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Abstract: The stability analysis strategy for continuous linear system with two additive time-varying
delays is proposed in this paper. First, for the purpose of analysis, the novel Lyapunov-Krasovskii
functional (LKF) consisting of integral terms based on the first-order derivative of the system state
is constructed. Second, the derivative of LKF is estimated by utilizing the Wirtinger-based integral
inequality and extended reciprocally convex matrix inequality. The delay-dependent stability criterions
are established in terms of linear matrix inequalities (LMIs) framework. The results show that the
system performances are improved based on both enlarging the maximum allowable upper bound of
the time-delays and reducing the number of decision variables. Furthermore, the conservatism of
obtained delay-dependent stability criterion is reduced. Finally, a numerical simulation is given to
demonstrate the effectiveness of obtained theoretical results.
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1. Introduction

Stability is always one of the most important factors in control system design. However, due to the
network communication, the occurrences of all kinds of time-delays in control systems are inevitable,
see [1]. It has been demonstrated that time-delays are the main issues that affect the stability of
systems in [2]. Recently, the results of time-delays in a system may result in the improvement rather
than deterioration of the system performance are obtained in [3]. Therefore, all kinds of time-delays,
especially the single time-delay should be taken into account and sophisticated analysis in order to
guarantee the stability of system.

As for the time-delays system, the Lyapunov stability theory is usually employed to analyze the
stability. Different methods of constructing suitable Lyapunov-Krasovskii functional (LKF) have been

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021504


8668

reported in the existing literature, for example, the simple LKF approach without delay
decomposition is established in [4], the delay-product-type LKF is constructed in [5, 6], and so on.
Because of the above reasons, more and more literature has considered the construction of LKF. Due
to some LKFs containing multiple integral terms were constructed, these multiple integral terms were
treated by model transformation approaches [7], free-weight-matrix methods [8–10] and so on.
Recently, there have been some researches on estimating the integral terms through integral matrix
inequalities [11], as well as a great number of matrix inequalities are established, such as Jensen’s
inequality [12], Wirtinger-based inequality [13], Bessel-Legendre inequality [14], auxiliary function
based inequalities [15–18], double integral inequality [19], extended reciprocally convex quadratic
inequality [20], relaxed quadratic function negative determination lemma [21] and quadratic
function [22], etc. Thus, many stability criteria based on linear matrix inequalities (LMIs) are
obtained, most of which are based on various LKFs [23–27]. These difficulties are between the
estimation of multiple integral terms from the derivatives of LKFs. The development of new methods
for this problem has traditional been an important consideration. Furthermore, when using these
matrix inequalities to analyze the stability of time-varying delay system, an additional technique is
applied to handle the estimated terms, for example, free-weighting matrix [28], reciprocally convex
approach [29], extended reciprocally convex matrix inequality [30]. As a consequence, the
reciprocally convex matrix inequality and integral matrix inequality are the most commonly prevalent
methods to estimate the derivatives of LKFs.

On the one hand, with the deep research for time-delay systems contain one single time-delay, the
application is hard to meet the requirements in networked control and long-range communication. The
research of stability is mostly carried out in single time-delay systems and neural networks. On the
other hand, compared with the single time-delay system, the continuous system with additive time-
varying delay essentially requires can obtain high-precision performance. What is more, because of
network transmission conditions, the properties of these two time-delays may not be identical. It is not
reasonable to combine them together, hence they should be treated separately. The study of system with
additive time-varying delay was first carried out by [31]. Up to now, several important and interesting
results concerning the stability of a system with additive time-varying delay have been published in the
literatures [32–44] and references therein.

Inspired by the above existing results, this paper provides further investigate the stability analysis
strategy for continuous linear system with two additive time-varying delays is proposed in this paper.
The major contributions of the paper are summarized as:

(1) The novel LKF consisting of integral terms based on the first-order derivative of the system state
is constructed to guarantee that the stability region can be enhanced.

