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Abstract: In this paper, we consider a system with rapidly oscillating coefficients, which includes
an integral operator with an exponentially varying kernel. The main goal of the work is to develop
the algorithm of Lomov’s the regularization method for such systems and to identify the influence
of the integral term on the asymptotics of the solution of the original problem. The case of identical
resonance is considered, i.e. the case when an integer linear combination of the eigenvalues of a rapidly
oscillating coefficient coincides with the points of the spectrum of the limit operator is identical on the
entire considered time interval. In addition, the case of coincidence of the eigenvalue of a rapidly
oscillating coefficient with the points of the spectrum of the limit operator is excluded. This case is
supposed to be studied in our subsequent works. More complex cases of resonance (for example, point
resonance) require a more thorough analysis and are not considered in this paper.
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1. Introduction

When studying various applied problems related to the properties of media with a periodic structure,
it is necessary to study differential equations with rapidly changing coefficients. Equations of this type
are often found, for example, in electrical systems under the influence of high frequency external
forces. The presence of such forces creates serious problems for the numerical integration of the
corresponding differential equations. Therefore, asymptotic methods are usually applied to such
equations, the most famous of which are the Feshchenko – Shkil – Nikolenko splitting method
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[9–12, 23] and the Lomov’s regularization method [18, 20, 21]. The splitting method is especially
effective when applied to homogeneous equations, and in the case of inhomogeneous differential
equations, the Lomov regularization method turned out to be the most effective. However, both
of these methods were developed mainly for singularly perturbed equations that do not contain an
integral operator. The transition from differential equations to integro-differential equations requires
a significant restructuring of the algorithm of the regularization method. The integral term generates
new types of singularities in solutions that differ from the previously known ones, which complicates
the development of the algorithm for the regularization method. The splitting method, as far as we
know, has not been applied to integro-differential equations. In this article, the Lomov’s regularization
method [1–8, 13–17, 19, 24] is generalized to previously unexplored classes of integro-differential
equations with rapidly oscillating coefficients and rapidly decreasing kernels of the form

Lεz(t, ε) ≡ ε dz
dt − A(t)z − εg(t) cos β(t)

ε
B (t) z

−
∫ t

t0
e

1
ε

∫ t
s µ(θ)dθK (t, s) z(s, ε)ds = h(t), z(t0, ε) = z0, t ∈ [t0,T ],

(1.1)

where z = {z1, z2} , h (t) = {h1 (t) , h2 (t)} , µ (t) < 0 (∀t ∈ [t0,T ]) , g (t) is the scalar function, A (t) and

B (t) are (2 × 2)-matrices, moreover A (t) =

(
0 1

−ω2 (t) 0

)
, ω (t) > 0, β′ (t) > 0 is the frequency of the

rapidly oscillating cosine, z0 =
{
z0

1, z
0
2

}
, ε > 0 is a small parameter. It is precisely such a system in the

case β (t) = 2γ (t) , B (t) =

(
0 0
1 0

)
and in the absence of an integral term was considered in [18,20,21].

The functions λ1 (t) = −iω (t) , λ2 (t) = +iω (t) form the spectrum of the limit operator A (t), the
function λ5 (t) = µ(t) characterizes the rapid change in the kernel of the integral operator, and the
functions λ3 (t) = −iβ′ (t), λ4 (t) = +iβ′ (t) are associated with the presence of a rapidly oscillating
cosine in the system (1.1). The set {Λ} = {λ1(t), ..., λ5(t)} is called the spectrum of problem (1.1).
Such systems have not been considered earlier and in this paper we will try to generalize the Lomov’s
regularization method [18] to systems of type (1.1).

We introduce the following notations:
λ (t) = (λ1 (t) , ..., λ5 (t)) ,
m = (m1, ...,m5) is a multi-index with non-negative components m j, j = 1, 5,
|m| =

∑5
j=1 m j is the height of multi-index m,

(m, λ (t)) =
∑5

j=1 m jλ j (t) .
The problem (1.1) will be considered under the following conditions:
1) ω (t) , µ (t) , β (t) ∈ C∞ ([t0,T ] ,R) , ω (t) , β′ (t)∀t ∈ [t0,T ] ,

g (t) ∈
(
[t0,T ] ,C1

)
, h (t) ∈ C∞

(
[t0,T ] ,C2

)
,

B (t) ∈ C∞
(
[t0,T ] ,C2×2

)
,K (t, s) ∈ C∞

(
{t0 ≤ s ≤ t ≤ T } ,C2×2

)
;

2) the relations (m, λ (t)) = 0, (m, λ (t)) = λ j (t) , j ∈ {1, ..., 5} for all multi-indices m with |m| ≥ 2
or are not fulfilled for any t ∈ [t0,T ] , or are fulfilled identically on the whole segment [t0,T ] . In other
words, resonant multi-indices are exhausted by the following sets:

Γ0 = {m : (m, λ (t)) ≡ 0, |m| ≥ 2,∀t ∈ [t0,T ]} ,
Γ j =

{
m : (m, λ (t)) ≡ λ j (t) , |m| ≥ 2,∀t ∈ [t0,T ]

}
, j = 1, 5.

Note that by virtue of the condition ω(t) , β′(t), the spectrum {Λ} of the problem (1.1) is simple.
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2. Regularization of the problem (1.1)

Denote by σ j = σ j (ε) independent on t the quantities σ1 = e−
i
εβ(t0), σ2 = e+ i

εβ(t0) and rewrite the
system (1.1) in the form

Lεz(t, ε) ≡ ε dz
dt − A(t)z − ε g(t)

2

(
e−

i
ε

∫ t
t0
β′(θ)dθ

σ1 + e+ i
ε

∫ t
t0
β′(θ)dθ

σ2

)
B (t) z

−
∫ t

t0
e

1
ε

∫ t
s µ(θ)dθK (t, s) z(s, ε)ds = h(t), z(t0, ε) = z0, t ∈ [t0,T ].

