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1. Introduction

Optimal control problems are frequently used in science, engineering and various application areas
in the operation of social and physical. Many studies discussed the optimal control problems. The finite
element methods seem to be the most popular numerical method used to solve the problems [6, 10].
For optimal control problems governed by linear elliptic equations, there were two pioneering works
on finite element approximation by Falk [22] and Geveci [23]. However, it is a challenge that to
solve the optimal control problems governed by nonlinear state equations. In [28, 30], the authors
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established a priori error estimates and a posteriori error estimates for the finite element approximation
of a class of nonlinear optimal control problems. In [12–14, 16, 25–27, 31], the authors systematically
introduced a finite element method for optimal control problems. Our objective is to investigate a
class of bilinear optimal control problems that are often encountered in engineering, physical and
others fields. Accordingly, it is necessary to study optimal control problems governed by bilinear state
equations. Lu and Chen studied the finite element and mixed finite element approximation of bilinear
optimal control problems [15, 32]. However, there are relatively scarce that incorporate the bilinear
optimal control problems based on the finite volume method.

The finite volume method is an effective discretization technique for partial differential equations.
Due to its local conservative property and other attractive properties, the finite volume method is a
promising tool commonly applied in the numerical approximation of some problems for partial
differential equations. Since the method was proposed, voluminous studies of the mathematical
theory for finite volume method in the literature [2, 3, 9, 11, 17, 18, 20, 21]. Bank and Rose obtained
some results for elliptic boundary value problems that the finite volume element approximation was
comparable with the finite element approximation in H1-norm which can be found in [2]. In [21], the
authors presented the optimal L2-error estimate for second-order elliptic boundary value problems
under the assumption that f ∈ H1, they also obtained the H1-norm and maximum-norm error
estimates for those problems. In [11], Chatzipantelidis proposed a nonconforming finite volume
method and obtained the L2-norm and H1-norm error estimates for elliptic boundary value problems
in two dimensions. The authors discussed prior estimates for linear elliptic optimal control problem
in [33], they derived the optimal order error estimates in L2 and L∞-norm for the state, costate and
control variables, and the optimal H1 and W1,∞-norm error estimates for the state and costate
variables.

Finite volume methods lie somewhere between finite difference and finite element methods [34].
It has a flexibility similar to that of finite element methods for handling complicated solution domain
geometries and boundary conditions, and simplicity for implementation comparable to finite difference
methods with triangulations of a simple structure [35]. The finite volume methods and finite element
methods are commonly employed in computational fluid mechanics and computational solid dynamics,
where the finite volume method is traditionally associated with computational fluid mechanics and
the finite element method associated with computational solid dynamics. In general, two different
functional spaces (one for the trial space and one for the test space) are used in the finite volume
method. Owing to the two different spaces, the numerical analysis of the finite volume method is more
difficult than that of the finite element method and finite difference method.

The goal of our paper is to establish a priori error estimates for the finite volume element
approximation of the bilinear optimal control problem. First, we use the finite volume method to
discretize the state and adjoint equation of the optimal control problem. Hinze proposed a variational
discretization concept for optimal control problems with control constraints [24]. With the variational
discretization concept, the control variable is not discretized directly but discretized by a projection of
the discrete costate variable. Then we obtain some optimal order error estimates under some
reasonable assumptions.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with a norm ‖v‖p
m,p

given by ‖v‖p
m,p =

∑
|α|≤m
‖Dαv‖p

Lp(Ω), and the semi-norm | v |pm,p=
∑
|α|=m
‖Dαv‖p

Lp(Ω). We set Wm,p
0 (Ω) =
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{v ∈ Wm,p(Ω) : v |∂Ω= 0}. When p=2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω) with norm
‖ · ‖m = ‖ · ‖m,2 and ‖ · ‖ = ‖ · ‖0,2. Let ‖ · ‖∞ be the maximum norm, ‖ f ‖∞ = ess sup

x∈Ω
| f (x)|. As usual, we

denote by (·, ·) of the L2(Ω)-inner product.

