Mathematics
http://www.aimspress.com/journal/Math

Research article

Values and bounds for depth and Stanley depth of some classes of edge ideals

Naeem Ud Din*, Muhammad Ishaq and Zunaira Sajid
Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, Pakistan

* Correspondence: Email: naeemuddin03088@gmail.com; Tel:+923088944090.

Abstract

In this paper we study depth and Stanley depth of the quotient rings of the edge ideals associated with the corona product of some classes of graphs with arbitrary non-trivial connected graph G. These classes include caterpillar, firecracker and some newly defined unicyclic graphs. We compute formulae for the values of depth that depend on the depth of the quotient ring of the edge ideal $I(G)$. We also compute values of depth and Stanley depth of the quotient rings associated with some classes of edge ideals of caterpillar graphs and prove that both of these invariants are equal for these classes of graphs.

Keywords: depth; Stanley depth; Stanley decomposition; monomial ideal; edge ideal
Mathematics Subject Classification: Primary 13C15; Secondary 13P10, 13F20

1. Introduction

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over a field K. Let M be a finitely generated \mathbb{Z}^{n}-graded S-module. The K subspace $a K[W]$ which is generated by all elements of the form $a w$ where a is a homogeneous element in M, w is a monomial in $K[W]$ and $W \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. $K[W]$, is called a Stanley space of dimension $|W|$ if it is a free $K[W]$-module. A decomposition \mathcal{D} of the K-vector space M as a finite direct sum of Stanley spaces $\mathcal{D}: M=\bigoplus_{j=1}^{r} a_{j} K\left[W_{j}\right]$, is called Stanley decomposition of M. Stanley depth of \mathcal{D} is the minimum dimension of all the Stanley spaces. The quantity

$$
\operatorname{sdepth}(M):=\max \{\operatorname{sdepth}(\mathcal{D}) \mid \mathcal{D} \text { is a Stanley decomposition of } M\}
$$

is called the Stanley depth of M.
Depth of a finitely generated R-module M, where R is the local Noetherian ring with unique maximal ideal $m:=\left(x_{1}, \ldots, x_{n}\right)$, is the common length of all maximal M-sequences in m. For introduction to depth and Stanley depth we recommend the readers [5, 9, 15]. Stanley conjectured
in [17] that for any \mathbb{Z}^{n}-graded S-module M, $\operatorname{sdepth}(M) \geq \operatorname{depth}(M)$. This conjecture has been studied in various special cases; see [6, 12, 14], this conjecture was later disproved by Duval et al. [4] in 2016, but it is still important to find classes of \mathbb{Z}^{n}-graded modules which satisfy the Stanley inequality. Let $I \subset J \subset S$ be monomial ideals. Herzog et al. [10] showed that the invariant Stanley depth of J / I is combinatorial in nature. The most important thing about Stanley depth is that it shares some properties and bounds with homological invariant depth; see $[1,6,16]$.

Let $G=\left(V_{G}, E_{G}\right)$ be a graph with vertex set V_{G} and edge set E_{G}. A graph is called simple if it has no loops and multiple edges. Through out this paper all graphs are simple. A graph G is said to be connected if there is a path between any two vertices of G. If $V_{G}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $S=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, then edge ideal $I(G)$ of the graph G is the ideal of S generated by all monomials of the form $x_{i} x_{j}$ such that $\left\{v_{i}, v_{j}\right\} \in E_{G}$. Let $n \geq 2$. A path on n vertices say $\left\{u_{1}, u_{2}, \ldots, u_{u}\right\}$ is a graph denoted by P_{n} such that $E_{P_{n}}=\left\{\left\{u_{i}, u_{i+1}\right\}: 1 \leq i \leq n-1\right\}$. Let $n \geq 3$. A cycle on n vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a graph denoted by C_{n} such that $E_{C_{n}}=\left\{\left\{u_{i}, u_{i+1}\right\}: 1 \leq i \leq n-1\right\} \cup\left\{u_{1}, u_{n}\right\}$. A simple and connected graph \mathcal{T} is said to be a tree if there exists a unique path between any two vertices of \mathcal{T}. If $u, v \in V_{G}$ then the distance between u and v is the length of the shortest path between u and v. The maximum distance between any two vertices of G is called diameter of G, denoted by $d(G)$. The degree of a vertex u in a graph G is the number of edges incident on u, degree of u is denoted by $\operatorname{deg}(u)$. A graph with only one vertex is called a trivial graph. We denote the trivial graph by T. Any vertex with degree 1 is said to be a leaf or pendant vertex of G. Internal vertex is a vertex that is not a leaf. A tree with one internal vertex and $k-1$ leaves incident on it is called k-star, we denoted k-star by S_{k}.

The aim of this paper is to study depth and Stanley depth of the quotient rings of the edge ideals associated with the corona product of firecracker graphs, some classes of caterpillar graphs and some newly defined unicyclic graphs with an arbitrary non-trivial connected graph G. We compute formulae for the values of depth that are the functions of depth of the quotient ring of the edge ideal $I(G)$ see Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4. As a consequence we also prove that if the Stanley's inequality holds for the quotient ring of the edge ideal $I(G)$, then it also holds for the quotient rings of the edge ideals associated to the corona product of the graphs we considered with G. We also compute values of depth and Stanley depth and verify Stanley's inequality for the quotient ring of the edge ideals associated with some special classes of caterpillar graphs, see Theorem 4.1 and Theorem 4.2.