(2.1)

We introduce regularizing variables (see [18])

τ j =
1
ε

∫ t

t0
λ j (θ) dθ ≡

ψ j (t)
ε

, j = 1, 5 (2.2)

and instead of the problem (2.1) we consider the problem

Lεz̃(t, τ, ε) ≡ ε
∂z̃
∂t

+

5∑
j=1

λ j (t)
∂z̃
∂τ j
− A(t)z̃ − ε

g(t)
2

(eτ3σ1 + eτ4σ2) B (t) z̃

−

∫ t

t0
e

1
ε

∫ t
s µ(θ)dθK (t, s) z̃(s,

ψ (s)
ε

, ε)ds = h(t), z̃(t, τ, ε)|t=t0,τ=0 = z0, t ∈ [t0,T ] (2.3)

for the function z̃ = z̃ (t, τ, ε) , where it is indicated (according to (2.2)): τ = (τ1, ..., τ5) , ψ =

(ψ1, ..., ψ5) . It is clear that if z̃ = z̃ (t, τ, ε) is the solution of the problem (2.3), then the vector function
z = z̃

(
t, ψ(t)

ε
, ε

)
is the exact solution of the problem (2.1), therefore, the problem (2.3) is expansion of

the problem (2.1). However, it cannot be considered completely regularized, since the integral term

Jz̃ ≡ J
(
z̃ (t, τ, ε) |t=s,τ=ψ(s)/ε

)
=

∫ t

t0
e

1
ε

∫ t
s µ(θ)dθK (t, s) z̃(s,

ψ (s)
ε

, ε)ds

has not been regularized in (2.3).
To regularize the integral term, we introduce a class Mε, asymptotically invariant with respect to the

operator Jz̃ (see [18], p. 62]). We first consider the space of vector functions z (t, τ) , representable by
sums

z (t, τ, σ) = z0 (t, σ) +
∑5

i=1 zi (t, σ) eτi +
∑∗

2≤|m|≤Nz
zm (t, σ) e(m,τ),

z0 (t, σ) , zi (t, σ) , zm (t, σ) ∈ C∞
(
[t0,T ] ,C2

)
, i = 1, 5, 2 ≤ |m| ≤ Nz,

(2.4)

where the asterisk ∗ above the sum sign indicates that in it the summation for |m| ≥ 2 occurs only over
nonresonant multi-indices m = (m1, ...,m5) , i.e. over m <

⋃5
i=0 Γi. Note that in (2.4) the degree of the

polynomial with respect to exponentials eτ j depends on the element z. In addition, the elements of the
space U depend on bounded in ε > 0 constants σ1 = σ1 (ε) and σ2 = σ2 (ε) , which do not affect
the development of the algorithm described below, therefore, henceforth, in the notation of element
(2.4) of this space U, we omit the dependence on σ = (σ1, σ2) for brevity . We show that the class
Mε = U |τ=ψ(t)/ε is asymptotically invariant with respect to the operator J.
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The image of the operator J on the element (2.4) of the space U has the form:

Jz (t, τ) =

∫ t

t0
e

1
ε

∫ t
s λ5(θ)dθK (t, s) z0 (s) ds +

5∑
i=1

∫ t

t0
e

1
ε

∫ t
s λ5(θ)dθK (t, s) zi (s) e

1
ε

∫ s
t0
λi(θ)dθds

+

∗∑
2≤|m|≤Nz

∫ t

t0
e

1
ε

∫ t
s λ5(θ)dθK (t, s) zm (s) e

1
ε

∫ s
t0

(m,λ(θ))dθds

=

∫ t

t0
e

1
ε

∫ t
s λ5(θ)dθK(t, s)z0(s)ds + e

1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0
K(t, s)z5(s)ds

+

5∑
i=1,i,5

e
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0
K (t, s) zi (s) e

1
ε

∫ s
t0

(λi(θ)−λ5(θ))dθds

+

∗∑
2≤|m|≤Nz

e
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0
K (t, s) zm (s) e

1
ε

∫ s
t0

(m−e5,λ(θ))dθds.

Integrating in parts, we have

J0 (t, ε) =

∫ t

t0
K (t, s) z0 (s) e

1
ε

∫ t
s λ5(θ)dθds = ε

∫ t

t0

K (t, s) z0 (s)
−λ5 (s)

de
1
ε

∫ t
s λ5(θ)dθ

= ε
K (t, s) z0 (s)
−λ5 (s)

e
1
ε

∫ t
s λ5(θ)dθ

∣∣∣∣∣s=t

s=t0
− ε

∫ t

t0

(
∂

∂s
K (t, s) z0 (s)
−λ5 (s)

)
e

1
ε

∫ t
s λ5(θ)dθds

= ε

[
K (t, t0) z0 (t0)

λ5 (t0)
e

1
ε

∫ t
t0
λ5(θ)dθ

−
K (t, t) z0 (t)

λ5 (t)

]
+ ε

∫ t

t0

(
∂

∂s
K (t, s) z0 (s)

λ5 (s)

)
e

1
ε

∫ t
s λ5(θ)dθds.

Continuing this process further, we obtain the decomposition

J0 (t, ε) =
∞∑
ν=0
εν+1

[(
Iν0 (K (t, s) z0 (s))

)
s=t0

e
1
ε

∫ t
t0
λ5(θ)dθ

−
(
Iν0 (K (t, s) z0 (s))

)
s=t

]
,

I0
0 = 1

λ5(s) ·, I
ν
0 = 1

λ5(s)
∂
∂s Iν−1

0 (ν ≥ 1).

Next, apply the same operation to the integrals:

J5,i (t, ε) = e
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0
K (t, s) zi (s) e

1
ε

∫ s
t0

(λi(θ)−λ5(θ))dθds

= εe
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0

K(t, s)zi(s)
λi(s) − λ5(s)

de
1
ε

∫ s
t0

(λi(θ)−λ5(θ))dθ

= εe
1
ε

∫ t
t0
λ5(θ)dθ

[
K(t, s)zi(s)
λi(s) − λ5(s)

e
1
ε

∫ s
t0

(λi(θ)−λ5(θ))dθ
∣∣∣∣∣s=t

s=t0

− ε

∫ t

t0

(
∂

∂s
K (t, s) zi (s)
λi (s) − λ5 (s)

)
e

1
ε

∫ s
t0

(λi(θ)−λ5(θ))dθds
]

= ε

[
K (t, t) zi (t)
λi (t) − λ5 (t)

e
1
ε

∫ t
t0
λi(θ)dθ

−
K (t, t0) zi (t0)
λi (t0) − λ5 (t0)

e
1
ε

∫ t
t0
λ5(θ)dθ

]
−εe

1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0

(
∂

∂s
K (t, s) zi (s)
λi (s) − λ5 (s)

)
e

1
ε

∫ s
t0

(λi(θ)−λ5(θ))dθds
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=

∞∑
ν=0

(−1)νεν+1
[ (

Iνi (K (t, s) zi (s))
)

s=t e
1
ε

∫ t
t0
λi(θ))dθ

−
(
Iνi (K (t, s) zi (s))

)
s=t0 e

1
ε

∫ t
t0
λ5(θ)dθ

]
,

I0
i =

1
λi (s) − λ5 (s)

, Iνi =
1

λi (s) − λ5 (s)
∂

∂s
Iν−1
i (ν ≥ 1), i = 1, 4;

