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Abstract: We study the optimal investment problem in a constrained financial market, where the
proportion of borrowed amount to the current wealth level is no more than a given constant. The
objective is to maximize the goal-reaching probability before drawdown, namely, the probability that
the value of the wealth process reaches the safe level before hitting a lower dynamic barrier. The
financial market consists of a risk-free asset and multiple risky assets. By the construction of auxiliary
market and convex analysis, we relax the borrowing constraint and investigate the new optimization
problem in an auxiliary market, where there is no such borrowing constraint. Then, we find the
relationship between the optimal results in auxiliary market and those in constrained market. The
explicit expressions for the optimal investment strategy and the maximum goal-reaching probability
before drawdown are derived in closed-form. Finally, we provide some numerical examples to show
the effect of model parameters on the behaviors of investor.
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1. Introduction

The theory of optimal investment can date back to the seminal works of Merton [14]. From then
on, the optimal investment problems have been paid great attention by the scholars all over the world
and the stochastic control theory has been widely used in the literature of investment. The popular
criteria include minimizing the probability of ruin, maximizing the expected utility of terminal wealth,
mean-variance criterion, etc. See, for example, Browne [5], Hipp & Plum [8], Promislow & Young
[15], Bäuerle [4], Zhang et al. [22], Yuan et al. [20], Sun et al. [17].

In the recent years, drawdown, which describes the event that the value of wealth drops to its historic
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higher-water mark becomes a frequently quoted risk metric. The occurrence of drawdown will result
in larger portfolio losses, or even a long-term recession. Hence, the fund managers tend to make the
investment decisions with low drawdown risks. Research on drawdown model is increasing rapidly
in the past few years. See for example, Angoshtari et al. [2] and Chen et al. [7] both derived the
minimum drawdown probability in a lifetime investment problem. Angoshtari et al. [1] and Han &
Liang [11] considered an optimal investment problem in an infinite-time horizon. Under the thinning
dependence/common shock structure, Han et al. [9, 10] studied the optimal reinsurance problem,
which minimized the probability of drawdown with dependent risks.

Most of the existing literature about drawdown solved the problems without borrowing constraint.
However, the borrowing constraints do exist and the investor is not allowed to freely borrow money
without any limitations. A few scholars have advocated and investigated the optimal investment
problems under different borrowing constraints. For example, Bayraktar & Young [3] considered the
problem of minimizing the probability of lifetime ruin, in which the individual continuously
consumed either a constant dollar amount or a constant proportion of the wealth under the higher
borrowing rate. Luo [13] derived the minimum ruin probability for an insurance company with
proportional reinsurance and investment under the limited leverage rate constraint. Both of those
results were obtained for only one risky asset in the financial market. For the multiple risky assets,
Karatzas & Shreve [12] considered the optimal investment under the utility maximization framework.
Yener [18] computed the optimal investment strategy with borrowing and short selling constraints,
which minimized the probability of lifetime ruin. For more research on borrowing constraints, we
refer readers to Yener [19], Yuan et al. [21], etc.

Inspired by the above-mentioned work, we focus on an optimal investment problem with borrowing
constraint, where the proportion of the borrowed amount to the current wealth level is no more than
a given constant. The investor aims to maximize the goal-reaching probability before drawdown, i.e.,
the probability that value of the wealth process reaches safe level before some fixed proportion of
its maximum value to date. To make the optimization problem tractable, we introduce an auxiliary
market and allow the trading to be done as if there is no borrowing constraint in it. After finding the
relationship between the constrained and auxiliary markets, we derive the optimal investment strategy
under borrowing constraint by dynamic programming and convex analysis. We observe that the optimal
investment strategy of maximizing goal-reaching probability before drawdown will also maximize
goal-reaching probability before ruin. This phenomenon reveals that the drawdown levle only affects
the evaluation of value function while it exerts no impact on the investor’s optimal strategy.

