.

(ii) If we substitute k =m = a = 1, n = 0 and h(t) = Y(t) = tin (2.1), then Theorem 1 can be obtained.
(iii) If we substitute n = 0, h(t) = Yy(t) = tand m = a = 1 in (2.1), then refinement of Theorem I can be
obtained.

(iv) If we substitute « =k = =m =1, n = 0 and h(t) = Y(t) = t in (2.1), then Hadamard inequality
can be obtained.

(v) If we substitute n =0, m = a = 1 and h(t) = tin (2.1), then [28, Theorem 1] can be obtained.

(vi) If we substituten =0,k =m =a = 1 and h(t) = tin (2.1), then [37, Theorem 2.1] can be obtained.
(vii) If we substitute « = k = 1, h(t) = Y(t) = t and n = 0 in (2.1), then [34, Theorem 2.1] can be
obtained.

(viii) If we substitute « = 1, h(t) = t° and Y(t) = tin (2.1), then [39, Theorem 2] can be obtained.

(ix) If we substitute « = 1, n = 0 and h(t) = t* in (2.1), then [38, Corollary 1] can be obtained.

(x) If we substitute n = 0 and k = 1 in (2.1), then [31, Corollary 1] can be obtained.

(xi) If we substitute n = 0 and a = 1 in (2.1), then [31, Corollary 1] gives the refinement of resulting
inequality.

In the following we give inequality (2.1) for exponentially (k2 — m)-convex, exponentially (s, m)-
convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.
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Corollary 1. If we take a = 1 in (2.1), then the following inequality holds for exponentially (h — m)-
convex functions:

h(2) T + k) (
o252 ) < ((’;Zz "_i); 610 {1 @000 mo2) + g
¢h(s
XYL, (pow) (t/r (i;))] < 15 )[ (7 )w(gl) gz(n)%]
o1
Xfol h(oyrE"dr + mﬂ;( )[ i )Sp(nfj) mg>() (;")]fol V(1 = D,
em 2

Corollary 2. If we take @ = 1 and h(t) =
exponentially (s, m)-convex functions:

(p(@l +mQ2) < L(d + k)

t* in (2.1), then the following inequality holds for

|21 flj oy @ 0 VW (o)) +mt gy()

2 25(moz — 01)F
) o (v (2)] < 5 )[ 2L 4 s 2V
Ll (21; 4) 610 EE2 4 mg 6(7;2)]'

If we put m = 1 in the above inequality, then the result of exponentially s-convex function can be
obtained.

Corollary 3. If we take « = 1 and h(t) = tin (2.1), then the following inequality holds for exponentially
m-convex functions:

o (Ql +2m92) ' ({ + k)

| rg o0 0 mew) + ot

2(mos — 01)*
el | ¢(02)
XU o (v (2))] < 2(“,{)[ DEZE 4 mesi) £ 2
L_m [ B (Q])]
20 + I8 ner TRV |

Corollary 4. If we take « = m = 1 and h(t) = t in (2.1), then the following inequality holds for
exponentially convex functions:

(Ql +Qz)S I'({ + k)

2 2(02 - 01)7
x[@m {1, (@ oW @) + 22T, (@ o w)w ™ (@)]
4 90(91) @(02) so(Qz) ¢(01)
= 2({ + k)[ 820, ]+ 204 + k) s, &M= ]

The next theorem is another version of the Hadamard inequality for exponentially (@, h —m)-convex
functions.
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Theorem 8. Under the assumptions of Theorem 7, the following k-fractional integral inequality holds:

(p(Ql + sz) 2T + k)
2 (mo> —Ql)

)i 8 oo 0 ()] < ) 2
352 [ ) )22

o2t

em?

where > 0, H(t) = h(1 — t*) and

g1 (2a)k (e, @ 0 V)W (mg2) @7)

( ) 3 e ez ifﬂ <0 ( ) _ _,7(01“"02 if’] <0
81(n) = e"l(%) l.f7]>0’ &) = e# if’]>0.