(2) The derivative of LKF is estimated by utilizing the Wirtinger-based integral inequality and
extended reciprocally convex matrix inequality. The delay-dependent stability criterions are
established via LMIs framework.

(3) The performances are improved based on both the maximum allowable upper bound of the time-
varying delays are enlarged and the number of decision variables is reduced. Furthermore, the
conservatism of obtained criterion is reduced.

Notation: Throughout this note, the superscript AT (respectively, A−1) represents the transpose
(respectively, the inverse) of matrix A. Rn (respectively, Rn×m) denotes the set of n × 1 real column
vectors (respectively, the set of all n × m real matrices). P > 0 (respectively, P ≥ 0) means that matrix
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P is a positive (respectively, semi-positive) definite matrix. In (respectively, 0n,m) stands for the
identity matrix in Rn×n (respectively, the zero matrix in Rn×m). Sn (respectively, Sn

+) represents the set
of symmetric matrices (respectively, positive definite matrices) in Rn×n. In addition, diag{· · · } stands
for the (block) diagonal matrix and ∗ denotes symmetric terms in a block symmetric matrix.
Shorthand notations, ‖ · ‖ refers to the Euclidean vector norm, col{x1, · · · , xp} is the column block
matrix with entries x1, · · · , xp ∈ R

n×m, i.e., col{x1, · · ·, xp} = [xT
1 , · · ·, x

T
p ]T .

2. System description

The following lemmas will be applied in this paper.

Lemma 2.1 (Wirtinger-based integral inequality [13]). For any positive definite matrix R ∈ Sn
+, and a

differentiable vector function x in [a, b]→ Rn. Then the following single integral inequality holds

(b − a)
∫ b

a
ẋT (s)Rẋ(s) ds ≥ χT diag{R, 3R}χ,

where χ = col{χ1, χ2}, with χ1 = x(b) − x(a), χ2 = x(b) + x(a) − 2
b−a

∫ b

a
x(s) ds.

Lemma 2.2 ( [45]). For any positive definite matrix R ∈ Sn
+, two scalars a and b such that a < b, and

a vector function x in [a, b]→ Rn. Then the following double integral inequality holds

(b − a)2

2

∫ b

a

∫ b

θ

xT (s)Rx(s) ds dθ ≥
( ∫ b

a

∫ b

θ

x(s) ds dθ
)T

R
( ∫ b

a

∫ b

θ

x(s) ds dθ
)

Lemma 2.3 (Extended reciprocally convex matrix inequality [30]). For a real scalar λ ∈ (0, 1), positive
definite matrices Z1,Z2 ∈ S

n
+, and any two matrices X1, X2 ∈ R

n×n. Then the following matrix inequality
holds [ Z1

λ
0

0 Z2
1−λ

]
≥

[
Z1 + (1 − λ)Y1 (1 − λ)X1 + λX2

∗ Z2 + λY2

]
,

where Y1 = Z1 − X2Z−1
2 XT

2 and Y2 = Z2 − XT
1 Z−1

1 X1.

3. Main results

In this section, the linear systems with two additive time-varying delays is presented at first. Then,
the Wirtinger-based integral inequality and extended reciprocally convex matrix inequality are
introduced to handle the derivative of the novel LKF. Finally, the delay-dependent stability criterions
are established via LMIs and some discussions are carried out to show its advantages.

In this paper, we consider the following continuous linear system with two additive time-varying
delays: ẋ(t) = Ax(t) + Ad x

(
t − d1(t) − d2(t)

)
,

x(t) = ϕ(t),∀t ∈ [−h, 0],
(3.1)

where x(t) ∈ Rn is the system state vector, ϕ(t) is the continuous initial vector function, A ∈ Rn×n

and Ad ∈ R
n×n are constant matrices, di(t)(i = 1, 2) are two additive time-varying delays differentiable

functions.
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Assumption 3.1. For two positive scalars hi(i = 1, 2) and two scalars µi(i = 1, 2), the time-delay
functions di(t)(i = 1, 2) satisfying 0 ≤ di(t) ≤ hi, ḋi(t) ≤ µi < 1(i = 1, 2).