As far as we concerned, only Yuan et al. [21] investigated the minimum drawdown probability
with borrowing constraints for one risky asset. The current paper extends the model of Yuan et al.
[21] and includes it as a special case. The main contribution of this paper is threefold: (i) compared
with the early work of [21], we further consider the case of multiple risky assets, where the method
of truncation in [21] does not apply anymore. Therefore, following the analysis of Karatzas & Shreve
[12] and Haluk Yener [18], an auxiliary market is introduced to tackle the constrained problem; (ii) the
ruin level set in our paper is no longer fixed, which is totally different from Yener [18, 19]. A more
general criterion, that is, maximizing the goal-reaching probability before drawdown is investigated
in our paper, which covers the minimizing the probability of ruin/drawdown as a special case. (iii)
the effect of model parameters on the optimal investment strategy and borrowing constraint point is
investigated in our paper.
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The remainder of this paper is organized as follows. In Section 2, the constrained market and the
auxiliary market are presented. By the stochastic control theory, explicit expressions for the optimal
strategy and corresponding maximum goal-reaching probability before drawdown are obtained in
Sections 3. In section 4, we introduce some numerical examples to show the impact of model
parameters. Finally, we conclude the paper in Section 5.

2. Model and problem formulation

Let (Ω,F ,P) be a complete probability space, with filtration F = {Ft}t≥0 satisfying the usual
conditions, where P is the real world probability measure and Ft stands for the information available
until time t. Assume that all Brownian motions introduced below are well-defined and adapted
processes defined on the complete probability space.

2.1. The constrained market

The investor is allowed to invest in multiple risk assets (stocks), which evolve as

dS i(t) = S i(t)
[
µidt +

N∑
j=1

σi jdB j(t)
]
, for i = 1, 2, · · · ,N,

where µi and σi j (i, j = 1, 2, · · · ,N) are all given constants; B(t) = (B1(t), · · · , BN(t))
′

is a standard N-
dimensional Brownian motion. Meanwhile, the investor can invest a non-negative amount in a risk-free
asset that earns interest at the constant rate r. Hence, the market price of risk is defined by

ζ = σ−1(µ − r1N),

where 1N = (1, · · · , 1)
′

, µ = (µ1, · · · , µN)
′

, σ = (σ1, · · · , σN)
′

and σi = (σi,1, · · · , σiN)
′

for i =

1, · · · ,N.
In our model, we denote the fractions of the wealth invested in the risky assets by π(t) = (π1(t), · · · ,

πN(t))
′

and the fraction (1 − π(t)
′

1N) is then invested in the risk-free asset. We can see that π(t)
′

1N < 1
means that saving is existent; if π(t)

′

1N > 1, it means that the investor has to borrow money with risk-
free rate r from the monetary market and invest all the wealth in the risky assets. However, borrowing
amount is not limitless. Therefore, we suppose that the proportion of the borrowed amount to the
current wealth level is no more than a given constant k (k ≥ 0) in this paper. Besides, the investor’s
consumption process is assumed as C(Xπ(t)) = aXπ(t) + b, where a (0 ≤ a < r) and b (b > 0) are
two given constants. With the admissible strategy π(t) and consumption process, the wealth process
satisfies the stochastic differential equation:

dXπ(t) = [(r − a)Xπ(t) + π(t)
′

(µ − r1N)Xπ(t) − b]dt + π(t)
′

σXπ(t)dB(t), (2.1)

where Xπ(0) = x. Before introducing the optimization objective, we state formally the definition of
admissible strategies.

Definition 2.1 (Admissible strategy in constrained market). A control π(t) is said to be admissible if it
satisfies the following conditions:
(i) π(t)

′

1N ≤ 1 + k for all t > 0;
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(ii) π(t) is Ft-progressively measurable and E(
∫ ∞

0
‖π(t)‖2dt) < ∞ where ‖π(t)‖ =

∑n
i π

2
i (t);

(iii) associated with π(t), the state equation (2.1) has a unique strong solution.

LetAc be the set of all admissible strategies in the constrained market. Define the maximum wealth
value M(t) at time t by

M(t) = max
{

sup
0≤s≤t

Xπ(s), M(0)
}
,

where M(0) = m > 0. Note that we set x > m to allow the wealth process to have a financial past.
Drawdown is the first time when the wealth process reaches α ∈ [0, 1) times its maximum value. The
hitting time τα is defined by τα = inf{t ≥ 0|Xπ(t) ≤ αM(t)}. If α = 0, the drawdown level is the same
as the ruin level 0.