Proof. By setting x = 2L + m(E)0,, y = Z(&) + £ 1 € [0, 1], in (2.2) and integrating the resultin
y g 2 7 )02, Y = (5 g g g

inequality over [0, 1] after multiplying with t%‘l, we get

—90(Q1+m92)§h(—)f (29, 22) )l%_ldt 2.8)
l 2 22 Jo en(%ﬂn(%’)gz)
t

l)f 90(%1(27_)+ %)

+ mH(
By setting y(u) = 4° + m (%)Qz and y(v) = 2 (%) + 2 in (2.8), we obtain

k (01 +mo; 2
—¥ (2.9)
¢ ( 2 ) (mo; — 01)F

w ! (mo2) P
x| ( )f PLW) 0s — ) dww)

yot () emu)
(a2 .
+mk+1H( )ﬂ(m) Qoil]fb((‘v’))) (W() ) dwm)l.

Further, taking the maximum value of exponential function and using Definition 4, we get

(p(@l + sz) 2ka(§+ k)
2 (mo, — 01)f

+g2<n>h(2a20 1)mk+”’1‘ (o o0 (07 (2)) ]

g1mh ( za)k b ey (9 O 002)

Again using exponentially (@, h — m)-convexity of ¢, for ¢ € [0, 1], we have

1 2 — 1 2 —
g1(mh (2—) ¢ (%‘t - (Tt)gz) ¥ mgz(ﬂ)H(E) ¢ (% (Tt) + %ﬂ) (2.10)
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< (55 o 55 ) 222 3 522 o 5)
x| & )h( )"D(QZ) mgz(n>H(%)¢(q%)]-

7102

em’

By integrating (2.10) over [0, 1] after multiplying with t%‘l, the following inequality holds

1 ! 2 - ¢ 1
gl(n)h(?)ﬁ w(%t + M(Tt)gz) i dt + mgz(n)H(E) (2.11)
1
o1(2-1t\ o ¢(91) ¥(02)
[ 2R o )22 2]
A 1) ¢(02) Ne(&)) (2 - o
X‘fo‘ *’(@)” 1dt+m[g1(n)h(2—a) e +mg2(n)H(§) ) ][) h(T)tk lat.

Again using substitutions as considered in (2.8), the second inequality of (2.7) can be obtained. O

The following remark states the connection of Theorem 8 with already established results.

Remark 3. (i) If we substitute n = 0 and k = 1 in (2.7), then [31, Corollary 3] can be obtained.

(ii) If we substitute n = 0 and a = 1 in (2.7), then [31, Theorem 10] gives the refinement of resulting
inequality.

(iii) If we take h(t) = y(t) =t, m=k =a = 1 and n = 0 (2.7), then Theorem 2 can be obtained.

(iv) If we substitute h(t) = y(t) =t, m = a = 1, n = 0in (2.7), then refinement of Theorem 2 can be
obtained.

(v) Ifweuse h(t) =y(t)=t, m={=k=a=1,n=0and in (2.7), then the Hadamard inequality can
be obtained.

(vi) If we substitute h(t) =t,m =a = 1 andn = 0in (2.7), then [35, Corrollary 3] can be obtained.
(vii) If we substitute h(t) = Y(t =)t,k = a« = 1 and n = 0 in (2.7), then [33, Theorem 2.1] can be
obtained.

(viii) If we substitute @ = 1, h(t) = t* and n = 0 in (2.7), then [38, Corollary 3] can be obtained.

(ix) If we substitute h(t) =t, m=a =k =1 andn = 0in (2.7), then [40, Corrollary 3] can be obtained.