Jm (t, ε) = e
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0
K (t, s) zm (s) e

1
ε

∫ s
t0

(m−e5,λ(θ))dθds

= εe
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0

K (t, s) zm (s)
(m − e5, λ (s))

de
1
ε

∫ s
t0

(m−e5,λ(θ))dθ
= εe

1
ε

∫ t
t0
λ5(θ)dθ

[
K (t, s) zm (s)
(m − e5, λ (s))

e
1
ε

∫ s
t0

(m−e5,λ(θ))dθ
∣∣∣∣∣s=t

s=t0

− ε

∫ t

t0

(
∂

∂s
K (t, s) zm (s)
(m − e5, λ (s))

)
e

1
ε

∫ s
t0

(m−e5,λ(θ))dθds
]

= ε

[
K (t, t) zm (t)

(m − e5, λ (t))
e

1
ε

∫ t
t0

(m,λ(θ))dθ
−

K (t, t0) zm (t0)
(m − e5, λ (t0))

e
1
ε

∫ t
t0
λ5(θ)dθ

]

−εe
1
ε

∫ t
t0
λ5(θ)dθ

∫ t

t0

(
∂

∂s
K (t, s) zm (s)
(m − e5, λ (s))

)
e

1
ε

∫ s
t0

(m−e5,λ(θ))dθ

=

∞∑
ν=0

(−1)νεν+1
[(

Iν5,m (K (t, s) zm (s))
)

s=t
e

1
ε

∫ t
t0

(m,λ(θ))dθ
−

(
Iν5,m (K (t, s) zm (s))

)
s=t0

e
1
ε

∫ t
t0
λ5(θ)dθ

]
,

I0
5,m =

1
(m − e5, λ (s))

, Iν5,m =
1

(m − e5, λ (s))
∂

∂s
Iν−1
5,m (ν ≥ 1), 2 ≤ |m| ≤ Nz.

Here it is taken into account that (m − e5, λ (s)) , 0, since by definition of the space U, multi-indices
m < Γ5. This means that the image of the operator J on the element (2.4) of the space U is represented
as a series

Jz (t, τ) = e
1
ε

∫ t
t0
λ5(θ))dθ

∫ t

t0
K (t, s) z5 (s) ds +

∞∑
ν=0

(−1)νεν+1
[(

Iν0 (K (t, s) z0 (s))
)

s=t0
e

1
ε

∫ t
t0
λ5(θ))dθ

−
(
Iν0 (K (t, s) z0 (s))

)
s=t

]
+

5∑
i=1,i,5

∞∑
ν=0

(−1)νεν+1
[(

Iνi (K (t, s) zi (s))
)

s=t e
1
ε

∫ t
t0
λi(θ))dθ

−
(
Iνi (K (t, s) zi (s))

)
s=t0 e

1
ε

∫ t
t0
λ5(θ)dθ

]
+

∗∑
2≤|m|≤Nz

∞∑
ν=0

(−1)νεν+1
[(

Iν5,m (K (t, s) zm (s))
)

s=t
e

1
ε

∫ t
t0

(m,λ(θ))dθ
−

(
Iν5,m (K (t, s) zm (s))

)
s=t0

e
1
ε

∫ t
t0
λ5(θ)dθ

]
.

It is easy to show (see, for example, [22], pages 291–294) that this series converges asymptotically as
ε→ +0 (uniformly in t ∈ [t0,T ]). This means that the class Mε is asymptotically invariant (as ε→ +0)
with respect to the operator J.

We introduce the operators Rν : U → U, acting on each element z (t, τ) ∈ U of the form (2.4)
according to the law:

R0z (t, τ) = eτ5

∫ t

t0
K (t, s) z5 (s) ds, (2.50)
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R1z (t, τ) = [
(
I0
0 (K (t, s) z0 (s))

)
s=t0

eτ5 −
(
I0
0 (K (t, s) z0 (s))

)
s=t

]

+

4∑
i=1

[
(
I0
i (K (t, s) zi (s))

)
s=t

eτi −
(
I0
i (K (t, s) zi (s))

)
s=t0

eτ5] (2.51)

+

∗∑
2≤|m|≤Nz

[
(
I0
5,m (K (t, s) zm (s))

)
s=t

e(m,τ)
−

(
I0
5,m (K (t, s) zm (s))

)
s=t0

eτ5],

Rν+1z (t, τ) =

∞∑
ν=0

(−1)ν[
(
Iν0 (K (t, s) z0 (s))

)
s=t0

eτ5 −
(
Iν0 (K (t, s) z0 (s))

)
s=t]

+

4∑
i=1

∞∑
ν=0

(−1)ν[
(
Iνi (K (t, s) zi (s))

)
s=t eτi −

(
Iνi (K (t, s) zi (s))

)
s=t0 eτ5] (2.5ν+1)

+

∗∑
2≤|m|≤Nz

∞∑
ν=0

(−1)ν[
(
Iν5,m (K (t, s) zm (s))

)
s=t

e(m,τ)
−

(
Iν5,m (K (t, s) zm (s))

)
s=t0

eτ5].

Let now z̃ (t, τ, ε) be an arbitrary continuous function in (t, τ) ∈ [t0,T ]×
{
τ : Reτ j ≤ 0, j = 1, 5

}
with

asymptotic expansion

z̃ (t, τ, ε) =

∞∑
k=0

εkzk (t, τ) , zk (t, τ) ∈ U (2.6)

converging as ε→ +0 (uniformly in (t, τ) ∈ [t0,T ]×
{
τ : Reτ j ≤ 0, j = 1, 5

}
). Then the image Jz̃ (t, τ, ε)

of this function is decomposed into an asymptotic series

Jz̃ (t, τ, ε) =

∞∑
k=0

εkJzk (t, τ) =

∞∑
r=0

εr
r∑

s=0

Rr−szs (t, τ) |τ=ψ(t)/ε.