2. Definitions and notations

In this section some definitions from Graph Theory are presented. For more details we refer the readers to $[7,8,18]$. We also present some known results from Commutative Algebra that are frequently used in this paper. Note that by abuse of notation, x_{i} will at times be used to denote both a vertex of a graph G and the corresponding variable of the polynomial ring S. For a given graph $G, K\left[V_{G}\right]$ will denote the polynomial ring whose variables are the vertices of the graph G.

Definition 2.1 ([7]). Let G_{1} and G_{2} be two graphs with order n and m respectively. The corona product of G_{1} and G_{2} denoted by $G_{1} \circ G_{2}$, is the graph obtained by taking one copy of G_{1} and n copies of G_{2}; and then by joining the i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}; see Figure 1.

Figure 1. From left to right $C_{4} \circ C_{3}$ and $P_{4} \circ C_{3}$.

Definition 2.2. Let $z \geq 1$ and $k \geq 2$ be integers and P_{z} be a path on z vertices $u_{1}, u_{2}, \ldots, u_{z}$ that is, $E_{P_{z}}=\left\{u_{i} u_{i+1}: 1 \leq i \leq z-1\right\}$ (for $z=1, E_{P_{z}}=\emptyset$). We define a graph on $z k$ vertices by attaching $k-1$ pendant vertices at each u_{i}. We denote this graph by $P_{z, k}$; see Figure 2.

Definition 2.3. Let $z \geq 3$ and $k \geq 2$ be integers and C_{z} be a cycle on z vertices $u_{1}, u_{2}, \ldots, u_{z}$ that is, $E_{C_{z}}=\left\{u_{i} u_{i+1}: 1 \leq i \leq z-1\right\} \cup\left\{u_{1} u_{z}\right\}$. We define a graph on $z k$ vertices by attaching $k-1$ pendant vertices at each u_{i}. We denote this graph by $C_{z, k}$; see Figure 2.

Figure 2. From left to right $P_{3,5}$ and $C_{3,5}$.

Definition 2.4 ([18]). Firecracker is a graph formed by the concatenation of α number of k-stars by linking exactly one leaf from each star. It is denoted by $F_{\alpha, k}$; see Figure 3.

Definition 2.5. The graph obtained by joining the end vertices of the path joining the leaves of the α stars in $F_{\alpha, k}$. We call this graph circular firecracker and is denoted by $C F_{\alpha, k}$; see Figure 3.

Figure 3. From left to right $F_{3,5}$ and $C F_{3,5}$.

Definition 2.6. Let $z \geq 3$ be an odd integer and $k_{1}, k_{3}, k_{5}, \ldots, k_{z}$ be integers greater than 1 . Let P_{z} be a path on z vertices $u_{1}, u_{2}, \ldots, u_{z}$ that is, $E_{P_{z}}=\left\{u_{i} u_{i+1}: 1 \leq i \leq z-1\right\}$. Let $a \in\{1,3,5, \ldots, z\}$, we define
a graph by attaching $k_{a}-1$ pendant vertices at each vertex u_{a} of P_{z}. We denote this graph by \mathcal{P}_{z}; see Figure 4.

Definition 2.7. Let $z \geq 2$ and $k \geq 3$ be integers and P_{z} be a path on z vertices $\left\{u_{1}, u_{2}, \ldots, u_{z}\right\}$ that is, $E_{P_{z}}=\left\{u_{i} u_{i+1}: 1 \leq i \leq z-1\right\}$. We denote by $\mathcal{P}_{z, k}$ the graph obtained by attaching $k+i-2$ pendant vertices at each u_{i} of P_{z}; see Figure 4.

Figure 4. From left to right \mathcal{P}_{5} and $\mathcal{P}_{5,4}$.
Here we recall some known results that will be used in this paper.
Lemma 2.8 ([2, Proposition 1.2.9]). (Depth Lemma) If $0 \longrightarrow E_{1} \longrightarrow E_{2} \longrightarrow E_{3} \longrightarrow 0$ is a short exact sequence of modules over a local ring S, or a Noetherian graded ring with S_{0} local then
(1) $\operatorname{depth}\left(E_{1}\right) \geq \min \left\{\operatorname{depth}\left(E_{2}\right), 1+\operatorname{depth}\left(E_{3}\right)\right\}$.
(2) $\operatorname{depth}\left(E_{2}\right) \geq \min \left\{\operatorname{depth}\left(E_{1}\right)\right.$, depth $\left.\left(E_{3}\right)\right\}$.
(3) $\operatorname{depth}\left(E_{3}\right) \geq \min \left\{\operatorname{depth}\left(E_{1}\right)-1, \operatorname{depth}\left(E_{2}\right)\right\}$.

Lemma 2.9 ([14, Lemma 2.4]). If $0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0$ is a short exact sequence of \mathbb{Z}^{n}-graded S-module, then

$$
\operatorname{sdepth}(E) \geq \min \left\{\operatorname{sdepth}\left(E_{1}\right), \operatorname{sdepth}\left(E_{2}\right)\right\} .
$$

Proposition 1 ([16, Corollary 1.3]). If $I \subset S$ is a monomial ideal and $u \in S$ is a monomial such that $u \notin I$, then $\operatorname{depth}_{S}(S /(I: u)) \geq \operatorname{depth}_{S}(S / I)$.

