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Abstract: Supertree methods are tree reconstruction techniques that combine several smaller gene
trees (possibly on different sets of species) to build a larger species tree. The question of interest is
whether the reconstructed supertree converges to the true species tree as the number of gene trees
increases (that is, the consistency of supertree methods). In this paper, we are particularly interested
in the convergence rate of the maximum likelihood supertree. Previous studies on the maximum
likelihood supertree approach often formulate the question of interest as a discrete problem and focus
on reconstructing the correct topology of the species tree. Aiming to reconstruct both the topology and
the branch lengths of the species tree, we propose an analytic approach for analyzing the convergence
of the maximum likelihood supertree method. Specifically, we consider each tree as one point of a
metric space and prove that the distance between the maximum likelihood supertree and the species tree
converges to zero at a polynomial rate under some mild conditions. We further verify these conditions
for the popular exponential error model of gene trees.
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1. Introduction

High-throughput sequencing is making large collections of sequences available to researchers at a
low cost. These genomic data represent a broad spectrum of life and motivates studies of the problem of
reconstructing large phylogenetic trees using statistical methods. Those data, however, also come from
different sources, cover different genomic regions on which the evolutionary processes happen very
differently, and may not be collected on the same set of species. Thus, combining trees on different,
overlapping sets of species into a “supertree” has become a popular approach for reconstructing large
species trees. Over the years, several methods of supertree reconstruction have been developed [8],
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and analyses of supertrees continue to play more and more important roles in the search for answers of
many fundamental evolutionary questions.

While supertree methods have been of great interest in phylogenetics, little is known about their
theoretical properties, especially in non-asymptotic settings. In cases when the individual trees are
gene trees and the set of taxa are the same across the input trees, several statistical consistent methods
have been derived [5, 7, 11, 14, 16–18, 20, 21, 29]. However, most proofs of statistical consistency have
been analyzed under the condition that each of the gene trees can be estimated accurately, and do not
provide a guarantee of robustness to gene tree estimation errors [25]. This is a critical concern because
when the species tree is constructed using sequences taken from large genomic regions, those regions
have a high chance of involving some recombination, which violates one of the main assumptions of
the multi-species coalescent model. On the other hand, limiting analyses to short regions increase gene
tree estimation error (GTEE) and various summary methods had impaired accuracy when the error was
high [10, 19]. It is later proved in [24] that when the sequence length of each locus is bounded and
the gene tree cannot be estimated reliably, most summary methods that estimate the species tree by
combining gene trees are not statistically consistent.

Because some coalescent-based summary methods sometimes produce less accurate estimates than
concatenation [3, 19, 22], seemingly as a result of GTEE, the question of whether provable guarantees
can be established in the presence of GTEE (for both species trees and supertree) naturally arises. In the
context of species tree estimation, [25] establish statistical consistency of the Rooted Triplet Consensus
method and the Maximum Pseudo-likelihood for Estimating Species Trees method [18] under GTEE
and provide bounds on the sampling complexity for these methods to construct the correct species tree
with high probability.

The maximum likelihood (ML) supertree method is proposed by [28] based on a probability model
that permits “errors” in gene tree topologies and allows the species tree to be estimated even if there is
topological conflict amongst gene trees. [28] shows that ML estimate of the species tree is topologically
consistent under fairly general conditions and also shows that the method of Matrix Representation
with Parsimony [2] may be inconsistent under these same conditions. However, while the ML estimate
is topologically consistent, no results on the convergence rate of the estimator are obtained. In this
paper, we propose a new analytic approach to study the convergence of the ML supertree method.
Based on embedding trees into a metric space, we establish the conditions for which the convergence
rate of the ML supertree can be obtained. We verify these conditions for the popular exponential error
model of gene trees, thus obtain a polynomial convergence rate for the ML supertree to the true species
tree under this model.

2. Mathematical framework

In this paper, the term phylogenetic tree refers to a tree T with leaves labeled by a set of species.
Each branch of T is associated with a non-negative branch length. A tree is said to be resolved if it is
bifurcating and all branch lengths are positive. Given an unrooted phylogenetic tree T on a finite set L
of species, any subset L ′ of L induces a phylogenetic tree on L ′, denoted T|L ′ , which is the subtree
of T that connects the species in L ′ only.