Besides, if the value of wealth is large enough, say, at least x∗ = b/(r − a), then the investor can
invest all the wealth in the risk-free asset and the wealth process becomes non-decreasing. As a result,
drawdown will never happen in this case. For this reason, we call x∗ safe level as given in Angoshtari
et al. [1] and Han et al. [11]. The first hitting time to x∗ is defined as τx∗ = inf{t ≥ 0|Xπ(t) ≥ x∗}. We
set τα = ∞ (τx∗ = ∞) if the wealth process (2.1) never hits the level αM(t) (x∗).

Now assume that the investor is interested in maximizing the probability of reaching the safe level
x∗ before drawdown (hitting αM(t)). We denote the maximum goal-reaching probability before
drawdown by V(x,m), which depends on the initial wealth x and maximum (past) value m.
Specifically, V is the maximum probability of τπx∗ < τ

π
α, thus, we derive the performance function as

Jπ(x,m) = Px,m(τx∗ < τα) = Ex,m(1{τx∗<τα}).

Here, Px,m and Ex,m denote the probability and expectation conditional on Xπ(0) = x and M(0) = m,
respectively,. Then, the corresponding value function is given by

V(x,m) = sup
π∈Ac

Jπ(x,m).

Note that if x ≤ αm, then V(x,m) = 0, and if x > x∗ and x > αm, then V(x,m) = 1. It remains for us to
determine the maximum goal-reaching probability before drawdown on the demain

O = {(x,m) ∈ (R+)2|αm ≤ x ≤ min(m, x∗), αm < x∗}∗,

that is the topic of our paper.

2.2. The auxiliary market

When considering the constraint that the proportion of borrowed amount to the current wealth level
is no more than a non-negative constant k, the financial market becomes incomplete. Along the same
lines in Karatzas & Shreve [12], we introduce a vector of fictitious parameters ν ∈ RN to complete
the market. After the completion of the market, we can allow the trading to be done as if there is no
borrowing constraint in the auxiliary market. Hence, for each ν ∈ RN , we obtain an optimal investment
strategy π∗ν. Then, it will be shown that if we find the ν∗, which minimizes the value function of

∗Note that if αm = x∗, then technically drawdown has occurred, but the investor could keep its wealth at αm = x∗, thereafter by only
investing in the risk-free asset. Therefore, we avoid this ambiguous case by assuming αm < x∗ throughout.
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the auxiliary market over a certain region, the optimal investment strategy π∗ν∗ is indeed the optimal
investment strategy π∗ under the borrowing constraint.

Since we are investigating the borrowing constraint in this paper, one can define the constraint set
of the investment strategy as

K =

{
π ∈ RN

∣∣∣∣∣π′1N ≤ 1 + k
}
. (2.2)

Then, for such closed convex set K , the support function of the convex set −K is denoted by

δ(ν) = sup
π∈K

(−π
′

ν), ν ∈ RN ,

with δ(0) = 0 and the effective domain is given by K̃ = {ν ∈ RN |δ(ν) < ∞}. K̃ can be seen as the
barrier cone of −K̃ (Rockafellar [16], page 114). We have δ(ν)+π

′

ν ≥ 0, ∀ν ∈ K̃ , if and only if π ∈ K .
Meanwhile, according to the definition of support function, the effective domain K̃ can be written as

K̃ = {ν ∈ RN |ν1 = ν2 = · · · = νN ≤ 0},

and δ(ν) = −(1 + k)ν1 ≥ 0 on K̃ for some ν1 ≤ 0. The fictitious process ν is used to pull the investment
strategy back into the constrained set. On the one hand, if the borrowing constraint are not violated,
the support function remains 0 and has no effect on the optimal strategy. On the other hand, if the
borrowing constraint is violated, it becomes positive and turns optimal unconstrained strategy into
constrained strategy.