We consider the following bilinear elliptic optimal control problem:

min
u∈Uad

1
2
||y − yd||

2
L2(Ω) +

1
2
||u||2L2(Ω), (1.1)

−div(A∇y) + uy = f , in Ω, (1.2)
y = 0, on ∂Ω, (1.3)

where Ω ⊂ R2 is a bounded convex polygon domain with boundary ∂Ω. f , yd ∈ H1(Ω), and y, u are
unknowns functions, Uad is denoted by

Uad = {u ∈ L2(Ω) : u(x) ≥ 0, a.e. in Ω}.

Furthermore, we assume that the coefficient matrix A ∈ W2,∞(Ω) is a symmetric positive definite matrix
and there exists a constant c > 0 satisfies XtAX ≥ c‖X‖2

R2 , if ∀ X ∈ R2. Actually, it belongs to a class of
parameter estimation problems in which through the measured data y, the real parameter u is calculated
by the least square formulation.

The paper is organized as follows. In the next Section, we introduce some notations and describe
the finite volume method briefly. In Section 3, we apply the piecewise linear finite volume method and
variational discretization concept to the optimal control problem (1.1)–(1.3) and obtain the discretized
optimal system. In Section 4, we analyze the error estimates between the exact solution and the finite
volume element approximation. And in Section 5, a few numerical examples are presented to test the
theoretical results. While Second 6 gives a conclusion and some possible future work.

2. Finite volume element approximation

As is shown in [21], the partitionTh is quasi-uniform, i.e., there exists a positive constant C such that

C−1h2 ≤ meas(Vi) ≤ Ch2, ∀ Vi ∈ Th.

For the convex polygon Ω, we consider a quasi-uniform triangulation Th consisting of a closed triangle
elements K such that Ω̄ =

⋃
K∈Th

K. We use Nh to denote the set of all nodes or vertices of Th. To

define the dual partition T ∗h of Th, we divide each K ∈ Th into three quadrilaterals by connecting the
barycenter CK of K with line segments to the midpoints of edges of K as shown in Figure 1.
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Figure 1. The dual partition of a triangular K.

The control volume Vi consists of the quadrilaterals sharing the same vertex zi as shown in Figure 2.
i

 Z
i

Figure 2. The control volume Vi sharing the same vertex zi.

The dual partition T ∗h consists of the union of the control volume Vi. Let h = max{hK}, where hK is
the diameter of the triangle K. The dual partition T ∗h is quasi-uniform as well.

We define the finite dimensional space Vh associated with Th for the trial functions by

Vh = {v : v ∈ H1(Ω), v|K ∈ P1(K), ∀ K ∈ Th, v|∂Ω = 0},

and define the finite dimensional space Qh associated with the dual partition T ∗h for the test functions by

Qh = {q ∈ L2(Ω) : q|V ∈ P0(V), ∀ V ∈ T ∗h ; q|Vz = 0, z ∈ ∂Ω},

where Pl(K) or Pl(V) consists of all the polynomials with degree less than or equal to l defined on K
or V , respectively.

To connect the trial space and test space, we define a transfer operator Ih : Vh → Qh as follows:

Ihvh =
∑
zi∈Nh

vh(zi)χi, Ihvh|Vi = vh(zi), ∀ Vi ∈ T
∗
h ,

where χi is the characteristic function of Vi.
To address the finite volume method clearly, we consider the following problem
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− div(A∇ϕ) + uϕ = f , in Ω, (2.1)
ϕ = 0, on ∂Ω, (2.2)

where A, Ω, ∂Ω are the same as in (1.2), (1.3), f ∈ H1(Ω).
The finite volume element approximation ϕh of (2.1), (2.2) is defined as the solution of the problem:

find ϕh ∈ Vh such that

a(ϕh, Ihvh) + (uhϕh, Ihvh) = ( f , Ihvh), ∀ vh ∈ Vh, (2.3)

where the bilinear form a(ϕh, Ihvh) is defined by

a(ϕh, Ihvh) = −
∑
zi∈Nh

vh(zi)
∫
∂Vi

A∇ϕh · nds, ϕh, vh ∈ H1
0(Ω) ∩ Vh,

where n is the unit outward normal vector to ∂Vi.
The bilinear form a(·, ·) is not symmetric though the problem is self-adjoint. Then for all wh, vh ∈ Vh,

there exists positive constants C and h0 ≥ 0 such that [18] for all 0 < h < h0

|a(wh, Ihvh) − a(vh, Ihwh)| ≤ Ch||wh||1 ||vh||1. (2.4)