We regard the tree space as a metric space (T , d) where T is the set of all phylogenetic trees
with branch lengths bounded from above by a positive constant g0 and d is a continuous metric.
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For simplicity of presentation, we will assume that d is the BHV distance on the set of trees with
n species [4], but note that the analysis of the paper can be extended to any continuous and locally-
Euclidean distance, including the branch-score distance [15] and the AGPS distance [1].

To describe trees that are “near” to each other, the BHV distance use the class of nearest neighbor
interchange (NNI) moves [23]. An NNI move is defined as a transformation that collapses an interior
branch to zero and then expands the resulting degree 4 vertex into a branch in a different way. The
BHV space models the set of trees T on n species as a cubical complex consisting of a collection of
orthants, each isomorphic to R2n−3

≥0 . Each orthant of T corresponds uniquely to a tree topology, and the
coordinates in each orthant parameterize the branch lengths for the corresponding tree. The adjacent
orthants of the complex with the same dimension correspond to NNI-adjacent trees.

The BHV space is equipped with a natural metric distance: the shortest path lying in the BHV space
between the points. If two points lie in the same orthant, this distance is the usual Euclidean distance.
If two points are in different orthants, they can be joined by a sequence of straight segments, with each
segment lying in a single orthant. We can then measure the length of the path by adding up the lengths
of the segments. The distance between the two trees T1 and T2 on the BHV space is defined as the
minimum of the lengths of such segmented paths joining the two points.

Throughout the paper, we assume that the evolution of the species has not involved reticulate
processes, and there exists an underlying “true species tree” in T , denoted by T∗. Furthermore, T∗

is a resolved tree with leaf set L ∗. In a supertree reconstruction problem, we observe a sequence of
gene trees (T1,T2, . . . ,Tk), where Ti has leaf set Li, and wish to combine these trees into a phylogenetic
tree T̂k on the union of the leaf sets

L̂k = ∪k
i=1Li ⊂ L ∗.

In this paper, we consider a tree-generating probability model (PT)T∈T such that for each set of
species L ⊂ L ∗, PL

T (·) is a distribution of trees forming by species in L . We assume that the

observed gene trees {Ti}
k
i=1 are independently distributed according to

{
P

Li
T∗ (·)

}k

i=1
respectively. In other

words, the joint probability of the observed gene trees is

PT∗(T1,T2, . . . ,Tk) =

k∏
i=1

P
Li
T∗ (Ti).

Remark 2.1. We note that the tree-generating probability model PT∗ may not necessarily be nested.
That is, given two nested sets of leaves L1 ⊂ L2 ⊂ L ∗, although the probability PL2

T∗ (which is used to
generate trees with leaf set L2) also induces a natural distribution on the set of trees with leaf set L1,
this probability PL2

T∗ |L1 may not be the same as PL1
T∗ .

Given the observed gene trees (T1,T2, . . . ,Tk), the ML supertree is defined as

T̂k = argmax
T∈T

`k(T)

where `k(T) denotes the log-likelihood function

`k(T) =

k∑
i=1

logPLi
T (Ti).

To enable theoretical analyses of the ML supertree method, we make the following assumptions.
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Assumption 2.1 (Weak covering property). The sequence of subsets of L ∗ satisfies the weak covering
property: there exists c1 > 0, γ > 1/2, and K > 0 such that for each subset L of taxa from L ∗ of size
4,

1
kγ
|{i ≤ k : L ⊂ Li}| ≥ c1 ∀k ≥ K.

Here, |A| denotes the number of elements in the setA.

We note that the weak covering property ensures that as the number of gene trees increases, all
quartets (subtrees with 4 leaves) of T∗ are visited with enough frequency to enable a reliable estimate
for each of the quartets. Assumption 2.1 is a direct generalization of the covering property introduced
in [28], which can be obtained from Assumption 2.1 by setting γ = 1.