For any ν ∈ K̃ , we define the assets of the auxiliary market as
dS ν

0(t) = (r + δ(ν(t)))S ν
0(t)dt,

dS ν
i (t) = S ν

i (t)
[
(µi + νi(t) + δ(ν(t)))dt +

N∑
j=1
σi jdB j(t)

]
, for i = 1, 2, · · · ,N,

(2.3)

and the market price of risk in the auxiliary market becomes

ζν(t) = ζ + σ−1ν(t). (2.4)

The wealth process of the investor in this auxiliary market follows the dynamics

dXπ
ν (t) = [(r + δ(ν) − a)Xπ

ν (t) + πν(t)
′

(µ + ν(t) − r1N)Xπ
ν (t) − b]dt + πν(t)

′

σXπ
ν (t)dB(t), (2.5)

where Xπ
ν (0) = x and the definition of admissible strategy in the auxiliary market is given by

Definition 2.2 (Admissible strategy in auxiliary market). A control πν(t) is said to be admissible if it
satisfies the following conditions:
(i) πν(t) is Ft-progressively measurable and E(

∫ ∞
0
‖πν(t)‖2dt) < ∞;

(ii) associated with πν(t), the state equation (2.5) has a unique strong solution.

Let Aν be the set of all admissible strategies in the auxiliary market. Meanwhile, the hitting times
τνα and τνx∗ in the auxiliary market are modified to

τνα = inf{t ≥ 0 : Xπ
ν (t) ≤ αMν(t)}, τνx∗ = inf{t ≥ 0 : Xπ

ν (t) ≥ x∗}.
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Define the candidate value function as

Vν(x,m) = sup
πν∈Aν

Px,m(τνx∗ < τ
ν
α).

Based on the above discussion, we have the following lemma to show the relationship between the
value function V(x,m) and candidate value function Vν(x,m).

Lemma 2.1. If ν∗ ∈ K̃ satisfies the equality δ(ν∗) + π
′

ν∗ = 0, we have

V(x,m) = Vν∗(x,m) = inf
ν∈K̃

Vν(x,m) = inf
ν∈K̃

sup
πν∈Aν

Px,m(τνx∗ < τ
ν
α).

Proof. This proof can be outlined from the Remark 8.2 in Karatzas & Shreve [12] or the Appendix in
Yener [19], hence, we omit it here. �

3. The optimal results

To solve the problem, we split the optimization problem into two different cases: m ≥ x∗ and m < x∗.
Recall the safe level x∗, when m ≥ x∗, the wealth level will reach x∗ before m and Mν(t) = m holds
almost surely for all t ≥ 0, which leads to a fixed drawdown level αm. However, when m < x∗, the
maximum process Mν(t) may increase above m under some case, i.e., the drawdown level we set is not
necessarily a fixed one.

3.1. HJB equation and verification theorem

Before showing the HJB equation for the characterization of the candidate value function Vν and
corresponding optimal strategy, we denote

C2,1(O) = {φ(x,m)|Vν(x, ·) is twice continuously differentiable on O,

and Vν(·,m) is once continuously differentiable on O}.

It follows from the standard arguments that the C2,1(O) candidate value function Vν(x,m) satisfies
the following HJB equation:

inf
ν∈K̃

sup
πν∈Aν

LπVν(x,m) = 0, (3.1)

where

LπVν(x,m) = [(r + δ(ν) − a)x + π
′

ν(µ + ν − r1N)x − b]Vν
x(x,m) +

1
2
‖σ

′

πν‖
2x2Vν

xx(x,m). (3.2)

The notations Vν
x(x,m) and Vν

xx(x,m) stand for the partial derivatives with respect to the first variable.
Now we are going to give the verification theorem that a classical solution to the HJB equation, subject
to the boundary conditions, is the value function.