Let us denote d(t) = d1(t) + d2(t), h = h1 + h2, µ = µ1 + µ2.
Before introducing the main result, for simplicity, the vector notations are defined as follows:

ξ(t) = col
{

x(t)︸︷︷︸
ξ1(t)

, x(t − d1(t))︸       ︷︷       ︸
ξ2(t)

, x(t − d(t))︸      ︷︷      ︸
ξ3(t)

, x(t − d1(t) − h2)︸              ︷︷              ︸
ξ4(t)

, x(t − h)︸  ︷︷  ︸
ξ5(t)

,

∫ t

t−d(t)

x(s)
d(t)

ds︸          ︷︷          ︸
ξ6(t)

,

∫ t−d(t)

t−h

x(s)
h − d(t)

ds︸                 ︷︷                 ︸
ξ7(t)

}
,

η(t) = col
{
x(t),

∫ t

t−h
x(s) ds

}
= col

{
ξ1(t), d(t)ξ6(t) + (h − d(t))ξ7(t)

}
,

η̇(t) = col
{
ẋ(t), x(t) − x(t − h)

}
= col

{
Aξ1(t) + Adξ3(t), ξ1(t) − ξ5(t)

}
.

Theorem 3.1. Consider system (3.1) with two additive time-varying delays subject to Assumption 3.1.
For given scalars hi(i = 1, 2) and µi(i = 1, 2), system (3.1) is asymptotically stable if there exist
symmetric positive-definite matrices P ∈ S2n

+ , Qi ∈ S
n
+(i = 1, 2, 3, 4), Z ∈ Sn

+,U ∈ S
n
+, and two matrices

X1, X2 ∈ R
2n×2n such that the following LMI conditions

Ω1 =

[
Ψ[1,0] − Ψ2 − Ψ3 ET

1 X2

∗ −Z̃

]
< 0, (3.2)

Ω2 =

[
Ψ[1,h] − Ψ2 − Ψ4 ET

2 XT
1

∗ −(Z̃ + Ũ)

]
< 0, (3.3)

are satisfied, where

Ψ[1,d(t)] = ΠT
2 PΠ[1,d(t)] + ΠT

[1,d(t)]PΠ2 + eT
1 (Q1 + Q2 + Q3 + Q4)e1

− (1 − µ1)(eT
2 Q1e2 + eT

4 Q3e4) − eT
5 Q4e5 − (1 − µ)eT

3 Q2e3 + A
T
(
h2Z +

h2

2
U

)
A,

Ψ2 = 2ET
3 UE3 + 2ET

4 UE4,

Ψ3 =

[
E1

E2

]T [
2Z̃ + Ũ X1

∗ Z̃

] [
E1

E2

]
,

Ψ4 =

[
E1

E2

]T [
Z̃ X2

∗ 2Z̃

] [
E1

E2

]
,

Π[1,d(t)] = col {e1, d(t)e6 + (h − d(t))e7} ,

Π2 = col
{
A, e1 − e5

}
,

Ũ = diag{U, 3U}, Z̃ = diag{Z, 3Z},

E1 = col {e1 − e3, e1 + e3 − 2e6} ,

E2 = col {e3 − e5, e3 + e5 − 2e7} ,

E3 = e1 − e6, E4 = e3 − e7,
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ei =
[

0n,n · · · 0n,n︸             ︷︷             ︸
i−1

In 0n,n · · · 0n,n︸             ︷︷             ︸
7−i

]T
, (i = 1, 2, · · · , 7),

A =
[

A 0n,n Ad 0n,n 0n,n 0n,n 0n,n
]
.