In the following we give inequality (2.7) for exponentially (h — m)-convex, exponentially (s, m)-
convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

Corollary 5. If we take a = 1 in (2.7), then the following inequality holds for exponentially (h — m)-
convex functions:

2th r k)
(p(& +2m02) (n(w) k;év ; [81(77) 7l(gl+mgz)+(¢p BV (sz))
2 — 01)*

F oL ow (07 (T

1 1
ah(3 )[ Q)+ g 222 fl (1) L em(d)
0

eno2 k
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oL

‘P(Qz) (m )

S
2 v [
672 0 2

x| @i ()

Corollary 6. If we take a« = 1 and h(t) = ¢ in (2.7), then the following inequality holds for
exponentially (s, m)-convex functions:

o1 +mos) _ 20T+ k) "
o2 )s g[l(uw%mm)woww»mm»

(moy — 01)*
B(1+s,% 4
+ mg) (n)¢(92)]+ {m gzszs k)[ @ )¢(Qz) mgs(n) e(’ifl )]

If we put m = 1 in the above inequality, then the result of exponentially s-convex function can be
obtained.

Corollary 7. If we take a = 1, h(t) = t in (2.7), then the following inequality holds for exponentially
m-convex functions:

€1
o(2572) < 2D Ly (000 (07 (m02)) + gotp

2 (mQZ_Ql)% (12
4 (o1) (02)
< umy @0 0 ()] < a7l @G - me
m(¢ + 2k) 90(92) (%)
+m[ (D) g 8200 )’ 5 |

Corollary 8. If we take « = m = 1, h(t) = t in (2.7), then the following inequality holds for
exponentially convex functions:

o1 +or) _ 25T +K) R
S R LIRS

# I (000U @»|4@§mhmf@” + g 222
(& + 2k) vl | ¢(01)
+4({+k)[ D g+ 82007 ]

3. Error estimations of Hadamard inequalities for exponentially (o, 7 — m)-convex functions

In this section we give error estimations of the Hadamard inequalities by using exponentially (@, i —
m)-convex functions via generalized Riemann-Liouville fractional integrals. The following identity is
useful to prove the next theorem.
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Lemma 1. [28] Let 01 < 0, and ¢ : [01,02] — R be a differentiable mapping on (01,0,). Also,
suppose that ¢’ € L[01,02]. Then, for k > 0, the following identity holds for the operators given in
(1.7) and (1.8):

ple) +¢@)  Tl+h) yuy . ]
2 2 - [0 oW @) I o@D B

_ 1
— 02 > Q1 f(; ((1 — l‘)% - t%)gp’ (tQ1 + (1 - l)QZ)dt-

Theorem 9. Let ¢ : [01,02] — R be a differentiable mapping on (01,0,) such that ¢’ € Li[01,0:].

Also suppose that |¢'| is exponentially (a,h — m)-convex on [01,0,]. Then, for k > 0, n € R and

(o, m) € (0,112, the following k-fractional integral inequality holds for the operators given in (1.7) and

(1.8):

o) +¢02)  TWld+k) [
2 2(02 — 01

< nggl[lif]ff)'(fo% ey (- o —ti)dt+£l ) (1 = 1 = 0f i)

1

+ ':;(fo H (1 -t - ) ar + f; Ho (1 - 1 - 0f)ar)|

where H(t) is defined in Theorem 7.

i @O NW T () + 1 1(&,)_«001&)(%1(@1))]‘ (3.2)

Proof. From Lemma 1, it follows that

po1) +9(02) Tl +k) s Ut _
5 - e 901){ [k - 1(¢|)+(90 VW (@) +k1¢, on)- (oY l(Ql))] (3.3)
<228 [ a-of -] te + (1 - neslar
0
By using exponentially (a, h — m)-convexity of |¢’|, for # € [0, 1], we have
(3
01 + (1= Do)l < e E 8 4 o ( | (3.4)

e m

Using (3.4) in (3.3), we get

p0) + () T +k)
2

s — o o FR R A S R A ) (gl»]l
2 — Y1)k
r (e
[t H(t)\ ( )|]

-2 ;Ql[l"”;f?fll)' U)z ey (= o —zi)dt+f; e (1 - —t)i)a’t}
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mle ()

JT[IOZH(t)((I—t)i—ti)dHﬁl H(t)(ti—(l—t)i)dt].

