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1. Introduction

In this paper, we consider the following nonlinear Caputo fractional initial value problem:Dα
0u(t) + f (t, u(t)) = 0, t ∈ Ω = (0, 1),

u(0) = η,
(1.1)

where α ∈ (0, 1), Dα
0 is a caputo fractional order derivative operator, which is defined by

Dα
0u(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αu′(s)ds (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021500


8612

and f (t, u(t)) ∈ C1 (Ω × R) is a known function. Furthermore, throughout this paper we shall assume
that there exist two positive constants βi(i = 1, 2) such that

0 < β1 ≤
∂ f (t, u(t))

∂u
≤ β2. (1.3)

It is well known that fractional-order differential equations (FDEs) have widely been applied in many
fields like bio-engineering [1], food science [2], electrical engineering [3], Biomedicine [4–6],
epidemiology [7], etc. Due to the importance of these problems, there has been tremendous interest in
developing numerical methods for FDEs, such as finite difference method [8–11], finite element
method [12], collocation method [13–15] and spectral method [16, 17]. However, many of these
methods are based on local operations and the authors don’t consider the weak singularities. For this
reason, Stynes and Gracia [18, 19] first considered a two point boundary value problem with a Caputo
derivative of order δ ∈ (1, 2), and analyzed the bounds for the derivatives of exact solution u(x). Then
they constructed finite difference methods on a uniform mesh to solve this problem and gave the
corresponding convergence analysis.

As far as we known, there is great current interest in the use of some numerical methods on a
graded grid for time fractional diffusion equations with a Caputo derivative (see, e.g., [20–23]). In
these literature, the authors derived the bounds for the time derivatives of u(x, t), and constructed a
finite difference scheme on a graded grid. Recently, for a two-point boundary value problem with
a Riemann-Liouville fractional derivative, Cen, et.al., [24] developed an adaptive grid method based
on an a posteriori error estimation. Furthermore, Liu, et.al., [25] and Huang, et.al., [26] proposed an
adaptive grid method based on a priori error estimation and obtained a first-order and a second-order
convergence results, respectively. Inspired by literature [24–26], the authors in [27] also developed an
adaptive grid method by using a backward Euler formula to approximate the first-order derivative of
problem (1.1) and obtained an a posteriori error estimation for the presented discretization scheme. Liu
and Chen [28] derived a new a posteriori error estimation and gave the corresponding adaptive strategy
for problem (1.1).

In this paper, similar to literature [25, 26], we first transform problem (1.1) into a Volterra integro
equation by using the Riemann-Liouville fractional integral transformation. Then a right rectangle
formula on an arbitrary nonuniform mesh is used to approximate this integro equation. Furthermore, a
convergence analysis based on a priori error estimation is carried out by using the mesh
equidistribution principle. It is shown that there exists a grid that gives the optimal first-order
convergence for the presented method. Besides, we also derive an a posteriori error estimation for the
presented discretization scheme and design an adaptive grid generation algorithm. Finally, some
numerical results are provided to validate the theoretical results.

Notation. Throughout the paper, C will denote a generic positive constant that is independent of
the mesh parameter N and α. To simplify the notation we set gi = g(ti) for any function g defined on
the interval [0, 1]. We define the maximum norm by ‖ · ‖∞.

2. Preliminary results

In Section 2.1, we first convert problem (1.1) into an equivalent Volterra integral equation and give
the bounds for the exact solution u(t) and its derivatives. Then for the transformed Volterra integral
equation, a finite difference scheme and the corresponding stability result are given in Section 2.2.
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2.1. Reformulation the initial value problem

Let

Jα0φ(t) =
1

Γ(α)

∫ t

0
(t − s)α−1φ(s)ds

be the Riemann-Liouville fractional integral of order α ∈ (0, 1) (see [29]), which satisfies the following
property

Jα0 Dα
0φ(t) = φ(t) − φ(0). (2.1)

Then, the above problem (1.1) can be written into the following Volterra integral equation

u(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds + η. (2.2)

Similar to the argument of Lemma 2.1 of [24], we derive the following results for the exact solution
u(t) and its derivatives.