It is well known (see, e.g., [28]) that the optimal control problem (1.1)–(1.3) has at least one solution
(y, p, u), and that if a triplet (y, p, u) is the solution of (1.1)–(1.3), then there is a co-state p ∈ H1

0(Ω)
such that (y, p, u) satisfies the following optimality conditions:

(A∇y,∇w) + (uy,w) = ( f ,w), ∀ w ∈ H1
0(Ω), (2.5)

(A∇p,∇q) + (up, q) = (y − yd, q), ∀ q ∈ H1
0(Ω), (2.6)

(u − yp, v − u) ≥ 0, ∀ v ∈ Uad. (2.7)

If y ∈ H1
0(Ω) ∩ C2(Ω) and p ∈ H1

0(Ω) ∩ C2(Ω), then optimality condition (2.5)–(2.7) (see, e.g., [33])
can be written as

−div(A∇y) + uy = f , ∀ x ∈ Ω, (2.8)
y(x) = 0, ∀ x ∈ ∂Ω, (2.9)
−div(A∇p) + up = y − yd, ∀ x ∈ Ω, (2.10)
p(x) = 0, ∀ x ∈ ∂Ω, (2.11)
(u − yp, v − u) ≥ 0, ∀ v ∈ Uad. (2.12)

We use finite volume method to discretize the state and costate equation. Then the optimal control
problem (2.5)–(2.7) can be approximated by: find (yh, ph, uh) ∈ Vh × Vh × Uad such that

a(yh, Ihwh) + (uhyh, Ihwh) = ( f , Ihwh), ∀ wh ∈ Vh, (2.13)
a(ph, Ihqh) + (uh ph, Ihqh) = (yh − yd, Ihqh), ∀ qh ∈ Vh, (2.14)
(uh − yh ph, v − uh) ≥ 0, ∀ v ∈ Uad. (2.15)
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Similar to [24], we can find that the variational inequality (2.12) is equivalent to

u(x) = max(0, y(x)p(x)). (2.16)

And the variational inequality (2.15) is equivalent to

uh(x) = max(0, yh(x)ph(x)). (2.17)

Then the discrete optimality condition can be rewritten by: find (yh, ph, uh) ∈ Vh × Vh × Uad such that

a(yh, Ihwh) + (uhyh, Ihwh) = ( f , Ihwh), ∀ wh ∈ Vh, (2.18)
a(ph, Ihqh) + (uh ph, Ihqh) = (yh − yd, Ihqh), ∀ qh ∈ Vh, (2.19)
uh(x) = max(0, yh ph). (2.20)

3. L2 error estimates

In this section, we consider the error analysis of the finite volume element approximation. Let
(yh(u), ph(u)) be the solution of

a(yh(u), Ihwh) + (uyh(u), Ihwh) = ( f , Ihwh), ∀ wh ∈ Vh, (3.1)
a(ph(u), Ihqh) + (uph(u), Ihqh) = (yh(u) − yd, Ihqh), ∀ qh ∈ Vh. (3.2)

For yh(u) and ph(u), noting that yh = yh(uh) and ph = ph(uh).
Firstly, we introduce some intermediate error estimates.

Lemma 3.1. Let (y, p, u) ∈ (H2(Ω)∩H1
0(Ω))× (H2(Ω)∩H1

0(Ω))×Uad and (yh, ph, uh) ∈ Vh × Vh ×Uad

be the solutions of (2.5)–(2.7) and (2.13)–(2.15), respectively. Assume that (yh(u), ph(u)) and (yh, ph)
be the solutions of (3.1), (3.2) and (2.13)–(2.15), respectively. Then it holds that

||ph(u) − ph||1 + ||yh(u) − yh||1 ≤ C||u − uh||. (3.3)

Proof. Subtracting (2.13), (2.14) from (3.1), (3.2), we have

a(yh(u) − yh, Ihwh) + (uyh(u) − uhyh, Ihwh) = 0, ∀ wh ∈ Vh,

a(ph(u) − ph, Ihqh) + (uph(u) − uh ph, Ihqh) = (yh(u) − yh, Ihqh), ∀ qh ∈ Vh.