This equality is the basis for introducing an extension of the operator J on series of the form (2.6):

J̃z̃ (t, τ, ε) ≡ J̃

 ∞∑
k=0

εkzk (t, τ)

 de f
=

∞∑
r=0

εr
r∑

s=0

Rr−szs (t, τ) . (2.7)

Although the operator J̃ is formally defined, its usefulness is obvious, since in practice it is usual to
construct the N-th approximation of the asymptotic solution of the problem (2.1), in which only N-th
partial sums of the series (2.6) will take part, which have not formal, but true meaning. Now we can
write down a problem that is completely regularized with respect to the original problem (2.1):

Lεz̃(t, τ, ε) ≡ ε∂z̃
∂t +

∑5
j=1 λ j (t) ∂z̃

∂τ j
− A(t)z̃ − ε g(t)

2 (eτ3σ1 + eτ4σ2) Bz̃−

−J̃z̃ = h(t), z̃(t, τ, ε)|t=t0,τ=0 = z0, t ∈ [t0,T ],
(2.8)

were the operator J̃ has the form (2.7).
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3. Iterative problems and their solvability in the space U

Substituting the series (2.6) into (2.8) and equating the coefficients for the same powers of ε, we
obtain the following iterative problems:

Lz0 (t, τ) ≡
5∑

j=1

λ j (t)
∂z0

∂τ j
− A(t)z0 − R0z0 = h (t) , z0 (t0, 0) = z0; (3.10)

Lz1 (t, τ) = −
∂z0

∂t
+

g(t)
2

(eτ3σ1 + eτ4σ2) B (t) z0 + R1z0, z1 (t0, 0) = 0; (3.11)

Lz2 (t, τ) = −∂z1
∂t +

g(t)
2 (eτ3σ1 + eτ4σ2) B (t) z1 + R1z1 + R2z0, z2 (t0, 0) = 0; (3.12)

· · ·

Lzk (t, τ) = −∂zk−1
∂t +

g(t)
2 (eτ3σ1 + eτ4σ2) B (t) zk−1 + Rkz0 + ... + R1zk−1, zk (t0, 0) = 0, k ≥ 1. (3.1k)

Each of the iterative problem (3.1k) can be written as

Lz (t, τ) ≡
5∑

j=1

λ j (t)
∂z
∂τ j
− A(t)z − R0z = H (t, τ) , z (t0, 0) = z∗, (3.2)

where H (t, τ) = H0 (t) +
∑5

j=1 H j (t) eτ j +
∑∗

2≤|m|≤NH
Hm (t) e(m,τ) is a well-known vector-function of the

space U, z∗ is a well-known constant vector of a complex space C2, and the operator R0 has the form
(see (2.50))

R0z ≡ R0

z0 (t) +

5∑
j=1

z j (t) eτ j +

∗∑
2≤|m|≤Nz

zm (t) e(m,τ)

 = eτ5

∫ t

t0
K (t, s) z5 (s) ds.

In the future we need the λ j (t)-eigenvectors of the matrix A (t) :

ϕ1 (t) =

(
1

−iω (t)

)
, ϕ2 (t) =

(
1

+iω (t)

)
,

as well as λ̄ j (t)-eigenvectors of the matrix A∗ (t) :

χ1 (t) =
1
2

(
1
− i
ω(t)

)
, χ2 (t) =

1
2

(
1

+ i
ω(t)

)
.

These vectors form a biorthogonal system, i.e.(
ϕk (t) , χ j (t)

)
=

{
1, k = j,
0, k , j

(k, j = 1, 2) .

We introduce the scalar product (for each t ∈ [t0,T ]) in the space U :

< z,w >≡< z0 (t) +

5∑
j=1

z j (t) eτ j +

∗∑
2≤|m|≤Nz

zm (t) e(m,τ), w0 (t) +

5∑
j=1

w j (t) eτ j
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+

∗∑
2≤|m|≤Nw

wm (t) e(m,τ) >
de f
= (z0 (t) ,w0 (t)) +

5∑
j=1

(
z j (t) ,w j (t)

)
+

∗∑
2≤|m|≤min(Nz,Nw)

(zm (t) ,wm (t)) ,

where we denote by (∗, ∗) the ordinary scalar product in a complex space C2. We prove the following
statement.

Theorem 1. Let conditions 1) and 2) are satisfied and the right-hand side H (t, τ) = H0 (t) +∑5
j=1 H j (t) eτ j +

∑∗
2≤|m|≤NH

Hm (t) e(m,τ) of the system (3.2) belongs to the space U. Then for the solvability
of the system (3.2) in U it is necessary and sufficient that the identities

< H (t, τ) , χk (t) eτk >≡ 0, k = 1, 2,∀t ∈ [t0,T ] , (3.3)

are fulfilled.
Proof. We will determine the solution to the system (3.2) in the form of an element (2.4) of the space
U:

z (t, τ) = z0 (t) +

5∑
j=1

z j (t) eτ j +

∗∑
2≤|m|≤NH

zm (t) e(m,τ). (3.4)

Substituting (3.4) into the system (3.2), we have

5∑
j=1

[
λ j (t) I − A (t)

]
z j (t) eτ j +

∗∑
2≤|m|≤NH

[(m, λ (t)) I − A (t)] zm (t) e(m,τ)

−A (t) z0 (t) − eτ5

∫ t

t0
K (t, s) z5 (s) ds =H0 (t) +

5∑
j=1

H j (t) eτ j +

∗∑
2≤|m|≤NH

Hm (t) e(m,τ).

Equating here separately the free terms and coefficients at the same exponents, we obtain the following
systems of equations:

−A (t) z0 (t) = H0 (t) , (3.50)[
λ j (t) I − A (t)

]
z j (t) = H j (t) , j = 1, 4, (3.5 j)

[λ5 (t) I − A (t)] z5 (t) −
∫ t

t0
K (t, s) z5 (s) ds = H5 (t) , (3.55)

[(m, λ (t)) I − A (t)] zm (t) = Hm (t) , 2 ≤ |m| ≤ Nz, m <
5⋃

j=0

Γ j. (3.5m)

Due to the invertibility of the matrix A (t), the system (3.50) has the solution −A−1 (t) H0 (t). Since
λ5 (t) = µ (t) is a real function, and the eigenvalues of the matrix A (t) are purely imaginary, the matrix
λ5 (t) I − A (t) is invertible and therefore the system (3.55) can be written as

z5 (t) =

∫ t

t0

(
[λ5 (t) I − A (t)]−1 K (t, s)

)
z5 (s) ds + [λ5 (t) I − A (t)]−1 H5 (t) . (3.6)
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Due to the smoothness of the kernel
(
[λ5 (t) I − A (t)]−1 K (t, s)

)
and the heterogeneity

[λ5 (t) I − A (t)]−1 H5 (t), this Volterra integral system has a unique solution z5 (t) ∈ C∞
(
[t0,T ] ,C2

)
.