Lemma 2.1. Let u(t) be the continuous solution of problem (2.2). Then exists a constant C such that

‖u(t)‖∞ ≤ C
(
‖ f (t, 0)‖∞ + |η|

)
, (2.3)∣∣∣u(k)(t)

∣∣∣ ≤ Ctα−k, t ∈ (0, 1), k = 1, 2. (2.4)

Proof. By using the Taylor series expansion to f (t, u(t)), problem (2.2) can be changed into the
following linear formal

u(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1 [

f (s, 0) + a(s)u(s)
]
ds + η, (2.5)

where a(s) = fu(s, λu(s)) with 0 < λ < 1. Then, the proof of (2.3) can be followed from (2.5) and
Lemma 2.1 of [24].

For the proof of (2.4), we may refer to the Theorem 2.1 in [20]. �

2.2. Discretization scheme

For our numerical scheme we consider an arbitrary nonuniform mesh

Ω̄N = {0 = t0 < t1 < · · · < tN = 1},

where N is a positive integer. For i = 1, · · · ,N, let τi = ti − ti−1 be the local mesh step. Then, by using
the right rectangle formula to approximate the integral given in (2.2), we obtain

uN
i = −

1
Γ(α + 1)

i∑
k=1

[(ti − tk−1)α − (ti − tk)α] f (tk, uN
k ) + η, (2.6)

where uN
i is the approximation solution of u(t) at point t = ti, i = 0, 1, · · · ,N.

Next, the following lemma gives the stability for the discretization scheme (2.6).
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Lemma 2.2. Under the assumption f (t, u(t)) ∈ C1 (Ω × R), the solution
{
uN

i

}N

i=0
of the scheme (2.6) on

an arbitrary mesh Ω̄N satisfies

max
0≤i≤N

|uN
i | ≤ C

(
|η| + max

0≤i≤N
| f (ti, 0)|

)
. (2.7)

Proof. Similar to (2.5), the numerical scheme (2.6) can be written into the following formula

uN
i = −

1
Γ(α + 1)

i∑
k=1

[(ti − tk−1)α − (ti − tk)α]
[
f (tk, 0) + fu

(
tk, ξuN

k

)
uN

k

]
+ η, (2.8)

where ξ ∈ (0, 1).
Furthermore, we have ∣∣∣uN

i

∣∣∣ ≤ di +

i−1∑
k=1

wk,i

∣∣∣uN
k

∣∣∣ (2.9)

where

di =

[
1 −

β2τ
α
i

Γ(1 + α)

]−1

, (2.10)

pi = |η| +
1

Γ(α + 1)

i∑
k=1

[(ti − tk−1)α − (ti − tk)α] | f (tk, 0)| , (2.11)

wk,i =
β2

Γ(α + 1)
[(ti − tk−1)α − (ti − tk)α] . (2.12)

For 1 ≤ i ≤ N with sufficiently large N, we have

|di| ≤ C and |pi| ≤ |η| + C max
1≤i≤N

| f (ti, 0)| . (2.13)

Then, for each i, it follows from the proof of Lemma 3.3 given in [30] that
Γ(α + 1)wk,i

(ti − tk−1)α−1 =
β2

(ti − tk−1)α−1 [(ti − tk−1)α − (ti − tk)α]

= β2ατk
(ti − ξk)α−1

(ti − tk−1)α−1

= β2ατk
(ti − tk−1)1−α

(ti − ξk)1−α

≤ β2ατk
(ti − tk−1)1−α

(ti − tk)1−α

= β2ατk

(
1 +

τk

τi + τi−1 + · · · + τk+1

)1−α

≤ 2β2τk, ξk ∈ (tk−1, tk), k = 1, · · · , i − 1.

(2.14)

Furthermore, we have

wk,i ≤ Cτk(ti − tk−1)α−1. (2.15)

Finally, by using the modified Grönwall inequality given in [30, Lemma 3.3], we can obtain the
desirable result (2.7). �
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3. A priori error analysis

Let eN
i = u(ti) − uN

i be the error at ti in the computed solution, i = 0, 1, · · · ,N. Then it follows from
(2.2) and (2.6) that we can obtain the following error equation

eN
i =

1
Γ(α)

i∑
k=1

∫ tk

tk−1

(ti − s)α−1
[
f (tk, uN

k ) − f (s, u(s))
]

ds − RN
i , 1 ≤ i ≤ N, (3.1)

where

RN
i = −

1
Γ(α)

i∑
k=1

∫ tk

tk−1

(ti − s)α−1 [
f (s, u(s)) − f (tk, u(tk))

]
ds (3.2)

is the truncation error at t = ti.