The following remark states the connection of Theorem 9 with already established results.

Remark 4. (i) If we substitute n = 0 and k = 1 in (3.2), then [31, Corllary 7] can be obtained.

(ii) If we substitute n = 0 and a = 1 in (3.2), then [31, Theorem 11] gives the refinement of resulting
inequality.

(iii) If we substitute h(t) =t, m = a = 1 and n = 0 in (3.2), then [35, Corollary 10] can be obtained.
(iv) If we substitute m = a = 1, n = 0 and h(t) = t* in (3.2), then [28, Theorem 2] can be obtained.

(v) If we substitute m = a = 1, h(t) = Y(t) = t and n = 0 in (3.2), then [26, Theorem 2.4] can be
obtained.

(vi) If we substitute k =m = a = 1, h(t) = Y(t) = tand n = 0 in (3.2), then Theorem 3 can be obtained.
(vii) If we substitute k =a = =m =1, h(t) = y(t) = tand n = 0in (3.2), then [29, Theorem 2.2] can
be obtained.

(viii) If we substitute « = 1, n = 0 and h(t) = t* in (3.2), then [38, Corollary 5] can be obtained.

In the following we present the inequality (3.2) for exponentially (h — m)-convex, exponentially
(s, m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

Corollary 9. If we take a = 1 in (3.2), then the following inequality holds for exponentially (h — m)-
convex functions:

o) +¢02)  TWld+k) [
2 2002 - 01)

<22 [[wof-at - Jae [laofi -
+—m'im<z%)‘(f h(l—t)((l—t)i —ri)dHf; h(l—t)(ti —(1—f)i)df)]-

Corollary 10. If we take @« = 1 and h(t) = t° in (3.2), then the following inequality holds for
exponentially (s, m)-convex functions:

i @OWWT @)+ T (@ o)y (91»]‘

o) +¢() Tl +k) [

VE o @ o e+ )_«oow)(w—l(gl))]‘

2 2(02 — 01)*
"
_ / 1 1-(3
<2 g][|¢(gl)|(23 LN +l‘3(1”’1+£))
2 o1 2 k s+%+1 k
m‘Pl(m) 1—(—)S+k+1 2F1( S, 1+§ 2+z,§) 4
N _ ( _ B(1+s 1+—)
e S+z+1 21+r(7€+1) k
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If we put m = 1 in the above inequality, then the result of exponentially s-convex function can be
obtained.

Corollary 11. If we take « = m = 1 and h(t) = t in (3.2), then the following inequality holds for
exponentially convex functions:

o) +¢02)  Twld+k)

ghw@w@ ww<m»%¢%wwowwﬂgm‘

2 2(02 - 01)'
e-o (,_1)\(leel el
- 2(% +1) 2% emnel enx |°

Corollary 12. If we take « = m = k = 1 and h(t) = Y(t) = t in (3.2), then the following inequality
holds for exponentially convex functions via Riemann-Liouville fractional integrals:

plo) +¢l)  TC+1)
' 1 2 2 2(@2 —01)! [ 21)+S0(Q2) + 1 (92) ‘p(Ql)]’

)(Icp (o1l . |90'(Qz)|)'

enel ene2

02 — 01 ( b
T2+ 1) 2i
The following identity will be useful to obtain the next results.