Proof. First, construct the following LKF candidate contains four parts:

V(t) = V1(t) + V2(t) + V3(t) + V4(t), (3.4)

with

V1(t) =ηT (t)Pη(t), (3.5)

V2(t) =

∫ t

t−d1(t)
xT (s)Q1x(s) ds +

∫ t

t−d(t)
xT (s)Q2x(s) ds

+

∫ t

t−(d1(t)+h2)
xT (s)Q3x(s) ds +

∫ t

t−h
xT (s)Q4x(s) ds, (3.6)

V3(t) =h
∫ 0

−h

∫ t

t+s
ẋT (r)Zẋ(r) dr ds, (3.7)

V4(t) =

∫ 0

−h

∫ 0

s

∫ t

t+θ
ẋT (u)Uẋ(u) du dθ ds. (3.8)

Next, it is not difficult to obtain that the time derivative of V(t) along the trajectory of system (3.1)
can be computed as follows:

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t), (3.9)

where

V̇1(t) =η̇T (t)Pη(t) + ηT (t)Pη̇(t) = ξT (t)
(
ΠT

2 PΠ[1,d(t)] + ΠT
[1,d(t)]PΠ2

)
ξ(t), (3.10)

V̇2(t) =xT (t)Q1x(t) − (1 − ḋ1(t))xT (t − d1(t))Q1x(t − d1(t))
+ xT (t)Q2x(t) − (1 − ḋ(t))xT (t − d(t))Q2x(t − d(t))
+ xT (t)Q3x(t) − (1 − ḋ1(t))xT (t − (d1(t) + h2))Q3x(t − (d1(t) + h2))
+ xT (t)Q4x(t) − xT (t − h)Q4x(t − h), (3.11)

V̇3(t) =h
∫ 0

−h
(ẋT (t)Zẋ(t) − ẋT (t + s)Zẋ(t + s)) ds

=h2 ẋT (t)Zẋ(t) − h
∫ 0

−h
ẋT (t + s)Zẋ(t + s) ds

=h2 ẋT (t)Zẋ(t) − h
∫ t

t−h
ẋT (r)Zẋ(r) dr

=h2 ẋT (t)Zẋ(t) − h
∫ t

t−h
ẋT (s)Zẋ(s) ds, (3.12)

V̇4(t) =

∫ 0

−h

∫ 0

s
(ẋT (t)Uẋ(t) − ẋT (t + θ)Uẋ(t + θ)) dθ ds
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=

∫ 0

−h

∫ 0

s
ẋT (t)Uẋ(t) dθ ds −

∫ 0

−h

∫ 0

s
ẋT (t + θ)Uẋ(t + θ) dθ ds

=

∫ 0

−h
(−s)ẋT (t)Uẋ(t) ds −

∫ 0

−h

∫ t

t+s
ẋT (r)Uẋ(r) dr ds

=
h2

2
ẋT (t)Uẋ(t) −

∫ −d(t)

−h

∫ t

t+θ
ẋT (s)Uẋ(s) ds dθ −

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)Uẋ(s) ds dθ

=
h2

2
ẋT (t)Uẋ(t) −

∫ −d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)Uẋ(s) ds dθ

−

∫ −d(t)

−h

∫ t

t−d(t)
ẋT (s)Uẋ(s) ds dθ −

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)Uẋ(s) ds dθ. (3.13)

We apply Lemma 2.1 to estimate the lower bound of the single integral terms on the right side of
equality (3.12), we obtain

h
∫ t

t−h
ẋT (s)Zẋ(s) ds

=h
[∫ t−d(t)

t−h
ẋT (s)Zẋ(s) ds +

∫ t

t−d(t)
ẋT (s)Zẋ(s) ds

]
≥

h
h − d(t)

[
ξ3(t) − ξ5(t)

ξ3(t) + ξ5(t) − 2ξ7(t)

]T [
Z 0
0 3Z

] [
ξ3(t) − ξ5(t)

ξ3(t) + ξ5(t) − 2ξ7(t)

]
+

h
d(t)

[
ξ1(t) − ξ3(t)

ξ1(t) + ξ3(t) − 2ξ6(t)

]T [
Z 0
0 3Z

] [
ξ1(t) − ξ3(t)

ξ1(t) + ξ3(t) − 2ξ6(t)