Lemma 3.1. Let u(t) be the exact solution of (2.2) and
{
uN

i

}N

i=0
be the discrete solution of (2.6) on an

adaptive grid. Then

max
0≤i≤N

∣∣∣uN
i − u(ti)

∣∣∣ ≤ C max
1≤i≤N

∫ ti

ti−1

∣∣∣∣∣d f (s, u(s))
ds

∣∣∣∣∣ ds.

Proof. For each i, it follows from (3.2) that∣∣∣RN
i

∣∣∣ ≤ 1
Γ(α)

i∑
k=1

∫ tk

tk−1

(ti − s)α−1 | f (s, u(s)) − f (tk, u(tk))| ds

=
1

Γ(α)

i∑
k=1

∫ tk

tk−1

(ti − s)α−1

∣∣∣∣∣∣
∫ s

tk

d f (s, u(s))
ds

ds

∣∣∣∣∣∣
≤ C max

1≤i≤N

∫ ti

ti−1

∣∣∣∣∣d f (s, u(s))
ds

∣∣∣∣∣ ds.

Thus, the desired result can be followed from (3.1) and Lemma 2.2. �

Corollary 3.1. Assume that there exists a grid {ti}
N
i=0 such that∫ tk

tk−1

∣∣∣∣∣d f (s, u(s))
ds

∣∣∣∣∣ ds =
1
N

∫ 1

0

∣∣∣∣∣d f (s, u(s))
ds

∣∣∣∣∣ ds (3.3)

for k = 1, · · · ,N. Then

max
0≤i≤N

∣∣∣uN
i − u(ti)

∣∣∣ ≤ CN−1. (3.4)

Proof. It follows form (1.3) and Lemma 2.1 that∫ 1

0

∣∣∣∣∣d f (t, u(t))
dt

∣∣∣∣∣ dt ≤ C
∫ 1

0

(
1 + |u′(s)|

)
ds

≤ C
∫ 1

0

(
1 + sα−1

)
ds

≤ C
(
1 +

1
α

)
.

(3.5)

Thus, the desired result can be obtained by using Lemma 3.1, (3.3) and (3.5). �
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Remark 3.1. It is shown from Corollary 3.1 that there exists a mesh that gives the optimal first-order
convergence of the presented discretization scheme (2.6). However, it is difficult to construct this mesh
{ti}

N
i=0 based on (3.3) since this requires the exact solution u(t).

4. A posteriori error analysis

In this section, we will derive an a posteriori error estimation for the numerical solution uN
i , i =

0, 1, · · · ,N.

Theorem 4.1. Let u(t) be the exact solution of (1.1), uN
i be the solution of (2.6) and uN(t) be the

piecewise linear interpolation function through knots
(
ti, uN

i

)
, i = 0, 1, · · · ,N. Then we have∥∥∥u(t) − uN(t)

∥∥∥
∞
≤ C

(
ταi + |D−uN

i |τi + max
1≤i≤N

max
s∈[ti−1,ti]

∣∣∣ f (ti, uN
i ) − f (s, uN(s))

∣∣∣) . (4.1)

Proof. For ∀t ∈ [ti−1, ti], it follows from (2.2) and (2.6) that

u(t) − uN(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds + η −

[
uN

i + D−uN
i (t − ti)

]
=

1
Γ(α)

(∫ ti

0
(ti − s)α−1 f (ti, uN

i )ds −
∫ t

0
(t − s)α−1 f (s, u(s))ds

)
− D−uN

i (t − ti)

=
1

Γ(α)

(∫ t

0
(t − s)α−1

[
f (s, uN(s)) − f (s, u(s))

]
ds

+

∫ ti

0
(ti − s)α−1 f (ti, uN

i )ds −
∫ t

0
(t − s)α−1 f (s, uN(s))ds

)
− D−uN

i (t − ti)
= w + p + q + r,

(4.2)

where

w =
1

Γ(α)