Applying the methods of Chen et al. [7], Angoshtari et al. [1], and Han et al. [11], we can obtain
the following verification theorem directly, thus we omit the proof here.
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Theorem 3.1 (Verification Theorem). Suppose that Vν(x,m) : O → [0, 1] is a bounded, continuous
function, which satisfies the following conditions:
(i) Vν(x,m) ∈ C2,1(O) is an increasing and concave function with respect to x;
(ii) ∂Vν(m,m)/∂m = 0 i f m < x∗;
(iii) Vν(αm,m) = 0 and Vν(x∗,m) = 1;
(iv) Vν∗(x,m) is the solution of the HJB Eq (3.1) for some (ν∗, π∗ν∗) ∈ K̃ × Ac.
Then, we have Vν∗(x,m) = V(x,m) onO, and π∗ν∗ is the optimal investment strategy under the borrowing
constraint.

3.2. Maximizing the goal-reaching probability before drawdown when m ≥ x∗

According to Theorem 3.1, we now proceed to focus on the following boundary-value problem and
try to find a solution of the Eq (3.1): inf

ν∈K̃
sup
πν∈Aν

{
[(r + δ(ν) − a)x + π

′

ν(µ + ν − r1N)x − b]Vν
x +

1
2
‖σ

′

πν‖
2x2Vν

xx

}
= 0,

Vν(αm,m) = 0, Vν(x∗,m) = 1,
(3.3)

for αm ≤ x ≤ x∗ ≤ m.
Assume that Vν(x,m) ∈ C2,1(O), Vν

x(x,m) > 0 and Vν
xx(x,m) < 0. From the first-order condition, we

obtain the maximizer π∗ν(x) as

π∗ν(x) = −(σ
′

)−1ζν(x)
Vν

x

xVν
xx
, (3.4)

where ζν(x) is given by (2.4). Inserting (3.4) into (3.3) yields

inf
ν∈K̃

{
[(r + δ(ν) − a)x − b]Vν

x −
1
2
‖ ζ + σ−1ν ‖2

(Vν
x)2

Vν
xx

}
= 0.

Again, in view of the first-order condition, the minimum point of the fictitious parameter is ν∗ = ν∗11N

and ν∗1 is given by

ν∗1 =


0, if x > −

D
1 + k

Vν
x

Vν
xx
,

−
1
K

(
(1 + k)x

Vν
xx

Vν
x

+ D
)
, if x ≤ −

D
1 + k

Vν
x

Vν
xx
,

(3.5)

where K = 1
′

N(σσ
′

)−11N and D = ζ
′

σ−11N . Given the maximum fictitious process ν∗, the optimal
investment strategy π∗ν∗(x) can be rewritten as

π∗ν∗ =


−(σσ

′

)−1(µ − r1N)
V0

x

xV0
xx
, if x > −

D
1 + k

Vν∗

x

Vν∗
xx
,

−(σσ
′

)−1(µ − r1N − ν
∗)

Vν∗

x

xVν∗
xx
, if x ≤ −

D
1 + k

Vν∗

x

Vν∗
xx
.

(3.6)

One can easily verify the optimality of (ν∗, π∗ν∗). Due to the different expressions for the optimal
investment strategy in different regions, we need to discuss the following two cases.
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Case 1: x > − D
1+k

Vν∗
x

Vν∗
xx

. We can see that 1
′

Nπ
∗
ν∗ < 1+k, that is, the borrowing constraint is not violated.

Substituting π∗ν∗ = −(σσ
′

)−1(µ − r1N) Vν∗
x

xVν∗
xx

and ν∗ = 0 into the HJB Eq (3.3), then we have

ξ0(x) =
V0

x

V0
xx

=
2[(r − a)x − b]
‖ ζ ‖2

, (3.7)

and 1
′

Nπ
∗
0(x) < 1 + k yields x0 < x < x∗, where x0 is given by

x0 =
2Db

(1 + k) ‖ ζ ‖2 +2D(r − a)
< x∗. (3.8)

Case 2: x ≤ − D
1+k

Vν∗
x

Vν∗
xx

. We can see that 1
′

Nπ
∗
ν∗ = 1 + k. Inserting π∗ν∗ = − 1

K ((1 + k)xVν
xx

Vν
x

+ D) and

ν∗ = − 1
K ((1 + k)xVν

xx
Vν

x
+ D)1N into the HJB Eq (3.3), we obtain

ξν∗(x) =
Vν∗

x

Vν∗
xx

= −
[b − (r − a + D

K )x] +
√
θ(x)

‖ ζ ‖2 −D2

K

, (3.9)

where θ(x) is defined as

θ(x) =

[
b +

(
r − a +

D
K

)
x
]2

+
(1 + k)x2

K

(
‖ ζ ‖2 −

D2

K

)
,

and 1
′

Nπ
∗
ν∗(x) ≥ 1 + k holds for αm ≤ x ≤ x0.