Assumption 2.2 (Model identifiability). For all L ⊂ L ∗, the distribution PL
T∗ (·) is identifiable. That

is, if d(T∗|L ,T|L ) > 0, then KL(PL
T∗ ,P

L
T ) > 0.

Assumption 2.2 guarantees that it is at least possible to reconstruct the restriction T∗|L of T∗ to
the subset L with a complete knowledge of PL

T∗ . This assumption is similar to, but distinct from, the
condition of basic centrality introduced by [28], which requires that for all subsets of L ⊂ L ∗ of size
4,

PL
T∗ [T

∗|L ] ≥ (1 + η)PL
T∗ [T

′]

for all trees T′ on leaf set L that are different from T∗|L , and where η > 0:

• On one hand, the basic centrality condition implies that if d(T∗|L ,T|L ) > 0, the modes of the
distributions PL

T∗ and PL
T are different. From this, we can deduce that KL(PL

T∗ ,P
L
T ) > 0. Thus,

our identifiability assumption is somewhat weaker than this condition. Assumption 2.2 also does
not impose any assumption on the family of distribution themselves and thus can be applied to a
wider class of probabilistic models.
• On the other hand, the basic centrality condition only concerns leaf sets of size 4, while

Assumption 2.2 impose restrictions on leaf sets of all sizes. However, we note that conditions on
subset of leaves (such as the basic centrality condition) only work under the implicit assumption
that there are some connection between PL2

T |L1 and PL1
T for L1 ⊂ L2. Since our framework does

not assume any nested structure in the probability model, Assumption 2.2 is more appropriate.

Finally, we impose the following regularity conditions on the tree-generating probability model:

Assumption 2.3. (Regularity)

(a) For all T ∈ T , L ⊂ L ∗, and any tree T′ with leaf set L ,

i. PL
T (T′) > 0,

ii. logPL
T (T′) is a locally-Lipchitz function with respect to T, and the Lipchitz constant does not

depend on T′.

(b) There exist c2, c3 > 0, m ≥ 2 such that for any leaf set L and tree T, if d(T∗,T) ≤ c2, then

KL(PL
T∗ ,P

L
T ) ≥ c3d(T∗|L ,T|L )m.

Remark 2.2. If for each tree T′ with leaf set L , the probability density function PL
T (T′) is an analytic

function with respect to T in a neighborhood of T∗, then Assumption 2.3(b) holds.
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Proof. Note that the function EPT∗
[
logPL

T (T′)
]

(with respect to T) is analytic in a neighborhoodU of
T∗. Define

A = {T ∈ U : ET′∼PT∗
[
logPL

T∗ (T
′)
]

= ET′∼PT∗
[
logPL

T (T′)
]
}.

For all T ∈ A, we have

KL(PL
T∗ ,P

L
T ) = ET′∼PT∗

[
logPL

T∗ (T
′)
]
− ET′∼PT∗

[
logPL

T (T′)
]

= 0.

By Assumption 2.2, we conclude that T|L = T∗|L for all T ∈ A. Applying Łojasiewicz inequality [13,
Theorem 1], we deduce that there exists c3 > 0 and m ≥ 2 such that for any T in the neighborhood,

EPT∗
[
logPL

T∗ (T
′)
]
− EPT∗

[
logPL

T (T′)
]
≥ c3d(T,A)m ≥ c3d(T∗|L ,T|L )m.

This implies the result. �

Throughout this paper, we will assume that Assumptions 2.1, 2.2, and 2.3 hold. The main point of
Assumption 2.1 is to guarantee that every subset of 4 species is sufficiently represented by the data. It
is worth noticing that 4 is the smallest number of species that carries the information of the topology
of an unrooted tree. Therefore, if a set of 4 species is only found in few trees, we will not be able to
reconstruct their phylogenetic relationship. While Assumption 2.2 is technical, its goal is to guarantee
that there is a unique “true” supertree. Finally, Assumption 2.3 ensures that the model has enough
information to distinguish between the “true” supertree and any alternative with substantial accuracy.

In the next section, we will establish the following convergence rate of the ML supertree.