]
=ξT (t)

(
h

h − d(t)
ET

2 Z̃E2 +
h

d(t)
ET

1 Z̃E1

)
ξ(t). (3.14)

By applying Lemma 2.2, the lower bound of the first double integral terms on the right side of
equality (3.13) can be estimated as∫ −d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)Uẋ(s) ds dθ

≥
2

(h − d(t))2

[∫ −d(t)

−h

∫ t−d(t)

t+θ
ẋ(s) ds dθ

]T

U
[∫ −d(t)

−h

∫ t−d(t)

t+θ
ẋ(s) ds dθ

]
=

2
(h − d(t))2

[∫ −d(t)

−h
(x(t − d(t)) − x(t + θ)) dθ

]T

U
[∫ −d(t)

−h
(x(t − d(t)) − x(t + θ)) dθ

]
=2

[
x(t − d(t)) −

∫ t−d(t)

t−h

x(s)
h − d(t)

ds
]T

U
[
x(t − d(t)) −

∫ t−d(t)

t−h

x(s)
h − d(t)

ds
]

=2 (ξ3(t) − ξ7(t))T U (ξ3(t) − ξ7(t))

=ξT (t)
(
2ET

4 UE4

)
ξ(t). (3.15)

In a completely analogous argument, the second double integral terms in (3.13) being estimated
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through Lemma 2.1 can be expressed as∫ −d(t)

−h

∫ t

t−d(t)
ẋT (s)Uẋ(s) ds dθ

=(h − d(t))
∫ t

t−d(t)
ẋT (s)Uẋ(s) ds

≥
h − d(t)

d(t)

[
ξ1(t) − ξ3(t)

ξ1(t) + ξ3(t) − 2ξ6(t)

]T [
U 0
0 3U

] [
ξ1(t) − ξ3(t)

ξ1(t) + ξ3(t) − 2ξ6(t)

]
=ξT (t)

((
h

d(t)
− 1

)
ET

1 ŨE1

)
ξ(t). (3.16)

Similarly, the last double integral term in (3.13) being estimated through Lemma 2.2 leads to∫ 0

−d(t)

∫ t

t+θ
ẋT (s)Uẋ(s) ds dθ

≥
2

d2(t)

[∫ 0

−d(t)

∫ t

t+θ
ẋ(s) ds dθ

]T

U
[∫ 0

−d(t)

∫ t

t+θ
ẋ(s) ds dθ

]
=

2
d2(t)

[∫ 0

−d(t)
(x(t) − x(t + θ)) dθ

]T

U
[∫ 0

−d(t)
(x(t) − x(t + θ)) dθ

]
=

2
d2(t)

[
d(t)x(t) −

∫ 0

−d(t)
x(t + θ) dθ

]T

U
[
d(t)x(t) −

∫ 0

−d(t)
x(t + θ) dθ

]
=2

[
x(t) −

∫ t

t−d(t)

x(s)
d(t)

ds
]T

U
[
x(t) −

∫ t

t−d(t)

x(s)
d(t)

ds
]

=2 (ξ1(t) − ξ6(t))T U (ξ1(t) − ξ6(t))

=ξT (t)
(
2ET

3 UE3

)
ξ(t). (3.17)

Furthermore, on the ground of the equations (3.10)-(3.13) and inequalities (3.14)-(3.17), the upper
bound of V̇(t) can be estimated as the following form

V̇(t) ≤ξT (t)
[
Ψ[1,d(t)] − Ψ2 + ET

1 ŨE1

]
ξ(t)

− ξT (t)
[

h
d(t)

ET
1 (Z̃ + Ũ)E1 +

h
h − d(t)

ET
2 Z̃E2

]
ξ(t). (3.18)

Then, by applying Lemma 2.3, for matrices X1, X2 ∈ R
2n×2n, the following inequality can be stated

ξT (t)
[

h
d(t)

ET
1 (Z̃ + Ũ)E1 +

h
h − d(t)