Remark 3.1. One can see that if the wealth level decreases upon x0, the borrowing constraint works
and the investor maintains the maximum leverage ratio 1 + k. Thus, we call x0 borrowing constraint
level.

In the following theorem, according to the above analysis, we summarize the optimal results for the
case of m ≥ x∗. Then combining with the verification theorem, we can verify that the resulting function
are indeed the maximum goal-reaching probability before drawdown on O.

Theorem 3.2. Suppose that m ≥ x∗. Let ξ0(x), ξν∗(x), x0 be given in (3.7), (3.9) and (3.8), respectively.
Then, for any x ∈ [αm, x∗], the maximum goal-reaching probability before drawdown for the wealth
process (2.1) is given by

V(x,m) =


g1(x,m)
g2(x∗,m)

, αm ≤ x < max(αm, x0),

g2(x,m)
g2(x∗,m)

, max(αm, x0) ≤ x ≤ x∗,

where the functions gi(x,m) (i = 1, 2) are given by

g1(x,m) =

∫ x

αm
exp

{
− 2

∫ y

αm
ξν∗(ω)−1dω

}
dy,

g2(x,m) =

∫ αm∨x0

αm
exp

{
− 2

∫ y

αm
ξν∗(ω)−1dω

}
dy

+

∫ x

αm∨x0

exp
{
− 2

( ∫ αm∨x0

αm
ξν∗(ω)−1 +

∫ y

αm∨x0

ξ0(ω)−1)dω}
dy.

(3.10)
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The optimal investment strategy is

π∗(x) =


−(σ

′

)−1ζν∗(x)
ξν∗(x)

x
, αm ≤ x < max(αm, x0),

−(σ
′

)−1ζ
ξ0(x)

x
, max(αm, x0) ≤ x ≤ x∗,

(3.11)

where ν∗ is given by

ν∗(x) =

 −
1
K

( (1 + k)x
ξν∗(x)

+ D
)
1N , αm ≤ x < max(αm, x0),

0 · 1N , max(αm, x0) ≤ x ≤ x∗.
(3.12)

Proof. We only give the proof under the case of max(αm, x0) ≤ m < x∗, the other case αm ≤ m <

max(αm, x0) can be proved similarly. Integrating ξ(x), which is defined by (3.14) from αm to x yields

Vν∗(x,m) = φ1(m) · g2(x,m),

where g2(x,m) is given by (3.10) and φ1(m) is an unknown function to be determined.
Based on the boundary condition Vν∗(x∗,m) = 1, we have φ1(m) = 1/g2(x∗,m). One can see that the

function Vν∗(x,m) satisfies the conditions (i), (iii) and (iv) in Theorem 3.1. While condition (ii) is moot
because m ≥ x∗. Hence, Vν∗(x,m) equals the value function V(x,m), which completes the proof. �

Remark 3.2. From (3.11), we can see that the optimal investment strategy is only dependent on the
value of wealth x, while it has nothing to do with the drawdown proportion α. Hence, similar to Yuan
et al. [21] and Han et al. [9, 10], the optimal investment strategy for maximizing the goal-reaching
probability before drawdown coincides with the one for maximizing the goal-reaching probability
before ruin until drawdown happens.

Remark 3.3. Furthermore, from the optimal investment strategy (3.11), it is shown that the borrowing
constraint violates when the wealth process decreases to the drawdown level. In fact, only when the
wealth condition keeps deteriorating, the investor chooses to gamble on the risky asset in order to
avoid the appearance of drawdown. When the value of wealth is close to the safe level, the investor
becomes cautious and invests less in the risky asset.