Theorem 1. Under Assumptions 2.1, 2.2, and 2.3, for any δ > 0, there exist constants m > 0, Cδ > 0
and Kδ > 0 such that for all k ≥ Kδ, we have

d(T̂k,T
∗) ≤ Cδ

(
log k

k(γ−1/2)

)1/m

with probability at least 1 − δ.

Theorem 1 establishes that under fairly mild regularity conditions, the ML supertree is consistent
and has a polynomial convergence rate. Notably, the result holds for all identifiable family of locally-
analytic distributions (Remark 2.2). The degree of this (polynomial) convergence rate depends on the
sampling scheme of the leaves (characterized by the covering coefficient γ) and on the geometry of
the probabilistic model (characterized by the constant m in Assumption 2.3(b)). We further note that
Assumption 2.3(b)) is only required for establishing the convergence rate of the ML estimator and the
absence of this condition does not affect the proof of consistency.

Corollary 1. Under Assumptions 2.1, 2.2, and 2.3(a), the ML supertree is consistent.

Remark 2.3. Theorem 1 is still valid if the universal Assumption 2.3(b) is replaced by the following
condition:

There exist c2, c3 > 0, m ≥ 2 such that if d(T∗,T) ≤ c2, then

KL(PLi
T∗ ,P

Li
T ) ≥ c3d(T∗|Li ,T|Li)

m ∀i ∈ N.

Remark 2.4. We note that the bound of the convergence rate in Theorem 1 is not sharp.
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3. Convergence of maximum likelihood supertree

To enable the analysis of convergence, we define

Rk(T) =
1
k
`k(T∗) −

1
k
`k(T)

and
Rk(T) := EPT∗ [Rk(T)] =

1
k

(
EPT∗ [`k(T∗)] − EPT∗ [`k(T)]

)
=

1
k

KL(PT∗ ,PT).

We refer to Rk and EPT∗ [Rk(T)] as the empirical risk function and the expected risk function,
respectively.

An intuitive argument for the consistency of the ML estimator can be described as follows. As the
number of gene trees increases, we have

|Rk(T) − Rk(T)| → 0

with sufficiently high probability. Therefore, the ML estimator will converge to the optimal value of
the risk function, which is attained at the true species tree T∗. This simple argument is formalized by
a lower bound of the expected risk function (Section 3.1) and a uniform concentration bound on the
deviation of the empirical risk function and its expectation (Section 3.2).

3.1. Lower bound of the expected risk

Lemma 3.1. There exist a neighborhoodU of T∗ and c4 > 0 such that

EPT∗ [`k(T∗) − `k(T)] ≥ c4kγd(T∗,T)m ∀T ∈ U.

Proof. We note that
EPT∗ [`k(T∗) − `k(T)] = KL(PT∗ ,PT).

Consider an arbitrary leaf set L ⊂ L ∗ of size 4 and define I = {i ≤ k : L ⊂ Li}. By the weak
covering property, we have |I| ≥ c1kγ. Thus,

KL(PT∗ ,PT) ≥
∑
i∈I

KL(PLi
T∗ ,P

Li
T ) ≥

∑
i∈I

c3d(T∗|Li ,T|Li)
m ≥ c1c3kγ(2n − 3)m/2d(T∗|L ,T|L )m

for all T in some neighborhood U around T∗. Here, the second inequality comes from Assumption
2.3(b).

On the other hand, [9] (Lemma 6.2 (i)) proved that for some leaf set L ⊂ L ∗ of size 4, we have

d(T∗|L ,T|L ) ≥
1

(2n − 3)
d(T∗,T).

We deduce that
KL(PT∗ ,PT) ≥

1
(2n − 3)m/2 c1c3kγd(T∗,T)m

�
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Lemma 3.2. For any leaf set L and any x > 0, there exists Cx > 0 such that

KL(PL
T∗ ,P

L
T ) ≥ Cx

when d(T∗|L ,T|L ) ≥ x.