Then we have

a(yh(u) − yh, Ihwh) + (u(yh(u) − yh), Ihwh) = (yh(uh − u), Ihwh), ∀ wh ∈ Vh, (3.4)
a(ph(u) − ph, Ihqh) + (u(ph(u) − ph), Ihqh)

= (yh(u) − yh, Ihqh) + (ph(uh − u), Ihqh), ∀ qh ∈ Vh. (3.5)

Let wh = yh(u) − yh and qh = ph(u) − ph. An application Lemma 2.2 of [21], we can estimate the first
term on the left side of the Eq (3.4) as follow:

C||yh(u) − yh||
2
0 ≤ a(yh(u) − yh, Ihwh). (3.6)
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Note that u ≥ 0, there holds that

C||yh(u) − yh||
2
0 ≤ (u(yh(u) − yh), Ihwh). (3.7)

By using δ-Cauchy inequality, we also can estimate the first term on the right side of the Eq (3.4)
as follow:

(yh(uh − u), Ihwh) ≤C‖uh − u‖ · ‖yh(u) − yh‖

≤C‖uh − u‖2 + δ‖yh(u) − yh‖
2. (3.8)

where δ ∈ (0, c), c is a sufficiently small positive constant. Substitute (3.6)–(3.8) into (3.4), we can
obtain

||yh(u) − yh||0 ≤ C||u − uh||, (3.9)

where ‖ yh‖ ≤ C, and C is a positive constant. Note that

(yh(u) − yh, Ihqh) ≤C‖yh(u) − yh‖0 · ‖ph(u) − ph‖0

≤C‖u − uh‖ · ‖ph(u) − ph‖0, (3.10)

and

||ph(u) − ph|| ≤ ||ph(u) − ph||0. (3.11)

Similarly, collecting (3.5), (3.10), and (3.11), we can obtain

||ph(u) − ph||0 ≤ C||u − uh||. (3.12)

Then, combining (3.9) and (3.12), we have

||ph(u) − ph||1 + ||yh(u) − yh||0 ≤ C||u − uh||. (3.13)

This completes the proof. �

Similar to the proof of Corollary 3.6 in [21] with α = 1, we can obtain the following result.

Lemma 3.2. Let (y, p, u) ∈ (H2(Ω)∩H1
0(Ω))× (H2(Ω)∩H1

0(Ω))×Uad and (yh, ph, uh) ∈ Vh × Vh ×Uad

be the solutions of (2.5)–(2.7) and (2.13)–(2.15), respectively. Assume that A ∈ W2,∞(Ω) and f , yd ∈

H1(Ω). Then it holds that

||ph(u) − p|| + ||yh(u) − y|| ≤ Ch2. (3.14)

Proof. More details can be found in [21]. �

Define the directional derivative of F(·) at the point u ∈ Uad in the direction v ∈ Uad as following:

lim
t→0+

F(u + tv) − F(u)
t

= F′(u)(v).

If F′(u)(·) is a continuous linear functional on Uad, then we obtain that F is D-differentiable at u.

AIMS Mathematics Volume 6, Issue 8, 8585–8599.
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Let (p(u), y(u)) and (ph(u), yh(u)) be the solutions of (2.13), (2.14) and (2.18), (2.19), respectively.
Let J(·) : Uad → R be a D-differential convex functional near the solution u which satisfies the
following form:

J(u) =
1
2
||y(u) − yd||

2
L2(Ω) +

1
2
||u||2L2(Ω).

Then we have a sequence of convex functional Jh : Uad → R:

Jh(u) =
1
2
||yh(u) − yd||

2
L2(Ω) +

1
2
||u||2L2(Ω),

Jh(uh) =
1
2
||yh(uh) − yd||

2
L2(Ω) +

1
2
||uh||

2
L2(Ω).

According to [29], such that

(J′(u), v) = (u − y(u)p(u), v),
(J′h(u), v) = (u − yh(u)ph(u), v),
(J′h(uh), v) = (uh − yh(uh)ph(uh), v).