3.3. Maximizing the goal-reaching probability before drawdown when m < x∗

In the previous subsection 3.2, we derive the maximum goal-reaching probability before drawdown
and the corresponding optimal strategy for the case of m ≥ x∗. In this subsection, we will consider the
problem for the case of m < x∗.

Again, following from the verification theorem, we turn to the following boundary-value problem inf
ν∈K̃

sup
πν∈Aν

{
[(r + δ(ν) − a)x + π

′

ν(µ + ν − r1N)x − b]Vν
x +

1
2
‖σ

′

πν‖
2x2Vν

xx

}
= 0,

Vν(αm,m) = 0, Vν(x∗,m) = 1, ∂Vν(m,m)/∂m = 0,
(3.13)

for αm ≤ x ≤ m < x∗. We can construct the solution which is actually the value function according to
Theorem 3.1.
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To simplify further analysis, we define the function ξ(x) as follows

ξ(x) =

 ξν∗(x)−1, αm ≤ x < max(αm, x0),

ξ0(x)−1, max(αm, x0) ≤ x ≤ m < x∗,
(3.14)

with ξν∗(x) and ξ0(x) given by (3.9) and (3.7) , respectively. From (3.3) and (3.13), it is obvious that
the only difference is the boundary condition. As a result, the HJB equation (3.13) is equivalent to

Vν
xx

Vν
x

= ξ(x),

Vν(αm,m) = 0, Vν(x∗,m) = 1, ∂Vν(m,m)/∂m = 0,

Based on the above results, we can conclude the optimal results for the case of m < x∗ in the
following theorem.

Theorem 3.3. Suppose that m < x∗. Let gi(x,m) be given in (3.10), ξ0(x), ξν∗(x), x0 be given in (3.7),
(3.9) and (3.8), respectively. Then,

(i) if max(αm, x0) ≤ m < x∗, for any x ∈ [αm, x∗], the maximum goal-reaching probability before
drawdown for the wealth process (2.1) is given by

V(x,m) =


exp

{
−

∫ x∗

m
f2(y)dy

}
·

g1(x,m)
g2(x∗, x∗)

, αm ≤ x < max(αm, x0),

exp
{
−

∫ x∗

m
f2(y)dy

}
·

g2(x,m)
g2(x∗, x∗)

, max(αm, x0) ≤ x < x∗,

where

f2(y) =


α
[ 1
g2(y, y)

− 2ξν∗(αy)−1
]
, x0 ≤ αm,

α
[ 1
g2(y, y)

− 2ξ0(αy)−1
]
, αm < x0;

(ii) if αm ≤ m < max(αm, x0), for any x ∈ [αm, x∗], the maximum goal-reaching probability before
drawdown for the wealth process (2.1) is given by

V(x,m) = exp
{( ∫ x0

m
− f1(y) −

∫ x∗

x0

f2(y)
)
dy

}
·

g1(x,m)
g2(x∗, x∗)

,

where
f1(y) = α

[ 1
g1(y, y)

− 2ξ0(αy)−1
]
.

The optimal investment strategy π∗ and fictitious process ν∗ are given by (3.11) and (3.12), respectively.

Proof. Similar to the proof of Theorem 3.2, we only give the proof under the case of max(αm, x0) ≤
m < x∗. Integrating ξ(x) from αm to x, we have

Vν∗(x,m) = φ1(m) · g2(x,m),

where g2(x,m) is given by (3.10) and φ1(m) is a function of m to be determined.
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Differentiating Vν∗ w.r.t m, we have

∂Vν∗

∂m
=
∂φ1(m)
∂m

· g2(x,m) + φ1(m) ·
∂g2(x,m)
∂m

=
∂φ1(m)
∂m

· g2(x,m) + φ1(m) · (2αξ(αm)−1 · g2(x,m) − α).

According to the boundary condition ∂Vν/∂m = 0, it follows that

∂φ1(m)/∂m
φ1(m)

= α
(
− 2ξ(αm)−1 +

1
g2(m,m)

)
.