ET
2 Z̃E2 − ET

1 ŨE1

]
ξ(t) ≥ ξT (t)Ψ[5,d(t)]ξ(t), (3.19)

where

Ψ[5,d(t)] = ET
1 (Z̃ + Ũ)E1 + ET

2 Z̃E2 − ET
1 ŨE1

+
h − d(t)

h

[
E1

E2

]T [
Z̃ + Ũ − X2Z̃−1X2 X1

∗ 0

] [
E1

E2

]
AIMS Mathematics Volume 6, Issue 8, 8667–8680.
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+
d(t)
h

[
E1

E2

]T [
0 X2

∗ Z̃ − XT
1 (Z̃ + Ũ)−1X1

] [
E1

E2

]
.

Hence, substituting (3.19) into (3.18), the upper bound of V̇(t) is estimated as

V̇(t) ≤ ξT (t)
[
Ψ[1,d(t)] − Ψ2 − Ψ[5,d(t)]

]
ξ(t). (3.20)

Finally, by applying convex combination technique, Ψ[1,d(t)]−Ψ2−Ψ[5,d(t)] ≤ 0 holds if the following
two inequalities hold

Ψ[1,0] − Ψ2 − Ψ[5,0] < 0, (3.21)
Ψ[1,h] − Ψ2 − Ψ[5,h] < 0. (3.22)

Therefore, we conclude that inequality (3.21) and (3.22) are equivalent to (3.2) and (3.3) in term
of Schur complement, respectively. Thus, if (3.2) and (3.3) hold, then, for a sufficient small scalar
ε > 0, V̇(t) ≤ −ε‖x(t)‖2 holds, which ensures that system (3.1) with two additive time-varying delays
is asymptotically stable. �

Remark 3.1. Let d2(t) = 0, the system (3.1) with two additive time-varying delays becomes the system
that we see in the previous article [30], etc. The result of the system (3.1) is further improved the
boundness of h1 when d2(t) = 0. This paper provides the LKF method, which obtains less conservatism
of stability criterion at the cost of less computational burden and decision variables. It is worth noting
that the different LKF (3.4) are introduced in Theorem 3.1 to reduce the conservatism for system (3.1).
Compared with the inequalities developed in article [36], this paper utilized the extended reciprocally
convex matrix inequality to deal with the time-varying delays, which reduce the estimated gap for
derivatives of LKFs.

By analogous methods, we have the following result.
For convenience, some vector notations are denoted as follows:

ξ̂(t) = col
{

x(t)︸︷︷︸
ξ̂1(t)

, x(t − d(t))︸      ︷︷      ︸
ξ̂2(t)

, x(t − h)︸  ︷︷  ︸
ξ̂3(t)

,

∫ t

t−d(t)

x(s)
d(t)

ds︸          ︷︷          ︸
ξ̂4(t)

,

∫ t−d(t)

t−h

x(s)
h − d(t)

ds︸                 ︷︷                 ︸
ξ̂5(t)

}
,

η̂(t) = col
{
x(t),

∫ t

t−h
x(s) ds

}
= col

{̂
ξ1(t), d(t)̂ξ4(t) + (h − d(t))̂ξ5(t)

}
,

˙̂η(t) = col
{
ẋ(t), x(t) − x(t − h)

}
= col

{
Aξ̂1(t) + Adξ̂2(t), ξ̂1(t) − ξ̂3(t)

}
.

Corollary 3.1. Consider system (3.1) with two additive time-varying delays subject to Assumption
3.1. For given scalars hi(i = 1, 2) and µi(i = 1, 2), system (3.1) is asymptotically stable if there exist
symmetric positive-definite matrices P ∈ S2n

+ , Q ∈ Sn
+, Z ∈ Sn

+,U ∈ S
n
+, and two matrices X1, X2 ∈

R2n×2n, such that the following LMI conditions

Ω̂1 =

[
Ψ̂[1,0] − Ψ̂2 − Ψ̂3 ÊT

1 X2

∗ −Z̃

]
< 0,
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Ω̂2 =

[
Ψ̂[1,h] − Ψ̂2 − Ψ̂4 ÊT

2 XT
1

∗ −(Z̃ + Ũ)