In the following we estimate ‖u − uh‖. We assume that the function J is strictly convex near the
solution u, i.e., for the solution u there exists a neighborhood of u in L2 such that J is convex in the
sense that there is a constant c > 0 satisfies:

(J′(u) − J′(v), u − v) ≥ c‖u − v‖2, (3.15)

for all v in the neighborhood of u. The convexity of J(·) and Jh(·) is closely related to the second order
sufficient conditions of the control problem, which are assumed in many studies on numerical
methods of the similar problems. For example, in [4, 5, 8], the authors are concerned with some
optimal control problems governed by semilinear elliptic equations and give the first-order and
second-order optimality conditions of the optimal solutions. Casas, Tröltzsch, and Unger discuss
necessary and sufficient optimality conditions for general nonlinear optimal control problems, and
derive the first order optimality conditions by using the Lagrangian formulation and the second order
optimality conditions by using the Lagrangian and Hamiltonian functions in [7]. Then, the following
second order sufficiently optimality condition (see [19, 30]) satisfies: there exists a c > 0 such that
J′′(u)v2 ≥ c‖v‖20.

It follows from the assumption (3.15), which is proved in [1], there exists a constant c > 0 satisfies

(J′h(v) − J′h(u), v − u) ≥ c‖v − u‖2, ∀v ∈ Uad. (3.16)

We next estimate the error of the approximate control in L2-norm.

Theorem 3.1. Let (y, p, u) ∈ (H2(Ω)∩H1
0(Ω))× (H2(Ω)∩H1

0(Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad

be the solutions of (2.5)–(2.7) and (2.13)–(2.15), respectively. We assume that A ∈ W2,∞(Ω) and
f , yd ∈ H1(Ω). Then we obtain the following error estimate:

||u − uh|| ≤ Ch2. (3.17)
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Proof. Let v = uh in (2.7) and v = u in (2.15), such that

(u − yp, uh − u) ≥ 0, (3.18)
(uh − yh ph, u − uh) ≥ 0. (3.19)

By using (3.16), (3.18), and (3.19), we obtain

c‖u − uh‖
2 ≤ (J′h(u), u − uh) − (J′h(uh), u − uh)

= (u − yh(u)ph(u), u − uh) − (uh − yh ph, u − uh)
= (u, u − uh) − (uh, u − uh) + (yh ph − yh(u)ph(u), u − uh)
≤ (yp, u − uh) − (yh ph, u − uh) + (yh ph − yh(u)ph(u), u − uh)
= (yp − yh(u)ph(u), u − uh)
= (yp − yph(u), u − uh) + (yph(u) − yh(u)ph(u), u − uh)
≡ E1 + E2. (3.20)

We now estimate all terms at the right side of (3.20). From Lemma 3.2 and δ-Cauchy inequality, there
holds that

E1 = (yp − yph(u), u − uh)
≤ C‖p − ph(u)‖ · ‖u − uh‖

≤ Ch2‖u − uh‖

≤ Ch4 + δ‖u − uh‖
2, (3.21)

where δ ∈ (0, c), c is a sufficiently small positive constant. Similarly, for E2, we obtain that

E2 = (yph(u) − yh(u)ph(u), u − uh)
≤ C‖y − yh(u)‖ · ‖u − uh‖

≤ Ch2‖u − uh‖

≤ Ch4 + δ‖u − uh‖
2. (3.22)

Finally, we can derive the result (3.17) from (3.20)–(3.22). �

Theorem 3.2. Let (y, p, u) ∈ (H2(Ω)∩H1
0(Ω))× (H2(Ω)∩H1

0(Ω))×Uad and (yh, ph, uh) ∈ Vh× Vh×Uad

be the solutions of (2.5)–(2.7) and (2.13)–(2.15), respectively. Assume that A ∈ W2,∞(Ω) and f , yd ∈

H1(Ω). Then there exists a h0 > 0 such that for all 0 < h ≤ h0

||u − uh|| + ||y − yh|| + ||p − ph|| ≤ Ch2. (3.23)

Proof. Using the triangle inequality leads to

||y − yh|| ≤ ||y − yh(u)|| + ||yh(u) − yh||,

||p − ph|| ≤ ||p − ph(u)|| + ||ph(u) − ph||.
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An application Lemma 3.1 yields

||y − yh|| ≤ ||y − yh(u)|| + C||u − uh||, (3.24)
||p − ph|| ≤ ||p − ph(u)|| + C||u − uh||. (3.25)