Proof. Assume that there exists a sequence of tree {Ti} such that d(T∗|L ,Ti|L ) ≥ x and KL(PL
T∗ ,P

L
Ti

)→
0. Since the tree space is compact, we can extract a sub-sequence {Ti j} of {Ti} that converges to some
tree T0. We deduce that KL(PL

T∗ ,P
L
T0

) = 0 and T∗|L , T0|L . This contradicts Assumption 2.2. �

Lemma 3.3. LetV be a neighborhood of T∗. There exist cV > 0 such that for any T < V, we have

KL(PT∗ ,PT) ≥ cVkγ.

Proof. By [9] (Lemma 6.2 (i)), there exists L ⊂ L ∗ of size 4 such that

d(T∗|L ,T|L ) ≥
1

(2n − 3)
d(T∗,T) ≥ CV > 0

since T < V. Define I = {i ≤ k : L ⊂ Li}, we note that for all i ∈ I

d(T∗|Li ,T|Li) ≥ (2n − 3)1/2d(T∗|L ,T|L ) ≥ C′V,

which implies KL(PLi
T∗ ,P

Li
T ) ≥ C′′

V
for some C′′

V
> 0 by Lemma 3.2.

By the weak covering property, we have |I| ≥ c1kγ. Thus,

KL(PT∗ ,PT) ≥
∑
i∈I

KL(PLi
T∗ ,P

Li
T ) ≥ c1kγC′′V

which completes the proof. �

3.2. Uniform concentration bound

Lemma 3.4 (Concentration bound). For any δ > 0, k ≥ 3, there exists c5(δ) such that∣∣∣Rk(T) − EPT∗ [Rk(T)]
∣∣∣ ≤ c5 log k

√
k

∀T,

with probability at least 1 − δ.

Proof. Since the functions logPLi
T (Ti) is locally Lipschitz with respect to T (Assumption 2.3(a)) and

number of species is finite, there exists C1 > 0 such that

| logPLi
T (Ti) − logPLi

T′ (Ti)| ≤ C1d(T,T′) ∀i,Ti,T,T
′.

Since the tree space is compact, C1d(T,T′) is bounded by a constant C2. Using Hoeffding’s
inequality [12], we obtain

P

[∣∣∣Rk(T) − EPT∗ [Rk(T)]
∣∣∣ ≥ x
√

k

]
≤ 2 exp

(
−

2x2

kC2
2

)
.
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On the other hand, we have |Rk(T)−Rk(T′)| ≤ C1d(T,T′) and |EPT∗ [Rk(T)]−EPT∗ [Rk(T′)] | ≤ C1d(T,T′).
Thus, if we define the events

A(x, k,T) =

{∣∣∣Rk(T) − EPT∗ [Rk(T)]
∣∣∣ ≥ x

2
√

k

}
and

B(x, k,T) =

{
∃T′ : d(T,T′) ≤

x

4C1
√

k
and

∣∣∣Rk(T′) − EPT∗
[
Rk(T′)

]∣∣∣ ≥ x
√

k

}
then B(x, k,T) ⊂ A(x, k,T). Note that the total number of balls of radius x/(4C1

√
k) required to cover

the tree space is bounded above by

Cn

4g0C1
√

k
x

2n−3

(2n − 3)!!

where g0 is the upper bound of branch lengths and Cn is a constant depending on the number of species.
To obtain the desired inequality, we will chose x such that

Cn

4g0C1
√

k
x

2n−3

(2n − 3)!! × 2 exp
(
−

2x2

kC2
2

)
≤ δ

which can be done with x = C(δ, n,C2, g0) log k. �

3.3. Proof of Theorem 1

First, we establish that the ML estimator is consistent.
By Lemma 3.4, we have

R(T̂k) ≤ Rk(T̂k) + c5
log(k)
√

k
≤ c5

log(k)
√

k

with probability at least 1 − δ, since T̂k is the maximizer of the empirical risk function.
On the other hand, letV be a neighborhood of T∗, by Lemma 3.3, we have

EPT∗ [Rk(T′)] ≥ cV
1

k1−γ ∀T′ < V.