Systems (3.53) and (3.54) also have unique solutions

z j (t) =
[
λ j (t) I − A (t)

]−1
H j (t) ∈ C∞

(
[t0,T ] ,C2

)
, j = 3, 4, (3.7)

since λ3 (t) , λ4 (t) do not belong to the spectrum of the matrix A (t) . Systems (3.51) and (3.52) are
solvable in the space C∞

(
[t0,T ] ,C2

)
if and only if the identities

(
H j (t) , χ j (t)

)
≡ 0 ∀t ∈ [t0,T ] , j =

1, 2 hold.
It is easy to see that these identities coincide with the identities (3.3).
Further, since multi-indices m <

⋃5
j=0 Γ j in systems (3.5m), then these systems are uniquely solvable

in the space C∞
(
[t0,T ] ,C2

)
in the form of functions

zm (t) = [(m, λ (t)) I − A (t)]−1 Hm (t) , 0 ≤ |m| ≤ NH. (3.8)

Thus, condition (3.3) is necessary and sufficient for the solvability of the system (3.2) in the space U.
The theorem 1 is proved.
Remark 1. If identity (3.3) holds, then under conditions 1) and 2) the system (3.2) has (see (3.6) –
(3.8)) the following solution in the space U :

z (t, τ) = z0 (t) +

5∑
j=1

z j (t) eτ j +

∗∑
2≤|m|≤NH

zm (t) e(m,τ)
≡ z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk

+h12 (t)ϕ2 (t) eτ1 + +h21 (t)ϕ1 (t) eτ2 + z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ), (3.9)

where αk (t) ∈ C∞
(
[t0,T ] ,C1

)
are arbitrary functions, k = 1, 2, z0 (t) = −A−1H0(t), z5 (t) is the

solution of the integral system (3.6) and the notations are introduced:

h12 (t) ≡
(H1 (t) , χ2 (t))
λ1 (t) − λ2 (t)

, h21 (t) ≡
(H2 (t) , χ1 (t))
λ2 (t) − λ1 (t)

, P j (t) ≡
[
λ j (t) I − A (t)

]−1
H j (t) ,

Pm (t) ≡ [(m, λ (t)) I − A (t)]−1 Hm (t) .

4. Unique solvability of the general iterative problem in the space U. The remainder term
theorem

We proceed to the description of the conditions for the unique solvability of the system (3.2) in the
space U. Along with the problem (3.2), we consider the system

Lw (t, τ) = −
∂z
∂t

+
g (t)

2
(eτ3σ1 + eτ4σ2) B (t) z + R1z + Q (t, τ) , (4.1)

where z = z (t, τ) is the solution (3.9) of the system (3.2), Q (t, τ) ∈ U is the known function of the
space U. The right-hand side of this system:

G (t, τ) ≡ −
∂z
∂t

+
g (t)

2
(eτ3σ1 + eτ4σ2) B (t) z + R1z + Q (t, τ)
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= −
∂

∂t
[z0 (t) +

5∑
j=1

z j (t) eτ j +

∗∑
2≤|m|≤NH

zm (t) e(m,τ)]

+
g (t)

2
(eτ3σ1 + eτ4σ2) B (t)

z0 (t) +

5∑
j=1

z j (t) eτ j +

∗∑
2≤|m|≤NH

zm (t) e(m,τ)

 +R1z + Q (t, τ),

may not belong to the space U, if z = z (t, τ) ∈ U. Since −∂z
∂t , R1z,Q (t, τ) ∈ U, then this fact needs to be

checked for the function

Z (t, τ) ≡
g (t)

2
(eτ3σ1 + eτ4σ2) B (t) [z0 (t) +

5∑
j=1

z j (t) eτ j

+

∗∑
2≤|m|≤NH

zm (t) e(m,τ)] =
g (t)

2
B (t) z0 (t) (eτ3σ1 + eτ4σ2)

+

5∑
j=1

g (t)
2

B (t) z j (t)
(
eτ j+τ3σ1 + eτ j+τ4σ2

)
+

g (t)
2

(eτ3σ1 + eτ4σ2) B (t)
∗∑

2≤|m|≤NH

zm (t) e(m,τ).

Function Z (t, τ) < U, since it has resonant exponents

eτ3+τ4 = e(m,τ)
|m=(0,0,1,1,0), eτ3+(m,τ) (m3 + 1 = m4,m1 = m2 = m5 = 0) ,

eτ4+(m,τ) (m4 + 1 = m3,m1 = m2 = m5 = 0) ,

therefore, the right-hand side G (t, τ) = Z (t, τ) − ∂z
∂t + R1z + Q (t, τ) of the system (19) also does not

belong to the space U. Then, according to the well-known theory (see [18], p. 234), it is necessary
to embed ∧ : G (t, τ) → Ĝ (t, τ) the right-hand side G (t, τ) of the system (4.1) in the space U. This
operation is defined as follows.

Let the function G (t, τ) =
∑N
|m|=0 wm (t) e(m,τ) contain resonant exponentials, i.e. G (t, τ) has the form

G (t, τ) = w0 (t) +

5∑
j=1

w j (t) eτ j +

5∑
j=0

N∑
|m j|=2: m j∈Γ j

wm j
(t) e(m j,τ) +

N∑
|m|=2,m,m j, j=0,5

wm (t) e(m,τ).

Then

Ĝ (t, τ) = w0 (t) +

5∑
j=1

w j (t) eτ j +

5∑
j=0

N∑
|m j|=2: m j∈Γ j

wm j
(t) eτ j +

N∑
|m|=2,m,m j, j=0,5

wm (t) e(m,τ).

Therefore, the embedding operation acts only on the resonant exponentials and replaces them with a
unit or exponents eτ j of the first dimension according to the rule:(

e(m,τ)
|m∈Γ0

)∧
= e0 = 1,

(
e(m,τ)
|m∈Γ j

)∧
= eτ j , j = 1, 5.

We now turn to the proof of the following statement.
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Theorem 2. Suppose that conditions 1) and 2) are satisfied and the right-hand side H (t, τ) = H0 (t) +∑5
j=1 H j (t) eτ j +

∑∗
2≤|m|≤NH

Hm (t) e(m,τ) ∈ U of the system (3.2) satisfies condition (3.3). Then the problem
(3.2) under additional conditions

< Ĝ (t, τ) , χk (t) eτk >≡ 0∀t ∈ [t0,T ] , k = 1, 2, (4.2)

where Q (t, τ) = Q0 (t) +
∑5

k=1 Qk (t) eτk +
∑∗

2≤|m|≤NQ
Qm (t) e(m,τ) is the well-known vector function of the

space U, is uniquely solvable in U.
Proof. Since the right-hand side of the system (3.2) satisfies condition (3.3), this system has a solution
in the space U in the form (3.9), where αk (t) ∈ C∞

(
[t0,T ] ,C1

)
, k = 1, 2 are arbitrary functions so

far. Subordinate (3.9) to the initial condition z (t0, 0) = z∗. We obtain
∑2

k=1 αk (t0)ϕk (t0) = z∗, where is
indicated

z∗ = z∗ + A−1 (t0) H0 (t0) − [λ5 (t0) I − A (t0)]−1 H5 (t0) −
4∑

j=3

[
λ j (t0) I − A (t0)

]−1
H j (t0)

−
(H1 (t0) , χ2 (t0))
λ1 (t0) − λ2 (t0)

ϕ2 (t0) −
(H2 (t0) , χ1 (t0))
λ2 (t0) − λ1 (t0)

ϕ1 (t0) −
∗∑

2≤|m|≤NH

Pm (t0) .