Note that A ∈ W2,∞(Ω) and f , yd ∈ H1(Ω), by using Lemma 3.2, it holds that

||y − yh(u)|| ≤ Ch2 and ||p − ph(u)|| ≤ Ch2. (3.26)

It follows from (3.17) and (3.24), such that

||y − yh|| ≤ Ch2. (3.27)

By using (3.25), (3.17), and ||p − ph(u)|| ≤ Ch2, we derive

||p − ph|| ≤ Ch2. (3.28)

From (3.27), (3.28) and (3.17), we can obtain (3.23). �

4. L∞ error estimates

In the section, we will discuss L∞ error estimates of the bilinear elliptic optimal control problem.
Firstly, we introduce the error estimates of the numerical solutions of the state and costate in H1-norm.

Theorem 4.1. Assume that A ∈ W2,∞(Ω) and f , yd ∈ H1(Ω). Let (y, p, u) ∈ (H2(Ω) ∩ H1
0(Ω)) ×

(H2(Ω) ∩ H1
0(Ω)) × Uad and (yh, ph, uh) ∈ Vh × Vh × Uad are the solutions of (2.5)–(2.7) and (2.13)–

(2.15), respectively. Then there exists a h0 > 0 such that for all 0 < h ≤ h0

||y − yh||1 + ||p − ph||1 ≤ Ch. (4.1)

Proof. Using the triangle inequality yields

||y − yh||1 ≤ ||y − yh(u)||1 + ||yh(u) − yh||1,

||p − ph||1 ≤ ||p − ph(u)||1 + ||ph(u) − ph||1.

An application of Lemma 3.1 leads to

||y − yh||1 ≤ ||y − yh(u)||1 + C||u − uh||, (4.2)
||p − ph||1 ≤ ||p − ph(u)||1 + C||u − uh||. (4.3)

By using Theorem 3.3 of [21] yields

||y − yh(u)||1 ≤ Ch, ||p − ph(u)||1 ≤ Ch. (4.4)

From Theorem 3.2 and (4.2)–(4.4), we can easily obtain (4.1). �

Then, we estimate the error of the numerical solutions of control, state and costate in L∞(Ω)-norm.
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Theorem 4.2. Assume that A ∈ W2,∞(Ω) and f , yd ∈ H1(Ω). Let (y, p, u) ∈ (H2(Ω) ∩ H1
0(Ω)) ×

(H2(Ω) ∩ H1
0(Ω)) × Uad and (yh, ph, uh) ∈ Vh × Vh × Uad be the solutions of (2.5)–(2.7) and (2.13)–

(2.15), respectively. Then there exists a h0 > 0 such that for all 0 < h ≤ h0

||u − uh||∞ + ||y − yh||∞ + ||p − ph||∞ ≤ Ch2
√
| ln h|. (4.5)

Proof. According to Lemma 3.1, Lemma 10.5.1 of [36], and Theorem 3.1, there holds that

||y − yh||∞ ≤ ||y − yh(u)||∞ + ||yh(u) − yh||∞

≤ ||y − yh(u)||∞ + C(| ln h|)1/2||yh(u) − yh||1

≤ ||y − yh(u)||∞ + C(| ln h|)1/2||u − uh||

≤ Ch2(| ln h|)1/2.

Similarly, by using (2.16), (2.17), we can get

||u − uh||∞ ≤ C||yp − yh ph||∞

≤ C(||yp − yph(u)||∞ + ||yph(u) − yph||∞ + ||yph − yh ph||∞)
≤ C||p − ph(u)||∞ + C(| ln h|)1/2||ph(u) − ph||1 + C||y − yh||∞

≤ C||p − ph(u)||∞ + C(| ln h|)1/2||y − yh|| + C||y − yh||∞

≤ Ch2(| ln h|)1/2.

Using again Lemma 3.1, Lemma 10.5.1 of [36], and Theorem 3.1, such that

||p − ph||∞ ≤ ||p − ph(u)||∞ + ||ph(u) − ph||∞

≤ ||p − ph(u)||∞ + C(| ln h|)1/2||ph(u) − ph||1

≤ ||p − ph(u)||∞ + C(| ln h|)1/2||y − yh||

≤ Ch2(| ln h|)1/2.