Lemma 2. [38] Let ¢ : [01,0,] — R be a differentiable mapping on (01, 0>) such that ¢ € Li[01,0:].
Then for k > 0 and m € (0, 1], the following integral identity holds for operators given in (1.7) and
(1.8):

£-1
z_ﬁgigﬁﬂ4WW+woww*w@» o)
(Wle —Ql)z v (H572)

+mit U o (go m( (m))]_%[‘p(é)l +2m92)+m¢(e)1 ;Zlgz)]
St [ (e (e [ ()5l

Theorem 10. Let ¢ : [01,02] — R be a differentiable mapping on (01, 02) such that ¢’ € Li[01,0:].
Also suppose that |¢’|1 is exponentially (a, h—m)-convex function on (01, 0] for g > 1. Then, forn € R,
k > 0 and (a,m) € (0, 1%, the following fractional integral inequality holds for operators given in (1.7)
and (1.8):

25T + k) [¢ p
m@—mﬁk¢““#>

L o7 ()] - 2 (2« m (25222) |
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Proof. We divide the proof in two cases:

Case 1. For q = 1. Applying Lemma 2 and using exponentially (a, h — m)-convexity of |¢’|, we have

25T + k)
(sz _Ql)%

1y —1 (@1 1 01 + mo> 01 + mo»
i oo (07 (T))] - 3l (5 ) me (B |
mo; — Q1 ¢, loit 2-1 e o (2t ta‘ ]
< - I - -
< [Tl (o35 ool [ e (5 (55)+ )l
01

_ ’ ’ a QD m_
L Mo 91[ o’ (01)] N ¢’ (02)I h N e m |’ (Q2)| ' , 2
4 e'ei e'ne2 0 2 e'ne2 oL

e m
1
X f H(z) tidt].
0 2

Case 2. Now for g > 1. From Lemma 2 and using power mean inequality, we get

[W (e (0 W (mp2)

[N

ﬂ*n@+mvg
(sz —onf ()

1
e o oo (2] Yo 2 w220
2m m 2 2 2]’]’[

_ 1 -4 1
LMo (f tidt) [(f it
4 0 0
1 1
4,101 2 - QZt ) :|
+ tile' = [—— dt
([ ()50
_ ’ q 1 a ’ q 1 !
< e QI][(|90(Q1)| fh ) 6 gy 4 e 02) fH(f)zidt)
1-- enei 0 a enez 0 2

A oY)WY (moy))

4(5+1) 7
q
m¢' (% bt ‘0nlt (1
+(—£1) fH(—)tidH—l(p(Q)z' fh( )t(dt)]
en? 0 2 e'e2 0 2a
Hence (3.6) is obtained. O

The following remark states the connection of Theorem 10 with already established results.
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Remark 5. (i) If we substitute n = 0, @ = 1 and h(t) = ¢ in (3.6), then [38, Corollary 7] can be
obtained.

(ii) If we substitute h(t) = Y(t) = t, k = « = 1 and n = 0 in (3.6), then [33, Theorem 2.4] can be
obtained.

(iii) If we substitute n = 0, h(t) = Y(t) = t and « = m = 1 in (3.6), then [27, Theorem 3.1] can be
obtained.

(iv) If we substitute h(t) = Y(t) =t, m =k =a = 1 andn = 0in (3.6), then [25, Theorem 5] can be
obtained.

(v) If we substitute g =m=k=_C=a =1, h(t) = y(t) = tand n = 0 in (3.6), then [36, Theorem 2.2]
can be obtained.

(vi) If we substitute n = 0, m = a = 1 and h(t) = t in (3.6), then [35, Corollary 10] can be obtained.
(vii) If we substitute n = 0 and k = 1 in (3.6), then [31, Corollary 10] can be obtained.

(viii) If we substitute n = 0 and a = 1 in (3.6), then [31, Theorem 12] gives the refinement of resulting
inequality.

In the following we present the inequality (3.6) for exponentially (k2 — m)-convex, exponentially
(s, m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

Corollary 13. If we take a = 1 in (3.6), then the following inequality holds for exponentially (h — m)-
convex functions:

2EITL(E + k) [w p
(ne: —go% iy

U o0 0 (2] o2 (2522

_ ¢ Moy "(0)I 2-1
o . e [
4(%+]) q € 0 ¢ 0

mle' (2)" 2 I’ (@)l £\ ¢\
+(,—m n| 2=t e + 22920 h(—)tidt)q].
L 0 2 e’z 0 2

em?