Proposition 2 ([3, Proposition 2.7]). If $I \subset S$ is a monomial ideal and $u \in S$ is monomial such that $u \notin I$, then $\operatorname{sdepth}_{S}(S /(I: u)) \geq \operatorname{sdepth}_{S}(S / I)$.

Lemma 2.10 ([13, Lemma 3.6]). Let $I \subset S$ be a monomial ideal. If $S^{\prime}=S \otimes_{K} K\left[x_{n+1}\right] \cong S\left[x_{n+1}\right]$, then $\operatorname{depth}\left(S^{\prime} / I^{\prime} S^{\prime}\right)=\operatorname{depth}(S / I)+1$ and $\operatorname{sdepth}\left(S^{\prime} / I^{\prime} S^{\prime}\right)=\operatorname{sdepth}(S / I)+1$.
Lemma 2.11 ([3, Proposition 1.1]). If $I^{\prime} \subset S^{\prime}=K\left[x_{1}, \ldots, x_{m}\right]$ and $I^{\prime \prime} \subset S^{\prime \prime}=K\left[x_{m+1}, \ldots, x_{n}\right]$ are monomial ideals, with $1 \leq m<n$, then

$$
\operatorname{depth}_{S}\left(S /\left(I^{\prime} S+I^{\prime \prime} S\right)\right)=\operatorname{depth}_{S^{\prime}}\left(S^{\prime} / I^{\prime}\right)+\operatorname{depth}_{S^{\prime \prime}}\left(S^{\prime \prime} / I^{\prime \prime}\right)
$$

Lemma 2.12 ([3, Proposition 1.1]). If $I^{\prime} \subset S^{\prime}=K\left[x_{1}, \ldots, x_{m}\right]$ and $I^{\prime \prime} \subset S^{\prime \prime}=K\left[x_{m+1}, \ldots, x_{n}\right]$ are monomial ideals, with $1 \leq m<n$, then

$$
\operatorname{depth}\left(S^{\prime} / I^{\prime} \otimes_{K} S^{\prime \prime} / I^{\prime \prime}\right)=\operatorname{depth}_{S}\left(S /\left(I^{\prime} S+I^{\prime \prime} S\right)\right)=\operatorname{depth}_{S^{\prime}}\left(S^{\prime} / I^{\prime}\right)+\operatorname{depth}_{S^{\prime \prime}}\left(S^{\prime \prime} / I^{\prime \prime}\right)
$$

Proof. Proof follows by [19, Proposition 2.2.20] and [19, Theorem 2.2.21].

Theorem 2.1 ([16, Theorem 3.1]). If $I^{\prime} \subset S^{\prime}=K\left[x_{1}, \ldots, x_{m}\right]$ and $I^{\prime \prime} \subset S^{\prime \prime}=K\left[x_{m+1}, \ldots, x_{n}\right]$ are monomial ideals, with $1 \leq m<n$, then

$$
\operatorname{sdepth}_{S}\left(S /\left(I^{\prime} S+I^{\prime \prime} S\right)\right) \geq \operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I^{\prime}\right)+\operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / I^{\prime \prime}\right) .
$$

Lemma 2.13. If $I^{\prime} \subset S^{\prime}=K\left[x_{1}, \ldots, x_{m}\right]$ and $I^{\prime \prime} \subset S^{\prime \prime}=K\left[x_{m+1}, \ldots, x_{n}\right]$ are monomial ideals, with $1 \leq m<n$, then

$$
\left.\operatorname{sdepth}\left(S^{\prime} / I^{\prime} \otimes_{K} S^{\prime \prime} / I^{\prime \prime}\right)\right) \geq \operatorname{sdepth}_{S^{\prime}}\left(S^{\prime} / I^{\prime}\right)+\operatorname{sdepth}_{S^{\prime \prime}}\left(S^{\prime \prime} / I^{\prime \prime}\right)
$$

Proof. By [19, Proposition 2.2.20], we have $S^{\prime} / I^{\prime} \otimes_{K} S^{\prime \prime} / I^{\prime \prime} \cong S /\left(I^{\prime} S+I^{\prime \prime} S\right)$, by Theorem 2.1 the required result follows.

Let $m \geq 2$ be an integer, and consider $\left\{M_{j}: 1 \leq j \leq m\right\}$ and $\left\{N_{i}: 0 \leq i \leq m\right\}$ be sequence of \mathbb{Z}^{n}-graded S-modules and consider the chain of short exact sequences of the form

$$
\begin{gathered}
0 \longrightarrow M_{1} \longrightarrow N_{0} \longrightarrow N_{1} \longrightarrow 0 \\
0 \longrightarrow M_{2} \longrightarrow N_{1} \longrightarrow N_{2} \longrightarrow 0 \\
\vdots \\
0 \longrightarrow M_{m-1} \longrightarrow N_{m-2} \longrightarrow N_{m-1} \longrightarrow 0 \\
0 \longrightarrow M_{m} \longrightarrow N_{m-1} \longrightarrow N_{m} \longrightarrow 0 .
\end{gathered}
$$

Then the following lemmas play key role in the proofs of our theorems.
Lemma 2.14 ([11, Lemma 3.1]). If depth $M_{m} \leq$ depth $_{m}$ and depth $M_{j-1} \leq \operatorname{depth}_{j}$, for all $2 \leq j \leq m$, then depth $M_{1}=\operatorname{depth} N_{0}$.