]
< 0,

are satisfied, where

Ψ̂[1,d(t)] = Π̂T
2 PΠ̂[1,d(t)] + Π̂T

[1,d(t)]PΠ̂2 + êT
1 Qê1 − êT

5 Qê5 + ÂT

(
h2Z +

h2

2
U

)
Â,

Ψ̂2 = 2ÊT
3 UÊ3 + 2ÊT

4 UÊ4,

Ψ̂3 =

[
Ê1

Ê2

]T [
2Z̃ + Ũ X1

∗ Z̃

] [
Ê1

Ê2

]
,

Ψ̂4 =

[
Ê1

Ê2

]T [
Z̃ X2

∗ 2Z̃

] [
Ê1

Ê2

]
,

Π̂[1,d(t)] = col
{̂
e1, d(t)̂e4 + (h − d(t))̂e5

}
,

Π̂2 = col
{
Â, ê1 − ê3

}
,

Ê1 = col
{̂
e1 − ê2, ê1 + ê2 − 2̂e4

}
,

Ê2 = col
{̂
e2 − ê3, ê2 + ê3 − 2̂e5

}
,

Ê3 = ê1 − ê4, Ê4 = ê2 − ê5,

êi =
[

0n,n · · · 0n,n︸             ︷︷             ︸
i−1

In 0n,n · · · 0n,n︸             ︷︷             ︸
5−i

]T
, (i = 1, 2, · · · , 5),

Â =
[

A Ad 0n,n 0n,n 0n,n
]
,

with the definitions of Ũ and Z̃ are the same as previous.

Proof. Similarly, we also construct the following LKF candidate contains four parts:

Ṽ(t) = Ṽ1(t) + Ṽ2(t) + Ṽ3(t) + Ṽ4(t),

with

Ṽ1(t) = η̂T (t)Pη̂(t),

Ṽ2(t) =

∫ t

t−h
xT (s)Qx(s) ds,

Ṽ3(t) = h
∫ 0

−h

∫ t

t+s
ẋT (r)Zẋ(r) dr ds,

Ṽ4(t) =

∫ 0

−h

∫ 0

s

∫ t

t+θ
ẋT (u)Uẋ(u) du dθ ds.

Since the process of proof is the same as Theorem 3.1, so the paper skips the proof here. The
derivative of LKF can be shown negative definite while the conditions of Corollary 3.1 are satisfied. �

Remark 3.2. Applying LMIs along with the extended reciprocally convex matrix inequality, a tighter
bound constraint on the negative definite derivative with respect to time for the LKFs is established. It
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is a remarkable fact that Theorem 3.1 is used to find the maximum upper bound of time-varying delays,
however, the Corollary 3.1 deals with the same system when omitting the first three terms associated
with the LKF (3.6). In the same way, the Corollary 3.1 has lower computational burden and less
conservatism than those previous article [35].

4. Evaluation and comparison results

A numerical example is used to demonstrate the effectiveness of proposed matrix inequality. The
result shows that the given conditions in this paper are better than other existing methods.

Example 4.1. Consider system (3.1) with the following parameters:

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
.
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(a) h1 = 1 and h2 = 1.781.
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(b) h1 = 1.2 and h2 = 1.581.
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(c) h1 = 1.5 and h2 = 1.281.

Figure 1. The dynamical behavior of systems (3.1).
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(a) h2 = 0.3 and h1 = 2.481.

0 5 10 15 20 25 30 35 40

−3

−2

−1

0

1

2

3

Time

A
m

pl
itu

de

 

 

x1(t)

x2(t)

(b) h2 = 0.4 and h1 = 2.381.
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(c) h2 = 0.5 and h1 = 2.281.

Figure 2. The dynamical behavior of systems (3.1).