∫ t

0
(t − s)α−1

[
f (s, uN(s)) − f (s, u(s))

]
ds, (4.3)

p =
1

Γ(α)

i∑
k=1

∫ tk

tk−1

(ti − s)α−1
[
f (ti, uN

i ) − f (s, uN(s))
]

ds, (4.4)

q =
1

Γ(α)

i∑
k=1

∫ tk

tk−1

[
(ti − s)α−1 − (t − s)α−1

]
f (s, uN(s))ds, (4.5)

r =
1

Γ(α)

∫ ti

t
(t − s)α−1 f (s, uN(s))ds − D−uN

i (t − ti). (4.6)

For p, we have

|p| ≤
1

Γ(α)

i∑
k=1

∫ tk

tk−1

(ti − s)α−1
∣∣∣ f (ti, uN

i ) − f (s, uN(s))
∣∣∣ ds

≤ C max
1≤i≤N

max
s∈[ti−1,ti]

∣∣∣ f (ti, uN
i ) − f (s, uN(s))

∣∣∣ . (4.7)
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It follows from the assumption of f (t, u(t)) that

|q| ≤ Cταi , (4.8)
|r| ≤ C

(
ταi + |D−uN

i |τi

)
. (4.9)

Thus, from (4.2), (4.3) and (4.7)–(4.9), we obtain∣∣∣u(t) − uN(t)
∣∣∣ ≤ β2

Γ(α)

∫ t

0
(t − s)α−1

∣∣∣u(s) − uN(s)
∣∣∣ ds

+ C
(
ταi + |D−uN

i |τi + max
1≤i≤N

max
s∈[ti−1,ti]

∣∣∣ f (ti, uN
i ) − f (s, uN(s))

∣∣∣) , (4.10)

where we have used the bound of uN
i and the condition (1.3). Finally, the desired result can be followed

by applying the generalized Grönwall’s inequality [31, Corollary 2] to the above inequality. �

Corollary 4.1. Under the assumption of f (t, u(t)) ∈ C1 (Ω × R), we have∥∥∥u(t) − uN(t)
∥∥∥
∞
≤ C

(
ταi + τi + |D−uN

i |τi

)
. (4.11)

Proof. For ∀t ∈ [ti−1, ti]∣∣∣ f (ti, uN
i ) − f (t, uN(t))

∣∣∣ =

∣∣∣∣∣∣d f (t, uN(t))
dt

|t=ξ(t − ti)

∣∣∣∣∣∣
≤ C

(
τi + τi|D−uN

i |
)
, ξ ∈ (ti−1, ti),

(4.12)

which completes the proof by virtue of the above Theorem 4.1.
�

5. Numerical experiments and discussion

In Section 5.1, we describe an adaptive grid generation algorithm by equidistributing a monitor
function. Then, numerical experiments are presented in Section 5.2 to demonstrate the validity and
efficiency of the presented adaptive grid method.

5.1. An adaptive algorithm

As is stated in Remark 3.1 that it is hard to obtain a grid {ti}
N
i=0 satisfying (3.3). Therefore, in

practical computation, the key problem is to find a grid {ti}
N
i=0 and the corresponding numerical solution

uN
i such that ∫ ti

ti−1

M̃(s, uN
i )ds =

1
N

∫ 1

0
M̃(s, uN

i )ds for i = 1, · · · ,N, (5.1)

where M̃(s, uN
i ) is a monitor function which is a function about uN

i . For a given monitor function M̃,
the adaptive grid generation algorithm based on (5.1) aims to construct a mesh that equidistributes M̃.
Thus, it is very important to choose a suitable monitor function M̃. Here, in this paper, by using the a
posteriori error estimation given in Theorem 4.1, we construct the monitor function as follows:
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M̃i = ταi + |D−uN
i |τi + max

t∈[ti−1,ti]

∣∣∣ f (t, uN(t)) − f (ti, uN
i )

∣∣∣ , i = 1, · · · ,N. (5.2)

In order to compute the equidistributed mesh {ti}
N
i=0 and corresponding numerical solution uN

i , an
adaptive grid algorithm is given as follows:

Step 1. Let Ω̄
(0)
N =

{
t(0)
i

}N

i=0
be an initial uniform mesh with mesh size 1

N .