Lemma 2.15. sdepth $N_{0} \geq \min \left\{\right.$ sdepth M_{j}, sdepth $\left.N_{m}: 1 \leq j \leq m\right\}$.
Proof. Proof follows by applying Lemma 2.9 on the above chain of short exact sequences.
Proposition 3 ([1]). If I is an edge ideal of n-star, then depth $(S / I)=\operatorname{sdepth}(S / I)=1$, and $\operatorname{depth}\left(S / I^{t}\right), \operatorname{sdepth}\left(S / I^{t}\right) \geq 1$.

Corollary 2.16 ([6, Theorem 3.2]). Let G be a connected graph. If $I=I(G)$ and d is the diameter of G, then

$$
\operatorname{depth}(S / I) \geq\left\lceil\frac{d+1}{3}\right\rceil .
$$

Theorem 2.2 ([6, Theorem 4.18]). Let G be a connected graph. If $I=I(G)$ and d is the diameter of G, then for $1 \leq t \leq 3$ we have

$$
\operatorname{sdepth}\left(S / I^{t}\right) \geq\left\lceil\frac{d-4 t+5}{3}\right\rceil .
$$

Corollary 2.17. Let G be connected graph. If $I=I(G)$ and d is the diameter of G, then we have

$$
\operatorname{sdepth}(S / I) \geq\left\lceil\frac{d+1}{3}\right\rceil .
$$

3. Caterpillar and firecrackers graphs and the corona product

In this section we prove our main results related to corona product of graphs. We start this section with some elementary results that are necessary for our main results. Let T be a trivial graph and G any non-trivial and connected graph. The first lemma of this section give depth and Stanley depth of the cyclic modules associated with $T \circ G$. For examples of $T \circ G$; see Figure 5 .

Lemma 3.1. Let T be a trivial graph and G be any connected non-trivial graph. If $I=I(T \circ G)$ and $S:=K[V(T \circ G)]$, then $\operatorname{depth}(S / I)=1$ and $\operatorname{sdepth}(S / I)=1$.

Proof. By definition of $T \circ G$ the only vertex x of T has an edge with every vertex of G. Consider the following short exact sequence

$$
0 \longrightarrow S /(I: x) \longrightarrow S / I \longrightarrow S /(I, x) \longrightarrow 0
$$

Therefore $S /(I: x) \cong K[x]$, and $\operatorname{depth}(S /(I: x))=1$. Now $S /(I, x) \cong S_{x} / I(G)$, where $S_{x}:=S /(x)$. We have $\operatorname{depth}(S /(I, x))=\operatorname{depth}\left(S_{x} / I(G)\right) \geq 1$, by Corollary 2.16. Now by using Depth Lemma, we have $\operatorname{depth}(S / I)=1$. For the Stanley depth since $S /(I: x) \cong K[x]$ we have $\operatorname{sdepth}(S /(I: x))=1$. Now $S /(I, x) \cong S_{x} / I(G)$. We have $\operatorname{sdepth}(S /(I, x))=\operatorname{sdepth}\left(S_{x} / I(G)\right) \geq 1$, by using Lemma 2.9 and Proposition 2, we have $\operatorname{sdepth}(S / I)=1$.

Figure 5. From left to right $T \circ C_{6}$ and $T \circ \mathcal{T}_{19}\left(\mathcal{T}_{19}\right.$ is a tree on 19 vertices $)$.

Proposition 4. For $n, k \geq 2$, let G be a non-trivial connected graph. If $S:=K\left[V\left(S_{k} \circ G\right)\right]$, then

$$
\operatorname{depth}\left(S / I\left(S_{k} \circ G\right)\right)=k-1+t
$$

where $t=\operatorname{depth}(K[V(G)] / I(G))$. Also

$$
\operatorname{sdepth}\left(S / I\left(S_{k} \circ G\right)\right) \geq k-1+s,
$$

where $s=\operatorname{sdepth}(K[V(G)] / I(G))$.
Proof. First we prove the result for depth. Let $k=2$. If e be a variable corresponding to a leaf in S_{2}. Consider the following short exact sequence

$$
0 \longrightarrow S /(I: e) \longrightarrow S / I \longrightarrow S /(I, e) \longrightarrow 0
$$

it is easy to see that $S /(I: e) \cong K[V(G)] / I(G) \otimes_{K} K[e]$ and

$$
\left.S /(I, e) \cong K[V(T \circ G)] / I(T \circ G) \otimes_{K} K[V(G)] / I(G)\right)
$$

By Lemma 3.1, Lemma 2.10 and [19, Theorem 2.2.21], we have $\operatorname{depth}(S /(I: e))=1+t$ and $\operatorname{depth}(S /(I, e))=1+t=\operatorname{depth}(S /(I: e))$. Thus by Depth Lemma we have $\operatorname{depth}(S / I)=1+t$.