Since γ > 1/2, there exists Kδ,V such that for k ≥ Kδ,V, we have

c5
log(k)
√

k
≤ cV

1
k1−γ

We deduce that for k ≥ Kδ,V, T̂k ∈ V with probability at least 1 − δ. This proves that the ML estimator
is consistent.

Next, we will derive the convergence rate of the ML supertree. From Lemma 3.1, there exist a
neighborhoodU of T∗ and c4,m > 0 such that

EPT∗ [Rk(T)] =
1
k
EPT∗ [`k(T∗) − `k(T)] ≥ c4

1
k1−γ d(T∗,T)m ∀T ∈ U.
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For k ≥ Kδ,U, we have T̂k ∈ U with probability at least 1 − δ. By Lemma 3.4, with probability 1 − 2δ,
we obtain

c4
1

k1−γ d(T∗, T̂k)m ≤ Rk(T̂k) − Rk(T̂k)

≤ c5
log(k)
√

k
.

Here,

Rk(T̂k) =
1
k
`k(T∗) −

1
k
`(T̂k) ≤ 0

because T̂k is the maximizer of Rk. This completes the proof.

4. Applications: convergence under the exponential model

In this section, we consider the exponential model, a simple model of gene tree estimation errors
in which the probability of observing a given tree decreases exponentially with its distance from the
species tree. For a detailed discussion on its validity and applicability, we refer the readers to [28] and
the references therein.

Suppose d is some metric on the set of trees, in the exponential model, the probability of
reconstructing any tree T′ with a leaf set L , when T∗ is the generating tree is proportional to an
exponentially decaying function of the distance from T′ to T∗|L :

PL
T∗ (T

′) = αT∗,L exp(−βL d(T′,T∗|L )).

Here βL is a constant that depends only on the set of leaves L , while αT∗,L is the normalizing constant
to ensure that PL

T∗ is a density function.
In this section, we verify the identifiability and regularity conditions for the exponential model

when d is any continuous tree distance such that if T and T′ have the same topology, then d(T,T′) is
the Euclidean distance.

Theorem 2. Under the exponential model with Assumptions 2.1, for any δ > 0, Cδ > 0 and Kδ > 0
such that for all k ≥ Kδ,

d(T̂k,T
∗) ≤ Cδ

(
log k

k(γ−1/2)

)1/m

with probability at least 1 − δ, where

m = 4 sup
i
|Li| − 4.

Proof. First, we note that for all T′ with leaf set L , PL
T (T′) is a positive and locally Lipschitz function.

To obtain an upper bound on the convergence rate for the ML supertree, we need to verify Assumption
2.2 and Assumption 2.3(b)/Remark 2.3.
Identifiability. Since it is sufficient to prove either KL(PL

T∗ ,P
L
T ) > 0 or KL(PL

T ,P
L
T∗ ) > 0, we can

assume that αT∗,L ≥ αT,L .

AIMS Mathematics Volume 6, Issue 8, 8854–8867.
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We denote
Ac = {T′ : βL d(T′,T∗|L ) ≤ c}

and pick c small enough such that βL d(T′,T|L ) ≥ 2c. We note that in Ac,

exp
(
−βL d(T′,T∗|L )

)
≥ exp

(
−βL d(T′,T|L )

)
.

Since αT∗,L ≥ αT,L , we have

αT∗,L exp
(
−βL d(T′,T∗|L )

)
− αT,L exp

(
−βL d(T′,T|L )

)
≥ αT,L

[
exp

(
−βL d(T′,T∗|L )

)
− exp

(
−βL d(T′,T∗|L )

)]
.

By Pinsker’s inequality,

KL(PL
T∗ ,P

L
T ) ≥ 2dTV(PL

T∗ ,P
L
T )2

≥ 2α2
T,L

[∫
Ac

exp
(
−βL d(T′,T∗|L )

)
− exp

(
−βL d(T′,T|L )

)]2

≥ 2α2
T,L µ(Ac)2(ec − e2c)2 > 0,

which establishes the identifiability of the exponential model. Here, µ is the Lebesgue measure.