Step 2. For a given mesh Ω̄
(k)
N =

{
t(k)
i

}N

i=0
, k = 0, 1, · · · , solve the solution

{
u(k),N

i

}N

i=0
of scheme (2.6)

on this mesh. For each i, set τ(k)
i = t(k)

i − t(k)
i−1, L(k)

0 = 0 and L(k)
i =

i∑
j=1

M̃(k)
j , where M̃(k)

j is the value of the

monitor function (5.2) computed at the current mesh and corresponding numerical solution.
Step 3. Define

γ(k) :=
N
LN

max
1≤i≤N

M̃(k)
j . (5.3)

For a given constant γ∗ > 1, if γ(k) ≤ γ∗, go to Step 5. Otherwise, continue to Step 4.
Step 4.Let Y (k)

i = iL(k)
N /N and φ(k)(t) be a piecewise linear interpolation function through knots(

L(k)
i , t

(k)
i

)
, i = 0, 1, · · · ,N. Generate a new mesh

{
t(k+1)
i

}
by computing the value of function φ(k)(t) at

t = Y (k)
i for i = 0, · · · ,N. Let k = k + 1 and return to Step 2.

Step 5. Take
{
t(k)
i

}N

i=0
as the final computed mesh and

{
u(k),N

i

}N

i=0
as the corresponding computed

solution. Then stop iteration process.

5.2. Two test examples

Here, we give some numerical experiments to illustrate the validity of our presented adaptive grid
method. The test problem follows [27] by taking (1.1) with

f (t, u(t)) = 2u(t) + sin(u(t)) + 0.1u2(t) + s(t),

where s(t) is chosen such that the exact solution is

u(t) = tα + 2t + 1.

The initial value condition is u(0) = 1.
Since the analytic solution of this problem is given, the maximum point-wise error EN and the order

of convergence rN are calculated as follows:

EN = max
0≤i≤N

∣∣∣uN
i − u(ti)

∣∣∣ , rN =
ln(EN/E2N)

ln 2
.

For different values of N and α, we use our presented adaptive grid algorithm to solve this test
problem. The maximum errors EN , the orders of convergence rN and the number of iterations K of
the above grid generation algorithm are listed in Table 1. One can see from the numerical results in
Table 1 that our presented adaptive grid method is first-order convergent. which is robust with respect
to the order of fractional derivative α. Meanwhile, to illustrate the advantage of our presented adaptive
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grid method, we also use the presented discretization scheme (2.6) on a uniform mesh to solve this test
problem, see Table 2.

It is shown from these numerical results that the maximum errors calculated on an adaptive grid
are much lower than that computed on a uniform mesh with the increase of N. Besides, the order of
convergence obtained on an adaptive grid is more higher than that obtained on a uniform mesh.

Furthermore, in order to verify the relationship between numerical solution uN
i and the order of

fractional derivative α, Figure 1 represents some graphs of numerical solution for different values of N
and α. Obviously, the solution of this test problem has a boundary layer at t = 0 with the decrease of
α. When α = 0.1, the Figure 2 shows how a mesh with N = 64 intervals evolves through successive
iterations of the above grid generation algorithm.

Finally, for α = 0.2, 0.4, 0.6, 0.8 and the same N given in Table 1, Table 3 gives the numerical results
calculated by using our presented adaptive grid method, while we also list the results obtained by the
method in [28]. Obviously, it is shown from Table 3 that our presented method produces better results
than that produced by method in [28].

Table 1. Numerical results calculated on an adaptive grid with different α and N.