Let $k \geq 3$. We will prove the required result by induction on k. Let e be a variable corresponding to a leaf in S_{k}. Consider the following short exact sequence

$$
0 \longrightarrow S /(I: e) \longrightarrow S / I \longrightarrow S /(I, e) \longrightarrow 0
$$

we have

$$
S /(I: e) \cong \underset{j=1}{\substack{k-2}} \otimes_{K} K[V(T \circ G)] / I(T \circ G) \otimes_{K} K[V(G)] / I(G) \otimes_{K} K[e] .
$$

By Lemmma [19, Theorem 2.2.21], we have

$$
\operatorname{depth}(S /(I: e))=\sum_{j=1}^{k-2} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+\operatorname{depth}(K[V(G)] / I(G))+\operatorname{depth} K[e],
$$

by Lemma 3.1, we get $\operatorname{depth}(S /(I: e))=k-2+t+1=k-1+t$. It can easily be seen that

$$
S /(I, e) \cong K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \otimes_{K}(K[V(G)] / I(G)) .
$$

Thus by [19, Theorem 2.2.21]

$$
\operatorname{depth}(S /(I, e)) \cong \operatorname{depth}\left(K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right)\right)+\operatorname{depth}((K[V(G)] / I(G)))
$$

applying induction on k we get

$$
\operatorname{depth}(S /(I, e))=(k-2+t)+t=k+2 t-2 \geq k-1+t=\operatorname{depth}(S /(I: e))
$$

Hence by Depth Lemma we have depth $(S / I)=k-1+t$. This completes the proof for depth.
For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.9 instead of Depth Lemma.

Corollary 3.2. If Stanley's inequality holds for $K[V(G)] / I(G)$ then it also holds for $S / I\left(S_{k} \circ G\right)$.

Figure 6. From left to right $P_{2,5} \circ C_{3}$ and $P_{2,5} \circ \mathcal{T}_{6}$.
Theorem 3.1. Let $z \geq 1$ and $k \geq 2$ be integers. If G is a connected graph with $|V(G)| \geq 2$ and $S:=K\left[V\left(P_{z, k} \circ G\right)\right]$, then

$$
\operatorname{depth}\left(S / I\left(P_{z, k} \circ G\right)\right)=z(k-1+t)
$$

where $t=\operatorname{depth}((K[V(G)]) / I(G))$ and

$$
\operatorname{sdepth}\left(S / I\left(P_{z, k} \circ G\right)\right) \geq z(k-1+s)
$$

where $s=\operatorname{depth}((K[V(G)]) / I(G))$; see Figure 6.

Proof. First we prove the result for depth. We consider the following cases.

1. If $z=1$ and $k \geq 2$ then the result follows from Proposition 4.
2. Let $z=2$. We consider the following subcases:
(a) If $k=2$ and e is a variable corresponding to a leaf in $P_{2,2}$. Consider the following short exact sequence

$$
0 \longrightarrow S /(I: e) \longrightarrow S / I \longrightarrow S /(I, e) \longrightarrow 0
$$

then $S /(I: e) \cong K\left[V\left(S_{2} \circ G\right)\right] / I\left(S_{2} \circ G\right) \otimes_{K} K[V(G)] / I(G) \otimes_{K} K[e]$, $\left.S /(I, e) \cong K\left[V\left(S_{3} \circ G\right)\right] / I\left(S_{3} \circ G\right) \otimes_{K} K[V(G)] / I(G)\right)$. By [19, Theorem 2.2.21],

$$
\begin{aligned}
& \operatorname{depth}(S /(I: e))=\operatorname{depth}\left(K\left[V\left(S_{2} \circ G\right)\right] / I\left(S_{2} \circ G\right)\right) \\
&+\operatorname{depth}(K[V(G)] / I(G))+\operatorname{depth}(K[e]), \\
&\left.\operatorname{depth}(S /(I, e))=\operatorname{depth}\left(K\left[V\left(S_{3} \circ G\right)\right] / I\left(S_{3} \circ G\right)\right)+\operatorname{depth}(K[V(G)] / I(G))\right) .
\end{aligned}
$$

By Proposition 4 we have $\operatorname{depth}(S /(I: e))=t+1+t+1=2(1+t)$ and $\operatorname{depth}(S /(I, e))=2+t+2=2(1+t)=\operatorname{depth}(S /(I: e))$. Hence by Depth Lemma we have $\operatorname{depth}(S / I)=2(1+t)$ and we are done in this special case.
(b) Let $k \geq 3$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{2} in $P_{2, k}$ and $I=I\left(P_{2, k} \circ G\right)$. For $0 \leq i \leq k-2, I_{i}:=\left(I_{i}, e_{i+1}\right)$, where $I_{0}=I$. Consider the chain of short exact sequences of the form

$$
\begin{gathered}
0 \longrightarrow S /\left(I_{0}: e_{1}\right) \longrightarrow S / I_{0} \longrightarrow S /\left(I_{0}, e_{1}\right) \longrightarrow 0 \\
0 \longrightarrow S /\left(I_{1}: e_{2}\right) \longrightarrow S / I_{1} \longrightarrow S /\left(I_{1}, e_{2}\right) \longrightarrow 0 \\
\vdots \\
0 \longrightarrow S /\left(I_{k-2}: e_{k-1}\right) \longrightarrow \quad S / I_{k-2} \longrightarrow S /\left(I_{k-2}, e_{k-1}\right) \longrightarrow 0 \\
0 \longrightarrow S /\left(I_{k-1}: u_{2}\right) \longrightarrow \quad S / I_{k-1} \longrightarrow S /\left(I_{k-1}, u_{2}\right) \longrightarrow 0 \\
S /\left(I_{i}: e_{i+1}\right) \cong K\left[V\left(S_{k} \circ G\right)\right] / I\left(S_{k} \circ G\right) \underset{\substack{k-2-i \\
\otimes_{K} \\
j=1}}{ } K[V(T \circ G)] / I(T \circ G) \\
\substack{i+1 \\
\otimes_{K} \\
j=1}
\end{gathered}
$$