(¢ o Y)W~ (mo2))

Corollary 14. If we take @ = 1 and h(t) = t° in (3.6), then the following inequality holds for
exponentially (s, m)-convex functions:

-
M[“’ﬂl o (6 0 W 102)
(mQZ_Ql)" (52)"

ey o0 ()] () 25
¢’ (o)l

mo; — Q1 l
< 4(% N 1)(2S(% 44 1)) [((k ) e

o (& £ L) @)y
+2m(%+s+1)zFl(—s,l+%,2+%,§ e’?@z)
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If we put m = 1 in the above inequality, then the result of exponentially s-convex function can be
obtained.

Corollary 15. If we take @« = m = 1 and h(t) = t in (3.6), then the following inequality holds for
exponentially convex functions:

21T k
ﬁ[wl () GO @D HT o (P oW @1))]

(QZ_Ql)k
w(m;m) < 0 =0 [((%n)"’”;%)“(%w) lwle(rii)lq);

4(£+ 1) (25 + 2))é
.\ ((5 +3) LA (g . 1)M)]

k e'el k e'ne2

Corollary 16. Ifwe take « =k =m=q = =1, h(t) = Y(t) = t in (3.6), then the following inequality

is obtained.:
1 1 + — / ’
'—f SD(V)dV—(p(Q] 92) <@ Ql[lso (el , l¢'@l]
(02 —01) Jo 2

- no1 1702
e e

Theorem 11. Let ¢ : [01,02] — R be a differentiable mapping on (01, 0,) with 0 < 0; < mp,. Also
suppose that |¢’|? is exponentially (a, h — m)-convex function on [0y, 0] for g > 1. Then, for k > 0 and

(a,m) € (0, 11%, the following fractional integral inequality holds for the operators given in (1.7) and
(1.8):

2T + R [y ¢ L
= T (@0 3.7
| gy 0 00 ) G3.7)

emi I o) (07 (2))] - 3l (2572 + me(25m2) |

_ q ta ’ q 1 2 _ta 1
Mo Qll[(l()"f]gllﬂ fh(za)df Ison(sz)l fh( - )dt)
a1yt € 0 ¢ 0
q
m|¢' (G Lot (0 A N AN
A () (i) EET [ (2|
eﬁ 0 2 er]gz 2(1

withl +1 =1,
P g

Proof. By applying Lemma 2 and using the property of modulus, we get

2%_1Fk(§+k) e .
- I +moy \* ©
s (LB RS
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Now applying Holder’s inequality for integrals, we get

2670 (L + k)
(sz - Ql)%

- 1 01 + mo; 01 + mo;
[ (G- 3l (2572 e me (2502 |
+ mt Kl (poy) |y - 5|¢ 2 +mp|=—
_ 1 q 5
< mos 911[(f dt)
4(2 + 1) Vo

o
ALK 2

Using exponentially (a, h — m)-convexity of |¢’|?, we get

[ﬁjwwﬁqx¢owxw*m@g)

26T + )

S R T TS
(mQ2 — o)t ( )

o0 ()] o) (2522

— q a ’ q 1 e _ i
< e 911[(@ ()] fh(t )dl m|e’(02)| fh( t)dt)
1 enel 0 Ra e'ne2 0 Do

4(2+1)
m 90' 1 o _ g ’ q 1 1 i
+( | h( )dt+ LG f h(—)dt) ]
en 0 2@ ez 0 2@

The following remark is the connection of Theorem 11 with already established results.

Remark 6. (i) If we substitute n = 0 and k = 1 in (3.7), then [31, Corollary 12] can be obtained.

(ii) If we substitute n = 0 and a = 1 in (3.7), then [31, Theorem 13] gives the refinement of resulting
inequality.