α N = 64 N = 128 N = 256 N = 512 N = 1024
0.1 EN 2.7834e − 03 1.4641e − 03 7.7232e − 04 4.0687e − 04 2.1383e − 04

rN 0.9269 0.9227 0.9246 0.9281 -
K 6 6 6 6 7

0.3 EN 4.9972e − 03 2.5886e − 03 1.3346e − 03 6.8156e − 04 3.6514e − 04
rN 0.9489 0.9558 0.9695 0.9004 -
K 2 2 2 3 3

0.5 EN 5.3205e − 03 2.7518e − 03 1.4808e − 03 8.0297e − 04 4.3978e − 04
rN 0.9512 0.8940 0.8830 0.8686 -
K 2 2 2 2 2

0.7 EN 4.4914e − 03 2.2845e − 03 1.1641e − 03 5.9919e − 04 3.1051e − 04
rN 0.9753 0.9726 0.9582 0.9484 -
K 3 3 3 3 3

0.9 EN 2.3200e − 03 1.1807e − 03 6.0910e − 04 3.1469e − 04 1.6189e − 04
rN 0.9744 0.9549 0.9528 0.9589 -
K 4 3 8 11 14
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Table 2. Numerical results calculated on a uniform grid with different α and N.

α N = 64 N = 128 N = 256 N = 512 N = 1024
0.1 EN 2.5722e − 3 1.3994e − 3 7.5362e − 4 4.0137e − 4 2.1222e − 4

rN 0.8782 0.8929 0.9089 0.9194 -
0.3 EN 4.9757e − 3 2.5988e − 3 1.4148e − 3 7.7054e − 4 4.1811e − 4

rN 0.9371 0.8772 0.8767 0.8820 -
0.5 EN 6.9085e − 3 3.8717e − 3 2.1446e − 3 1.1729e − 3 6.3288e − 4

rN 0.8354 0.8523 0.8706 0.8901 -
0.7 EN 7.1283e − 3 4.0159e − 3 2.2194e − 3 1.2073e − 3 6.4846e − 4

rN 0.8287 0.8556 0.8784 0.8967 -
0.9 EN 3.7774e − 3 2.1630e − 3 1.2180e − 3 6.7609e − 4 3.7064e − 4

rN 0.8044 0.8285 0.8492 0.8672 -

Table 3. The comparison of numerical results with method [28].

α Methods N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

0.2
Our method

EN 4.26e-03 2.24e-03 1.16e-03 5.99e-04 3.08e-04 1.58e-04
rN 0.93 0.95 0.95 0.94 0.96 -

Method [28]
EN 1.05e-02 5.50e-03 3.12e-03 1.58e-03 7.81e-04 4.13e-04
rN 0.93 0.81 0.98 1.02 0.92 -

0.4
Our method

EN 5.93e-03 2.73e-03 1.46e-03 7.99e-04 4.39e-04 2.41e-04
rN 0.90 0.96 0.98 1.01 1.00 -

Method [28]
EN 1.47e-02 7.92e-03 4.63e-03 2.19e-03 1.18e-03 6.30e-04
rN 0.89 0.77 1.08 0.89 0.90 -

0.6
Our method

EN 5.05e-03 2.61e-03 1.32e-03 7.25e-04 3.88e-04 2.07e-04
rN 0.95 0.98 0.86 0.90 0.91 -

Method [28]
EN 1.01e-02 6.26e-03 3.77e-03 1.74e-03 9.49e-04 5.11e-04
rN 0.69 0.73 1.12 0.87 0.89 -

0.8
Our method

EN 3.64e-03 1.86e-03 9.37e-04 4.79e-04 2.46e-04 1.27e-04
rN 0.97 0.99 0.97 0.96 0.95 -

Method [28]
EN 4.88e-03 2.98e-03 1.78e-03 7.60e-04 4.17e-04 2.26e-04
rN 0.71 0.74 1.23 0.86 0.88 -
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Figure 1. Numerical solutions with different α and N.
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Figure 2. Evolution of mesh with α = 0.1 and N = 64.

6. Conclusions

This work mainly discusses a nonlinear value problem whose the differential operator is a Caputo
derivative of order α with 0 < α < 1. By using the Riemann-Liouville integral operator, the problem
(1.1) can be changed into a Volterra integral equation, which is approximated by using the integral
discrete formula. A priori error estimation and convergence analysis have been given on an adaptive
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8622

grid. Meanwhile, an a posterior error estimation has been obtained by using the polynomial
interpolation technique and the corresponding adaptive grid generation algorithm is constructed. It
should be pointed out that the presented adaptive grid method can be extended to the other time
fractional differential equations.
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