By [19, Theorem 2.2.21]

$$
\begin{align*}
\operatorname{depth}\left(S /\left(I_{i}: e_{i+1}\right)\right)=\operatorname{depth}(& \left.K\left[V\left(S_{k} \circ G\right)\right] / I\left(S_{k} \circ G\right)\right)+\sum_{j=1}^{i+1} \operatorname{depth}(K[V(G)] / I(G)) \\
& +\sum_{j=1}^{k-2-i} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+\operatorname{depth}\left(k\left[e_{i+1}\right]\right) \tag{3.1}
\end{align*}
$$

hence by Lemma 3.1 and Proposition 4, we get

$$
\begin{align*}
\operatorname{depth} S /\left(I_{i}: e_{i+1}\right)=k-1+t & +\sum_{j=1}^{k-2-i} 1+\sum_{j=1}^{i+1} t+1 \\
& =k+t+k-2-i+(i+1) t=2(k-1+t)+i(t-1) \tag{3.2}
\end{align*}
$$

Also we have

$$
\begin{gathered}
S /\left(I_{k-1}: u_{2}\right) \cong \underset{\substack{k-1 \\
j=1}}{k-1} K[V(T \circ G)] / I(T \circ G) \otimes_{j=1}^{k} K[V(G)] / I(G) \otimes_{K} K\left[u_{1}\right], \\
S /\left(I_{k-1}, u_{2}\right) \cong K\left[V\left(S_{k} \circ G\right)\right] / I\left(S_{k} \circ G\right) \otimes_{\substack{k \\
j=1}}^{k} K[V(G)] / I(G) .
\end{gathered}
$$

By [19, Theorem 2.2.21] we have

$$
\begin{aligned}
& \operatorname{depth}\left(S /\left(I_{k-1}: u_{2}\right)\right)=\left(\sum_{j=1}^{k-1} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))\right)+ \\
& \quad\left(\sum_{j=1}^{k} \operatorname{depth}(K[V(G)] / I(G))\right)+\operatorname{depth}\left(K\left[u_{1}\right]\right)
\end{aligned}
$$

and similarly

$$
\operatorname{depth} S /\left(I_{k-1}, u_{2}\right)=\operatorname{depth} K\left[V\left(S_{k} \circ G\right)\right] / I\left(S_{k} \circ G\right)+\sum_{j=1}^{k} \operatorname{depth} K[V(G)] / I(G)
$$

by Proposition 4, we get

$$
\begin{gather*}
\operatorname{depth}\left(S /\left(I_{k-1}: u_{2}\right)\right)=k+k t=2(k-1+t)+(k-2)(t-1), \tag{3.3}\\
\operatorname{depth}\left(S /\left(I_{k-1}, u_{2}\right)\right)=k-1+t+k t=2(k-1+t)+(k-1)(t-1) . \tag{3.4}
\end{gather*}
$$

Hence by Lemma 2.14, we have

$$
\operatorname{depth}\left(S / I\left(P_{2, k} \circ G\right)\right)=2(k-1+t) .
$$

This completes the proof for $z=2$.
3. Let $z \geq 3$. We consider the following subcases:
(a) If $k=2$, We will prove the result by induction on z. Let u_{z} be the vertex in the definition of $P_{z, 2}$. Consider the following short exact sequence

$$
0 \longrightarrow S /\left(I: u_{z}\right) \longrightarrow S / I \longrightarrow S /\left(I, u_{z}\right) \longrightarrow 0
$$

we have $S /\left(I: u_{z}\right) \cong K\left[V\left(P_{z-2,2} \circ G\right)\right] / I\left(P_{z-2,2} \circ G\right) \otimes_{j=1}^{2} K[V(G)] / I(G)$
$\otimes_{K} K[V(T \circ G)] / I(T \circ G) \otimes_{K} K[e]$,

$$
\left.S /\left(I, u_{z}\right) \cong K\left[V\left(P_{z-1,2} \circ G\right)\right] / I\left(P_{z-1,2} \circ G\right) \otimes_{K} K[V(G)] / I(G)\right) \otimes_{K} K[V(T \circ G)] / I(T \circ G) .
$$

By induction on z, [19, Theorem 2.2.21], and Lemma 3.1, we have

$$
\operatorname{depth}\left(S /\left(I: u_{z}\right)\right)=(z-2)(t+1)+2 t+2=z(t+1)
$$

and similarly

$$
\operatorname{depth}\left(S /\left(I, u_{z}\right)\right)=z(1+t)=\operatorname{depth}\left(S /\left(I: u_{z}\right)\right)
$$