Multiplying scalarly the equality
∑2

k=1 αk (t0)ϕk (t0) = z∗ by χ j (t0) and taking into account the
biorthogonality of the systems {ϕk (t)} and

{
χ j (t)

}
, we find the values αk (t0) = (z∗, χk (t0)) , k = 1, 2.

Now we subordinate the solution (3.9) to the orthogonality condition (4.2). We write in more detail the
right-hand side G (t, τ) of the system (4.1):

G (t, τ) ≡ −
∂

∂t
[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1

+h21 (t)ϕ1 (t) eτ2 + z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)]

+
g (t)

2
(eτ3σ1 + eτ4σ2) B (t) [z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1

+h21 (t)ϕ1 (t) eτ2 + z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)]

+R1[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1 + h21 (t)ϕ1 (t) eτ2

+z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)] + Q (t, τ) .

Putting this function into the space U, we will have

Ĝ (t, τ) ≡ −
∂

∂t
[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1
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+h21 (t)ϕ1 (t) eτ2 + z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)]

+{
g (t)

2
(eτ3σ1 + eτ4σ2) B (t) (z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1

+h21 (t)ϕ1 (t) eτ2 + z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)
}∧

+R1[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1 + h21 (t)ϕ1 (t) eτ2

+z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)] + Q (t, τ)

= −
∂

∂t
[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1 + h21 (t)ϕ1 (t) eτ2

+z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)] (∗∗)

+{
1
2

g (t) B (t) (eτ3σ1z0 (t) + eτ3+τ1σ1α1 (t)ϕ1 (t) + eτ3+τ2σ1α2 (t)ϕ2 (t)

+eτ3+τ1σ1h12 (t)ϕ2 (t) + eτ3+τ2σ1h21 (t)ϕ1 (t) + eτ3+τ5σ1z5 (t)

+e2τ3σ1P3 (t) + eτ3+τ4σ1P4 (t) + eτ4σ2z0 (t) + eτ4+τ1σ2α1 (t)ϕ1 (t)

+eτ4+τ2σ2α2 (t)ϕ2 (t) + eτ4+τ1σ2h12 (t)ϕ2 (t) + eτ4+τ2σ2h21 (t)ϕ1 (t)

+eτ4+τ5σ2z5 (t) + eτ3+τ4σ2P3 (t) + e2τ4σ2P4 (t)

+
1
2

g (t) B (t)
∗∑

2≤|m|≤NH

Pm(t)
(
emτ+τ3σ1 + emτ+τ4σ2

)
}
∧

+R1[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1 + h21 (t)ϕ1 (t) eτ2

+z5 (t) eτ5 +

4∑
i=3

Pi (t) eτi +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)] + Q (t, τ) .
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Given that the expression R1 (z0 (t, τ)) linearly depends on α1 (t) and α2 (t) (see the formula (2.51)) :

R1 (z0 (t, τ)) ≡ R1[z0 (t) +

2∑
k=1

αk (t)ϕk (t) eτk+h12 (t)ϕ2 (t) eτ1 + h21 (t)ϕ1 (t) eτ2

+z5 (t) eτ5 +

4∑
j=3

P j (t) eτ j +

∗∑
2≤|m|≤NH

Pm (t) e(m,τ)] ≡
2∑

j=1

F j (α1 (t) , α2 (t) , t) eτ j + R̃1 (z0 (t, τ)),

(here F j (α1 (t) , α2 (t) , t) are linear functions of α1 (t) , α2 (t) , and the expression R̃1 (z0 (t, τ)) does not
contain linear terms of α1 (t) , α2 (t)), we conclude that, after the embedding operation, the function
Ĝ (t, τ) will linearly depend on scalar functions α1 (t) and α2 (t) .

Taking into account that under conditions (4.2), scalar multiplication by vector functions χk (t) eτk ,

containing only exponentials eτk , k = 1, 2, it is necessary to keep in the expression Ĝ (t, τ) only terms
with exponents eτ1 and eτ2 . Then it follows from (**) that conditions (4.2) are written in the form

< −
∂

∂t

 2∑
k=1

αk (t)ϕk (t) eτk + h12 (t)ϕ2 (t) eτ1 + h21 (t)ϕ1 (t) eτ2


+

(
F1 (α1 (t) , α2 (t) , t) +

∑N
|m1|=2:m1∈Γ1

wm1 (α1 (t) , α2 (t) , t)
)

eτ1

+

(
F2 (α1 (t) , α2 (t) , t)

∑N
|m2|=2:m2∈Γ2

wm2 (α1 (t) , α2 (t) , t)
)

eτ2

+Q1 (t) eτ1 + Q2 (t) eτ2 , χk (t) eτk >≡ 0,∀t ∈ [t0,T ] , k = 1, 2,

where the functions wm j (α1 (t) , α2 (t) , t) , j = 1, 2, depend on α1 (t) and α2 (t) in a linear way.
Performing scalar multiplication here, we obtain linear ordinary differential equations with respect
to the functions αk (t) , k = 1, 2, involved in the solution (3.9) of the system (3.2). Attaching the initial
conditions αk (t0) = (z∗, χk (t0)) , k = 1, 2, calculated earlier to them, we find uniquely functions αk (t) ,
and, therefore, construct a solution (3.9) to the problem (3.2) in the space U in a unique way. The
theorem 2 is proved.

As mentioned above, the right-hand sides of iterative problems (3.1k) (if them solve sequentially)
may not belong to the space U. Then, according to [18] (p. 234), the right-hand sides of these problems
must be embedded into the U, according to the above rule. As a result, we obtain the following
problems:

Lz0 (t, τ) ≡
5∑

j=1

λ j (t)
∂z0

∂τ j
− A(t)z0 − R0z0 = h (t) , z0 (t0, 0) = z0; (3.10)

Lz1 (t, τ) = −
∂z0

∂t
+

[
g(t)
2

(eτ3σ1 + eτ4σ2) B (t) z0

]∧
+ R1z0, z1 (t0, 0) = 0; (3.11)

Lz2 (t, τ) = −∂z1
∂t +

[
g(t)
2 (eτ3σ1 + eτ4σ2) B (t) z1

]∧
+ R1z1+R2z0, z2 (t0, 0) = 0; (3.12)

· · ·

Lzk (t, τ) = −∂zk−1
∂t +

[
g(t)
2 (eτ3σ1 + eτ4σ2) B (t) zk−1

]∧
+Rkz0 + ... + R1zk−1, zk (t0, 0) = 0, k ≥ 1, (3.1k)

AIMS Mathematics Volume 6, Issue 8, 8835–8853.