For given h1 or h2, the Table 1 shows the allowable upper bounds of d2(t) and d1(t) that guarantee
the asymptotic stability of system (3.1), respectively, and reported on the typical literatures is listed.
For h1 = 1.0, h2 = 1.781, the time-varying functions
d1(t) = 0.8 + 0.2 sin(5µ1t), d2(t) = 1.581 + 0.2 sin(5µ2t). For h1 = 1.2, h2 = 1.581, the time-varying
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functions d1(t) = 1.0 + 0.2 sin(5µ1t), d2(t) = 1.381 + 0.2 sin(5µ2t). For h1 = 1.5, h2 = 1.281, the
time-varying functions d1(t) = 1.3 + 0.2 sin(5µ1t), d2(t) = 1.081 + 0.2 sin(5µ2t). For
h2 = 0.3, h1 = 2.481, the time-varying functions
d1(t) = 2.281 + 0.2 sin(5µ1t), d2(t) = 0.1 + 0.2 sin(5µ2t). For h2 = 0.4, h1 = 2.381, the time-varying
functions d1(t) = 2.181 + 0.2 sin(5µ1t), d2(t) = 0.2 + 0.2 sin(5µ2t). For h2 = 0.5, h1 = 2.281, the
time-varying functions d1(t) = 2.081 + 0.2 sin(5µ1t), d2(t) = 0.3 + 0.2 sin(5µ2t). The initial value of
system state is [−3, 3]T , the state trajectories of system (3.1) are given in Figures 1 and 2, respectively.
We can see that the proposed stability criterion in Theorem 3.1 has the less conservatism than the
results of literatures [32–38, 41–44], with the reasonable in the relatively small number of decision
variables and the larger upper bounds of time-delays.

Table 1. Calculated bounds of time-delays for different cases µ1 = 0.1 and µ2 = 0.8.

Method Bound h2 for given h1 Bound h1 for given h2 Number of
h1=1 h1=1.2 h1=1.5 h2=0.3 h2=0.4 h2=0.5 decision variables

[32] 0.873 0.673 0.373 1.573 1.473 1.373 40n2 + 5n
[33] 0.988 0.845 0.675 2.332 2.069 1.842 5n2 + 3n
[34] 0.982 0.782 0.482 1.682 1.582 1.482 63n2 + 8n
[35] 0.983 0.849 0.671 2.329 2.065 1.863 8.5n2 + 5.5n
Corollary 1 of [36] 1.190 1.001 0.749 2.434 2.140 1.904 28.5n2 + 7.5n
Theorem 1 of [37] 1.233 1.035 0.752 2.441 2.145 1.912 68.5n2 + 3.5n
Theorem 1 of [38] 0.872 0.672 0.371 1.572 1.472 1.372 32n2 + 10n
Corollary 1 of [41] 1.075 0.824 0.416 1.827 1.727 1.626 24n2 + 6n
Theorem 1 of [41] 1.163 0.965 0.669 1.875 1.773 1.671 32n2 + 10n
Theorem 4 of [42] 1.243 1.043 0.759 2.444 2.147 1.916 226.5n2 + 6.5n
Corollary 5 of [42] 1.243 1.043 0.752 2.443 2.145 1.912 114n2 + 4n
Theorem 1 of [43] 0.9999 0.9725 0.6807 1.8804 1.7798 1.6759 202n2 + 25n
Theorem 1 of [44] 1.2136 1.0137 0.7137 1.9137 1.8137 1.7136 29n2 + 7n
Theorem 3.1 1.781 1.581 1.281 2.481 2.381 2.281 13n2 + 4n

5. Conclusions

This paper has investigated the stability problem of a continuous linear system with two additive
time-varying delays. The appropriate LKF consisting of integral terms based on the first-order
derivative of the system state is proposed. The new stability conditions are obtained in the forms of
LMIs by utilizing the Wirtinger-based integral inequality and extended reciprocally convex matrix
inequality. The numerical example has been given to show the advantage of conservative and
computational boundaries over the comparative results in recent articles.
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