Regularity. Consider a fixed tree T ∈ T and leaf set L , we first assume that αT∗,L ≥ αT,L . If we
define

A = {T′ : βL d(T′,T∗|L ) ≤
1
3

d(T|L ,T∗|L ))},

then
βL d(T′,T|L ) ≥

2
3

d(T|L ,T∗|L ) ∀T′ ∈ A.

Using the same argument as above, we have

dTV(PL
T∗ ,P

L
T ) ≥ αT,Liµ(A)

[
e−

1
3 d(T|L ,T∗ |L ) − e−

2
3 d(T|L ,T∗ |L )

]
.

It can be verified that there exists C > 0 such that for all x ∈ [0,C], we have

e−x − e−2x ≥
x
2
. (4.1)

Moreover since d is Euclidean inside each orthant, if d(T,T∗) is small enough, we have

µ(A) = C2|L |−3

(
d(T|L ,T∗|L )

3βL

)2|L |−3

. (4.2)

Thus, letW be a neighborhood in the same topology of T∗ such that

αT,L ≥
1
2
αT∗,L ∀T ∈ W,

and both Eqs (4.1) and (4.2) are satisfied, we have

KL(PL
T∗ ,P

L
T ) ≥ Cd(T,T∗|L )4|L |−4 ∀T ∈ W,
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for some constant C > 0 independent of T.
For the case when αT∗,L < αT,L we define

A′ = {T′ : βL d(T′,T∗|L ) ≤
1
3

d(T′|L ,T|L ))},

and the argument proceeds similarly. This validates Assumption 2.3(b) for exponential model with
m = 4n − 4. However, if we use the regularity condition in Remark 2.3, we can obtain the result with

m = 4 sup
i
|Li| − 4.

�

5. Application to yeast species-tree reconstruction

We apply our method to reconstruct the yeast species-tree from 106 genes of eight yeast species
obtained from the R package phangorn [27]. Specifically, we reconstruct the gene-tree for each
gene using UPGMA (unweighted pair group method with arithmetic mean) method implemented
in phangorn. To replicate the setting of this paper, we randomly remove two species from each
reconstructed gene-tree. In other words, the inputs are 106 reconstructed gene-trees, each has 6 species
(see Figure 1 for examples).
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Figure 1. Examples of the reconstructed gene-trees that we use as the inputs.

We apply our method to estimate the full species-tree using the exponential model with BHV
distance. The R function dist.multiPhylo in the package distory [6] is used to compute the BHV
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distance. The reconstructed species-tree (see Figure 2) is consistent with the well-known result of [26].
This confirms the applicability of our method to reliably estimate supertrees.
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Figure 2. The reconstructed species-tree obtained by applying the ML supertree method to
106 reconstructed gene-trees.

6. Discussion and conclusions

In this paper, we propose a novel analytic approach to analyze the convergence of the ML supertree
method. Instead of focusing on reconstructing the correct discrete topology of the species tree as
in previous studies [25, 28, e.g.], we employ a continuous model of the tree space and analyze the
ML estimator on this metric space, aiming at recovering both the topology and the branch lengths
of the species tree. This framework enables us to use tools from statistical learning and information
theory to establish the convergence rate of the ML estimator and at the same time, to weaken the
conditions to obtain consistency and convergence of the estimator. Our weak covering property is an
extension of the classical covering property [28] and provides a considerable relaxation on the sampling
schemes for supertree estimation. Our identifiability condition is also more intuitive and generalizable
than the well-known basic centrality condition and does not impose constraints on the shape of the
probabilistic model of gene tree estimation errors. Our information-theoretical approach to analyze
statistical estimator on tree spaces is of independent interest and can be extended to other problems in
phylogenetics.

There are several avenues for future directions for this work. The first direction is extending our
results to other practical models of phylogenetic errors, including the multiple-coalescent model (along
with a detailed model of the effects of short sequence length on the accuracy in estimating the individual
gene trees). Second, while our result provides a polynomial bound on the convergence rate, the power
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of the convergence (characterized by the geometric constant m) is not sharp. A sharper bound of the
convergence rate would be of great interest to the field (from both theoretical and applied perspective)
and would require further understanding of the tree-generating probabilistic model.
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