8848

(images of linear operators ∂
∂t and Rν do not need to be embedded in the space U, since these operators

act from U to U). Such a replacement will not affect the construction of an asymptotic solution to
the original problem (1.1) (or its equivalent problem (2.1)), so on the narrowing τ =

ψ(t)
ε

the series of
problems (3.1k) will coincide with the series of problems

(
3.1k

)
(see [18], pp. 234–235].

Applying Theorems 1 and 2 to iterative problems
(
3.1k

)
, we find their solutions uniquely in the

space U and construct series (2.6). As in [18] (pp. 63-69), we prove the following statement.

Theorem 3. Let conditions 1)–2) be satisfied for the system (2.1). Then, for ε ∈ (0, ε0](ε0 > 0 is
sufficiently small) system (2.1) has a unique solution z(t, ε) ∈ C1([t0,T ],C2) ; at the same time there is
the estimate

||z(t, ε) − zεN(t)||C[t0,T ] ≤ cNε
N+1, N = 0, 1, 2, ...,

where zεN(t) is the restriction on τ =
ψ(t)
ε

of the N -th partial sum of the series (2.6) (with coefficients
zk (t, τ) ∈ U, satisfying the iterative problems (3.1k)) and the constant cN > 0 does not depend on ε at
ε ∈ (0, ε0].

5. Construction of a solution of the first iterative problem

Using Theorem 1, we try to find a solution to the first iterative problem
(
3.10

)
. Since the right-hand

side h (t) of the system
(
3.10

)
satisfies condition (3.3), this system (according to (3.9)) has a solution in

the space U in the form

z0 (t, τ) = z(0)
0 (t) +

2∑
k=1

α(0)
k (t)ϕk (t) eτk , (5.1)

where α(0)
k (t) ∈ C∞

(
[t0,T ] ,C1

)
are arbitrary functions, k = 1, 2, z(0)

0 (t) = −A−1 (t) h (t) . Subordinating
(4.2) to the initial condition z0 (t0, 0) = z0, we have

2∑
k=1

α(0)
k (t0)ϕk (t0) = z0 + A−1 (t0) h (t0) .

Multiplying this equality scalarly χ j (t0) and taking into account biorthogonality property of the systems
{ϕk (t)} and

{
χ j (t)

}
, find the values

α(0)
k (t0) =

(
z0 + A−1 (t0) h (t0) , χk (t0)

)
, k = 1, 2. (5.2)

For a complete calculation of the functions α(0)
k (t), we proceed to the next iterative problem

(
3.11

)
.

Substituting the solution (5.1) of the system
(
3.10

)
into it, we arrive at the following system:

Lz1 (t, τ) = −
d
dt

z(0)
0 (t) −

2∑
k=1

d
dt

(α(0)
k (t)ϕk (t))eτk+

K (t, t) z(0)
0 (t)

λ5 (t)
eτ5 −

K (t, t0) z(0)
0 (t0)

λ5 (t0)

+

g(t)
2

(eτ3σ1 + eτ4σ2) B (t)

z(0)
0 (t) +

2∑
k=1

α(0)
k (t)ϕk (t) eτk

∧ (5.3)
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+

2∑
j=1


(
K (t, t)α(0)

j (t)ϕ j (t)
)

λ j (t)
eτ j −

(
K (t, t0)α(0)

j (t0)ϕ j (t0)
)

λ j (t0)

 ,
(here we used the expression (2.51) for R1z (t, τ) and took into account that when z (t, τ) = z0 (t, τ) in
the sum (2.51) only terms with eτ1 , eτ2 and eτ5 remain). We calculate

M =

g(t)
2

(eτ3σ1 + eτ4σ2) B (t)

z(0)
0 (t) +

2∑
k=1

α(0)
k (t)ϕk (t) eτk

∧

=
1
2

g (t) B (t) [α(0)
1 σ1ϕ1 (t) eτ3+τ1 + σ2α

(0)
2 (t)ϕ1 (t) eτ4+τ1

+σ1α
(0)
2 (t)ϕ2 (t) eτ3+τ2 + σ2α

(0)
2 (t)ϕ2 (t) eτ4+τ2 + eτ3σ1z0 (t) + eτ4σ2z0 (t))]∧.

Let us analyze the exponents of the second dimension included here for their resonance:

eτ3+τ1 |τ=ψ(t)/ε = e
1
ε

∫ t
t0

(−iβ′−iω)dθ
,

−iβ′ − iω =


0,
−iω,
+iω,

⇔ ∅, − iβ′ − iω =


−iβ′,
+iβ′,
µ

⇔ ∅;

eτ4+τ1 |τ=ψ(t)/ε = e
1
ε

∫ t
t0

(+iβ′−iω)dθ
,

+iβ′ − iω =


(0) ,
−iω,

(+iω),
⇔

[
β′ = ω,

β′ = 2ω,

+iβ′ − iω =


(−iβ′) ,
+iβ′,
µ,

⇔ 2β′ = ω⇒

⇒


êτ4+τ1 = e0 = 1 (β′ = ω) ,
êτ4+τ1 = eτ2 (β′ = 2ω) ,
êτ4+τ1 = eτ3 (2β′ = ω) ;

eτ3+τ2 |τ=ψ(t)/ε = e
1
ε

∫ t
t0

(−iβ′+iω)dθ
,

−iβ′ + iω =


(0) ,

(−iω) ,
+iω,

⇔

[
β′ = ω,

β′ = 2ω;

−iβ′ + iω =


−iβ′,
(+iβ′) ,
µ,

⇔ 2β′ = ω

⇒


êτ3+τ2 = e0 = 1 (β′ = ω) ,
êτ3+τ2 = eτ1 (β′ = 2ω) ,
êτ3+τ2 = eτ4 (2β′ = ω) ;

eτ4+τ2 |τ=ψ(t)/ε = e
1
ε

∫ t
t0

(+iβ′+iω)dθ
,

+iβ′ + iω =


0,
−iω,
+iω,

⇔ ∅, + iβ′ + iω =


−iβ′,
+iβ′,
µ,

⇔ ∅.
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Thus, the exponents eτ3+τ1and eτ4+τ2 are not resonant, and the exponents eτ4+τ1 and eτ3+τ2 are resonant
at certain ratios between frequencies β′ (t), and ω (t) , moreover, their embeddings are carried out as
follows: 

êτ4+τ1 = e0 = 1 (β′ = ω) ,
êτ4+τ1 = eτ2 (β′ = 2ω) ,
êτ4+τ1 = eτ3 (2β′ = ω) ,


êτ3+τ2 = e0 = 1 (β′ = ω) ,
êτ3+τ2 = eτ1 (β′ = 2ω) ,
êτ3+τ2 = eτ4 (2β′ = ω) .