Thus by Depth Lemma we have $\operatorname{depth}(S / I)=z(1+t)$ and the result is proved for the case $k=2$.
(b) Now consider $k \geq 3$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{z} and $I=I\left(P_{z, k} \circ G\right)$. For $0 \leq i \leq k-2, I_{i}:=\left(I_{i}, e_{i+1}\right)$ where $I_{0}=I$. Consider the chain of short exact sequences of the form

$$
\begin{array}{ccl}
0 \longrightarrow S /\left(I_{0}: e_{1}\right) \longrightarrow & S / I_{0} & \longrightarrow S /\left(I_{0}, e_{1}\right) \longrightarrow 0 \\
0 \longrightarrow S /\left(I_{1}: e_{2}\right) \longrightarrow & S / I_{1} & \longrightarrow S /\left(I_{1}, e_{2}\right) \longrightarrow 0 \\
& \vdots & \\
0 \longrightarrow S /\left(I_{k-2}: e_{k-1}\right) \longrightarrow & S / I_{k-2} & \longrightarrow S /\left(I_{k-2}, e_{k-1}\right) \longrightarrow 0 \\
0 \longrightarrow S /\left(I_{k-1}: u_{z}\right) \longrightarrow & S / I_{k-1} & \longrightarrow S /\left(I_{k-1}, u_{z}\right) \longrightarrow 0
\end{array}
$$

we have,

$$
\begin{aligned}
S /\left(I_{i}: e_{i+1}\right) & \cong K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z-1, k} \circ G\right) \underset{\substack{\otimes_{K} \\
j=1}}{\substack{k-2-i}[V(T \circ G)] / I(T \circ G)} \\
& \begin{array}{l}
\otimes_{K} K+1 \\
j=1 \\
K
\end{array} K[V(G)] / I(G) \otimes_{K} K\left[e_{i+1}\right] .
\end{aligned}
$$

By [19, Theorem 2.2.21] we have

$$
\begin{array}{r}
\operatorname{depth}\left(S /\left(I_{i}: e_{i+1}\right)\right)=\operatorname{depth}\left(K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z-1, k} \circ G\right)\right)+ \\
\sum_{j=1}^{i+1} \operatorname{depth}(K[V(G)] / I(G))+\sum_{j=1}^{k-2-i} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+1 .
\end{array}
$$

Thus by Lemma 3.1, Proposition 4 and induction on z we get,

$$
\begin{align*}
\operatorname{depth} S /\left(I_{i}: e_{i+1}\right) & =(z-1)(k-1+t)+\sum_{j=1}^{k-2-i} 1+\sum_{j=1}^{i+1} t+1 \\
& =(z-1)(k-1+t)+k-2-i+(i+1) t+1 \\
& =z(k-1+t)+i(t-1) . \tag{3.5}
\end{align*}
$$

Also we have

$$
\begin{aligned}
S /\left(I_{k-1}: u_{z}\right) \cong & \left.\left.K\left[V\left(P_{z-2, k} \circ G\right)\right] / I\left(P_{z-2, k} \circ G\right) \underset{j=1}{\substack{k-1}} \begin{array}{rl}
j=1 \\
& \\
& \stackrel{\otimes_{K}^{k} K}{j=1}<
\end{array}\right] V(T \circ G)\right] / I(G) \otimes_{K} K\left[u_{z}\right]
\end{aligned}
$$

and similarly

$$
S /\left(I_{k-1}, u_{z}\right) \cong K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z}-1, k \circ G\right) \otimes_{\substack{k \\ j=1}}^{k} K[V(G)] / I(G) .
$$

By [19, Theorem 2.2.21] and Proposition 4, we get

$$
\begin{gather*}
\operatorname{depth}\left(S /\left(I_{k-1}: u_{z}\right)\right)=z(k-1+t)+(k-2)(t-1) \tag{3.6}\\
\operatorname{depth} S /\left(I_{k-1}, u_{z}\right)=\operatorname{depth} K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z-1, k} \circ G\right)+\sum_{j=1}^{k} \operatorname{depth} K[V(G)] / I(G) \\
\operatorname{depth}\left(S /\left(I_{k-1}, u_{z}\right)\right)=(z-1)(k-1+t)+k t=z(k-1+t)+(k-1)(t-1) \tag{3.7}
\end{gather*}
$$

Hence by Lemma 2.14, we get

$$
\operatorname{depth}\left(S / I\left(P_{z, k} \circ G\right)\right)=z(k-1+t)
$$

This completes the proof.
For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.15 instead of Lemma 2.14.

Corollary 3.3. If Stanley's inequality holds for $K[V(G)] / I(G)$ then it also holds for $S / I\left(P_{z, k} \circ G\right)$.

Figure 7. From left to right $C_{3,5} \circ P_{3}$ and $C_{3,5} \circ \mathcal{T}_{6}$.

Theorem 3.2. Let $z \geq 3$ and $k \geq 2$ be integers and G be a connected graph with $|V(G)| \geq 2$. Consider $S:=K\left[V\left(C_{z, k} \circ G\right)\right]$. We have

$$
\operatorname{depth}\left(S / I\left(C_{z, k} \circ G\right)\right)=z(k-1+t),
$$

where $t=\operatorname{depth}((K[V(G)]) / I(G))$ and

$$
\operatorname{sdepth}\left(S / I\left(C_{z, k} \circ G\right)\right) \geq z(k-1+s),
$$

where $s=\operatorname{sdepth}((K[V(G)]) / I(G))$; see Figure 7.

Proof. First we prove the result for depth.