(iii) If we substitute h(t) = Y(t) = t, k
obtained.

(iv) If we substitute n = 0, h(t) = Y(t) = tand « = m = 1 in (3.7), then [27, Theorem 3.2] can be
obtained.

(v) If we substitute k =m = =a =1, h(t) = Y(t) =t and n = 0 in (3.7), then [36, Theorem 2.4] can
be obtained.

(vi) If we substitute n = 0, a = 1 and h(t) = t* in (3.7), then [38, Corollary 9] can be obtained.

(vii) If we substitute « = m = 1, h(t) = t and n = 0 in (3.7), then [35, Corollary 14] can be obtained.

a=1andn = 0in (3.7), then [33, Theorem 2.7] can be
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In the following we give inequality (3.7) for exponentially (h — m)-convex, exponentially (s, m)-
convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

Corollary 17. If we take @ = 1 in (3.7), then the following inequality holds for exponentially (h — m)-
convex functions:

26T + k)
(mo, — o1t

R oo ()] o) (252

e ol N E e e )
Q_Z) '@ [ [ty \i]

( B f (z)d”wfoh(a)‘”);

Corollary 18. If we take « = 1 and h(t) = t° in (3.7), then the following inequality holds for
exponentially (s, m)-convex functions:

2| (s (@0 VW (m02)

25T + k) .
e PN CEY 2 )

(moy — 01)*
Wl _1 (O1 L[ (o1 +mo; 01 + mo;
ey o (o ()] 2[5 ) e me (B 502) |
mo; — 01 [(W(@mq L 2mig @)l (-1 + 21“))5
425(1 + 5) (éﬁ +-1)? - e
Ql
( '9” |90'(Qz)|q)‘11]
+ ney M
en’ enez

If we put m = 1 in the above inequality, then the result of exponentially s-convex function can be
obtained.

Corollary 19. If we take @« = 1 and h(t) = t in (3.7), then the following inequality holds for
exponentially m-convex functions:

2EITL( + k) [w ‘

Loy ( ) (mo»))
(mo, — )i L v'(® A) #o e
Colul ( -l (Ql))] 1[ (Ql"‘sz) (Ql"‘sz)]
I B - — - - - -
+ mk k wil(gl-;:nngz) (‘)D © '70) w m 2 ‘)D 2 + m‘p 2m
L ’ ’ 1 (p' (Q—l) ! ’ é
< Mo — o 4\ [ " (01)| N 3mlgp’(02)I7)* N L " (02)| ]
- 16 % +1 enel ene2 e:%] enez ’
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Corollary 20. If we take « = m = 1 and h(t) = t in (3.7), then the following inequality holds for
exponentially convex functions:

26T + ) [y ¢ ] v e B
T N P e R A L ) B

L2z ( 4 )” [(IQD'(QOI" N 3|¢’(Q2)|")”’ N (3 (A |90’(Q2)|”)" ]
16 \%f+1

01 +Qz)
2

el e’ez el e'nez

In the following, we give inequality (3.7) for the operators given in (1.5) and (1.6).

Corollary 21. If we take k = 1 in (3.7), then the following inequality holds for exponentially convex
functions:

] KA
I 11| R HERE S PO R )

— / q rl @ ’ q ol @ _ !

< Mo al[(lw(gl)l fh(t_)dekp(Qz)l fh(Z t )dt)
4(lp+ D\ e” 0 2a e 0 o

Q1

q
m|e (e Lot O (M (1) \a
+(—(1) fH(—)dr+—|90(92)| fh(—)dt) ]
6172 0 2 ene2 0 2a

4. Conclusions

The Hadamard inequalities presented in this work behave as generalized formulas which generate
a number of fractional integral inequalities for all kinds of convex functions connected with
exponentially (@, h — m)-convex function. Inequalities for Riemann-Liouville fractional integrals can
also be deduced from the results of this paper. This work can be extended for other kinds of fractional
integral operators exist in the literature.
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