We integrate both sides of this equation from m to x∗, which yields

φ1(m) = φ1(x∗) · exp
{
−

∫ x∗

m
f2(y)dy

}
.

Following the condition Vν∗(x∗, x∗) = 1, we get φ1(x∗) = g2(x∗, x∗)−1. One can easily verify that the
function Vν∗ satisfies the conditions of Theorem 3.1, which completes the proof. �

Remark 3.4. Comparing the expressions for optimal results under the cases of m ≥ x∗ and m < x∗, it
is plain to find that the optimal investment strategy remains the same, but the value functions make a
difference due to the extra boundary condition.

Remark 3.5. Furthermore, if we set N = 1, that is, there is only one risky asset in the financial market,
the optimal investment strategy can reduce to the one in Yuan et al. [21]. Meanwhile, the value function
for minimum probability of drawdown V̄(x,m) has a representation as

V̄(x,m) = 1 − V(x,m),

which can be seen from

V̄(x,m) = sup
ν∈K̃

inf
πν∈Aν

Px,m(τνα < τ
ν
x∗) = sup

ν∈K̃

inf
πν∈Aν

[1 − Px,m(τνx∗ < τ
ν
α)] = 1 − V(x,m).

4. Numerical examples

In this section, we investigate the effect of model parameters on the optimal investment strategy.
To make the things simple, we set N = 1 in this section, that is, there is one risky asset in the market.
Unless otherwise stated, we set the basic parameters as α = 0.2, k = 0.5, r = 0.05, µ = 0.1, σ = 0.1, a =

0.01, b = 0.1 and m = 1.
Figure 1 (a) shows that higher risk-free rate indicates the lower borrowing constraint level. The

higher risk-free rate means lower risk premium. Thus, the investor chooses to retain the higher
leverage rate in a worse condition. On the other hand, as µ increases, the amount put in the risky asset
decreases, which can be seen in Figure 1 (b). This is because the higher risk premium makes the
investor borrowing money at a lower wealth level.
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Figure 1. The influence of r and µ on the optimal investment strategy.

The Figure 2 gives that how the parameters of consumption function affect the optimal investment
strategy. It can be seen that the increase in the consumption function, i.e., parameters a and b leads
directly of the increase of the optimal investment strategy and borrowing constraint level, which is a
natural consequence. As a fact, in order to avoiding drawdown, the higher consumption will drive the
investor to invest more in the risky-asset, which makes the borrowing constraint level become higher
in return.
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Figure 2. The influence of a and b on the optimal investment strategy.

The Figure 3 (a) illustrates that how the parameter k affects the optimal investment strategy and
borrowing constraint level. With higher permissible borrowing ratio, the investor is influenced by the
borrowing constraint at a lower wealth level. In Figure 3 (b), we can see that the optimal investment
strategy has nothing to do with the volatility of risky asset, which is a rather surprising result. In fact,
based the expression of (3.11), the optimal constrained investment strategy for only one risky asset
follows that

π∗(x) =


1 + k, αm ≤ x < max(αm, x1),

2(r − a)
µ − r

(
x∗ − x

)
, max(αm, x1) ≤ x ≤ x∗,
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where x1 is given by

x1 = x∗ −
(1 + k)(µ − r)

2(r − a)
.

This behavior is not the first time in the optimal investment problems, which can be also found in
Browne [6]. However, this does not hold when there are multiple risky assets in which to invest in (see
(3.11) for details).
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Figure 3. The influence of k and σ on the optimal investment strategy.

5. Conclusions

In this paper, we consider the optimal investment problem with borrowing constraint under the
criterion of maximizing the goal-probability before drawdown. Using the technique of stochastic
control theory and convex analysis, we derive the optimal investment strategy and the corresponding
value function. By analysis, we that the behavior of borrowing typically occurs with a lower wealth
level and the borrowing constraint level strongly depend on the parameters of the risky asset, as well
as the consumption process. For the further research, one can extend the model to the case with jump
in the process of risky asset. Meanwhile, some other objective functions can be applied, such as utility
maximization or mean-variance criteria. All of these problems are meaningful and challenging, and
they are our future directions.
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