So, resonances are possible only in the following cases of relations between frequencies: a) β′ = 2ω,
b) β′ = ω, c) 2β′ = ω. Case b) is not considered (see condition (1)). We consider cases a) and c).

a) β′ = 2ω. In this case, the system (5.3) after embedding takes the form

Lz1 (t, τ) = −
d
dt

z(0)
0 (t) −

2∑
k=1

d
dt

(α(0)
k (t)ϕk (t))eτk +

K (t, t) z(0)
0 (t)

λ5 (t)
eτ5

−
K (t, t0) z(0)

0 (t0)
λ5 (t0)

+
1
2

g (t) B (t) [σ1α
(0)
1 (t)ϕ1 (t) eτ3+τ1 + σ2α

(0)
1 (t)ϕ1 (t) eτ2

+σ1α
(0)
2 (t)ϕ2 (t) eτ1 + σ2α

(0)
2 (t)ϕ2 (t) eτ4+τ2 + eτ3σ1z0 (t) + eτ4σ2z0 (t))]

+

2∑
j=1


(
K (t, t)α(0)

j (t)ϕ j (t)
)

λ j (t)
eτ j −

(
K (t, t0)α(0)

j (t0)ϕ j (t0)
)

λ j (t0)

 .
This system is solvable in the space U if and only if the conditions of orthogonality are satisfied:

〈−

2∑
k=1

d
dt

(α(0)
k (t)ϕk (t))eτk +

1
2

g (t) B (t) [σ1α
(0)
2 (t)ϕ2 (t) eτ1

+σ2α
(0)
1 (t)ϕ1 (t) eτ2] +

2∑
i=1

(
K (t, t)α(0)

i (t)ϕi (t)
)

λi (t)
eτi , χ j (t) eτ j〉 ≡ 0, j = 1, 2.

Performing scalar multiplication here, we obtain a system of ordinary differential equations:

−
dα(0)

1 (t)
dt − (ϕ̇1 (t) , χ1 (t))α(0)

1 (t) +1
2g (t)σ1 (B (t)ϕ2 (t) , χ1 (t))α(0)

2 (t) +
(K(t,t),χ1(t))

λ1(t) α(0)
1 (t) ≡ 0,

−
dα(0)

2 (t)
dt − (ϕ̇2 (t) , χ2 (t))α(0)

2 (t) ++ 1
2g (t)σ2 (B (t)ϕ1 (t) , χ2 (t))α(0)

1 (t) +
(K(t,t),χ2(t)(t))

λ2(t) α(0)
2 (t) ≡ 0.

(5.4)

Adding the initial conditions (5.2) to this system, we find uniquely functions α(0)
k (t) , k = 1, 2, and,

therefore, uniquely calculate the solution (5.1) of the problem
(
3.10

)
in the space U. Moreover, the

main term of the asymptotic solution of the problem (2.1) has the form

zε0 (t) = z(0)
0 (t) +

2∑
k=1

α(0)
k (t)ϕk (t) e

1
ε

∫ t
t0
λk(θ)dθ

, (5.5)

where the functions α(0)
k (t0) satisfy the problem (5.2), (5.4), z(0)

0 (t) = −A−1(t)h(t). We draw attention to
the fact that the system of equations (5.4) does not decompose into separate differential equations (as
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was the case in ordinary integro-differential equations). The presence of a rapidly oscillating coefficient
in the problem (1.1) leads to more complex differential systems of type (5.4), the solution of which,
although they exist on the interval [t0,T ], is not always possible to find them explicitly. However, in
third case this it manages to be done.

c) 2β′ = ω. In this case, the system (5.3) after embedding takes the form (take into account that
êτ4+τ1 = eτ3 ̂, eτ3+τ2 = eτ4)

Lz1 (t, τ) = −
d
dt

z(0)
0 (t) −

2∑
k=1

d
dt

(α(0)
k (t)ϕk (t))eτk+

K (t, t) z(0)
0 (t)

λ5 (t)
eτ5 −

K (t, t0) z(0)
0 (t0)

λ5 (t0)

+
1
2

g (t) B (t) [σ1α
(0)
1 (t)ϕ1 (t) eτ3+τ1 + σ2α

(0)
1 (t)ϕ1 (t) eτ2

+σ1α
(0)
2 (t)ϕ2 (t) eτ1 + σ2α

(0)
2 (t)ϕ2 (t) eτ4+τ2 + eτ3σ1z0 (t) + eτ4σ2z0 (t))]

+

2∑
j=1


(
K (t, t)α(0)

j (t)ϕ j (t)
)

λ j (t)
eτ j −

(
K (t, t0)α(0)

j (t0)ϕ j (t0)
)

λ j (t0)

 .
This system is solvable in the space U if and only if the conditions of orthogonality

〈−

2∑
k=1

d
dt

(α(0)
k (t)ϕk (t))eτk +

2∑
i=1

(
K (t, t)α(0)

i (t)ϕi (t)
)

λi (t)
eτi , χ j (t) eτ j〉 ≡ 0,

j = 1, 2, are satisfied. Performing scalar multiplication here, we obtain a system of diverging ordinary
differential equations

−
dα(0)

1 (t)
dt − (ϕ̇1 (t) , χ1 (t))α(0)

1 (t) +
(K(t,t),χ1(t))

λ1(t) α(0)
1 (t) ≡ 0,

−
dα(0)

2 (t)
dt − (ϕ̇2 (t) , χ2 (t))α(0)

2 (t) +
(K(t,t),χ2(t)(t))

λ2(t) α(0)
2 (t) ≡ 0.

Together with the initial conditions (5.2), it has a unique solution

α(0)
k (t) =

(
z0 + A−1 (t0) h (t0) , χk (t0)

)
exp

{∫ t

t0

(K (θ, θ) − ϕ̇k (θ) , χk (θ))
λk (θ)

dθ
}
,

k = 1, 2, and therefore, the solution (5.1) of the problem
(
3.10

)
will be found uniquely in the space U.

In this case the leading term of the asymptotics has the form (5.5), but with functions α(0)
k (t) , explicitly

calculated. Its influence is revealed when constructing the asymptotics of the first and higher orders.
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