Then we complete the proof of (4.5). �

5. Numerical example

In order to test the theory of the previous section, we present one numerical example to illustrate
them. The optimal problem was solved numerically by a precondition projection algorithm, with codes
developed based on AFEPack.

In this example, we consider the bilinear elliptic optimal control problem:

min
u∈Uad

1
2
||y − yd||

2
L2(Ω) +

1
2
||u||L2(Ω),

subject to the state equation

−∆y + y3 = u + f , −∆p + 3y2 p = y − yd, in Ω,

y = 0, on Γ,

AIMS Mathematics Volume 6, Issue 8, 8585–8599.



8596

where Ω = [0, 1] × [0, 1] and Uad = {u : u ≥ 0}.

Then we assume that

y = sin(πx1) sin(πx2),
p = 2 sin(πx1) sin(πx2),
yd = y + ∆p − 3y2 p,

u = max(−p, 0),
f = −∆y + y3 − u.

We present the error for the numerical solution of the triple (uh, yh, ph) in Tables 1 and 2. In the
numerical implementation, the errors ||u − uh||L2 , ‖y − yh‖L2 and ‖p − ph‖L2 obtained on a sequence of
uniformly refined meshes are presented in Table 1. While the errors ||u−uh||L∞ , ‖y−yh‖L∞ and ‖p−ph‖L∞

are presented in Table 2. In Table 1, the ith line is four times of the (i + 1)th line, i = 3, 4, 5, it is clear
that ||u− uh||L2 , ‖y− yh‖L2 and ‖p− ph‖L2 have the convergence order of O(h2). In Table 2, the ith line is
almost four times of the (i+1)th line, i = 3, 4, 5, which means that the convergent rates are O(h2

√
|lnh|).

So, ||u − uh||L∞ , ‖y − yh‖L∞ and ‖p − ph‖L∞ have the convergence order of O(h2
√
|lnh|). The numerical

results show the a priori error estimates is reliable, which is consistent with our theoretical results.

Table 1. The L2-errors for state and control variables.

dof
Errors

||u − uh||L2 ‖y − yh‖L2 ‖p − ph‖L2

49 3.48573E-02 2.40798E-02 4.78575E-02
225 8.71856E-03 6.08546E-03 1.25367E-02
961 2.21423E-03 1.50809E-03 3.05864E-03

3969 5.37573E-04 3.85875E-04 7.53643E-04

Table 2. The L∞-errors for state and control variables.

dof
Errors

||u − uh||L∞ ‖y − yh‖L∞ ‖p − ph‖L∞

49 9.01533E-02 3.85715E-02 7.69858E-02
225 2.36452E-02 9.83623E-03 1.93561E-02
961 5.68646E-03 2.41389E-03 4.92130E-03

3969 1.51334E-03 6.15235E-04 1.23641E-03

The corresponding convergent rates of these approximations are presented in Figure 3. In Figure 3,
the slope of the solid line is −1, which means the convergent rate is O(h2) or O(h2

√
|lnh|).
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Figure 3. The convergent rates in the L2-norm on the left hand side and in the L∞-norm on
the right hand side for the finite volume element approximation.

Seen from the numerical results listed in Table 1, Table 2 and Figure 3, the convergent orders match
the theories derived in the previous sections.

6. Conclusions and future works

In this paper, we considered a priori error estimates for the finite volume element approximation
of the bilinear elliptic optimal control problem. Then we used the finite volume method to discretize
the state and adjoint equation of the system. Under some reasonable assumptions, we obtained some
optimal order error estimates. The approximate orders for the state, costate and control variables were
O(h2) and O(h2

√
|lnh|) in the sense of L2-norm and L∞-norm. To our best knowledge in the context of

optimal control problems, there has no literature that considers the priori error estimates of the finite
volume method governed by the bilinear elliptic optimal control problem.

In the future, we shall consider the finite volume element method for bilinear parabolic optimal
control problem. Furthermore, we shall consider a posteriori error estimates and superconvergence of
the finite volume element solutions for bilinear parabolic optimal control problem.
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