1. Let $z=3$. We consider the following subcases:
(a) Let $k=2$. Let u be a variable corresponding to a vertex of C_{3} in $C_{3,2}$. Consider the following short exact sequence

$$
0 \longrightarrow S /(I: u) \longrightarrow S / I \longrightarrow S /(I, u) \longrightarrow 0
$$

we have

$$
\begin{gathered}
S /(I: u) \cong \underset{j=1}{2} K[V(T \circ G)] / I(T \circ G) \otimes_{j=1}^{3} K[V(G)] / I(G) \otimes_{K} K[e], \\
S /(I, u) \cong K\left[V\left(P_{2,2} \circ G\right)\right] / I\left(P_{2,2} \circ G\right) \otimes_{K} K[V(G)] / I(G) \otimes_{K} K[V(T \circ G)] / I(T \circ G) .
\end{gathered}
$$

Hence by using Lemma 3.1, [19, Theorem 2.2.21] and Theorem 3.1, we have

$$
\begin{gathered}
\operatorname{depth}(S /(I: u))=2+3 t+1=3(t+1) \\
\operatorname{depth}(S /(I, u))=3(1+t)=\operatorname{depth}(S /(I: e))
\end{gathered}
$$

Thus by Depth Lemma we have depth $(S / I)=3(1+t)$.
(b) Let $k \geq 3$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{3} in $C_{3, k}$ and $I=I\left(C_{3, k} \circ G\right)$. For $0 \leq i \leq k-2, I_{i}:=\left(I_{i}, e_{i+1}\right)$ where $I_{0}=I$. Consider the chain of short exact sequences of the form

$$
\begin{aligned}
& 0 \longrightarrow S /\left(I_{0}: e_{1}\right) \longrightarrow S / I_{0} \longrightarrow S /\left(I_{0}, e_{1}\right) \longrightarrow 0 \\
& 0 \longrightarrow S /\left(I_{1}: e_{2}\right) \longrightarrow S / I_{1} \longrightarrow S /\left(I_{1}, e_{2}\right) \longrightarrow 0 \\
& 0 \longrightarrow S /\left(I_{k-2}: e_{k-1}\right) \longrightarrow S / I_{k-2} \longrightarrow S /\left(I_{k-2}, e_{k-1}\right) \longrightarrow 0 \\
& 0 \longrightarrow S /\left(I_{k-1}: u_{3}\right) \longrightarrow S / I_{k-1} \longrightarrow S /\left(I_{k-1}, u_{3}\right) \longrightarrow 0
\end{aligned}
$$

we have,

$$
\begin{align*}
& S /\left(I_{i}: e_{i+1}\right) \cong K\left[V\left(P_{2, k} \circ G\right)\right] / I\left(P_{2, k} \circ G\right) \underset{\substack{k-2-i} \underset{j=1}{k} K[V(T \circ G)] / I(T \circ G)}{\substack{k}} \\
& \underset{\substack{\otimes \\
j=1} \stackrel{i+1}{+1} K[V(G)] / I(G) \otimes_{K}}{\otimes_{K}} K\left[e_{i+1}\right] . \tag{3.8}
\end{align*}
$$

By using [19, Theorem 2.2.21]

$$
\begin{aligned}
& \operatorname{depth}\left(S /\left(I_{i}: e_{i+1}\right)\right)=\operatorname{depth}\left(K\left[V\left(P_{k, 2} \circ G\right)\right] / I\left(P_{k, 2} \circ G\right)\right)+ \\
& \quad \sum_{j=1}^{i+1} \operatorname{depth}(K[V(G)] / I(G))+\sum_{j=1}^{k-2-i} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+\operatorname{depth} K\left[e_{i+1}\right]
\end{aligned}
$$

hence by Lemma 3.1, Proposition 4 and Theorem 3.1, we get

$$
\begin{gather*}
\operatorname{depth} S /\left(I_{i}: e_{i+1}\right)=2(k-1+t)+\sum_{j=1}^{k-2-i} 1+\sum_{j=1}^{i+1}+1 \\
=2(k-1+t)+k-2-i+i t+t+1 \\
=3(k-1+t)+i(t-1) . \tag{3.9}\\
\left.S /\left(I_{k-1}: u_{3}\right) \cong \underset{\substack{k-1 \\
\otimes_{K}=1 \\
j=1 \\
\otimes_{K} \\
j=1}}{k+1} K[V(T \circ G)] / I(T \circ G)\right] / I(G) \otimes_{K} K\left[u_{3}\right], \\
\otimes_{j=1}^{k-1} K[V(T \circ G)] / I(T \circ G) \\
S /\left(I_{k-1}, u_{3}\right) \cong K\left[V\left(P_{2, k} \circ G\right)\right] / I\left(P_{2, k} \circ G\right) \otimes_{K}^{k} K[V(G)] / I(G) .
\end{gather*}
$$

By [19, Theorem 2.2.21]

$$
\operatorname{depth} S /\left(I_{k-1}, u_{3}\right)=\operatorname{depth} K\left[V\left(P_{2, k} \circ G\right)\right] / I\left(P_{2, k} \circ G\right)+\sum_{j=1}^{k} \operatorname{depth} K[V(G)] / I(G)
$$

by Lemma 3.1 and Theorem 3.1, we get

$$
\begin{gather*}
\operatorname{depth}\left(S /\left(I_{k-1}: u_{1}\right)\right)=3(k-1+t)+(k-2)(t-1) \tag{3.10}\\
\operatorname{depth}\left(S /\left(I_{k-1}, u_{3}\right)\right)=2(k-1+t)+k t=3(k-1+t)+(k-1)(t-1) . \tag{3.11}
\end{gather*}
$$

Hence by Lemma 2.14, we get

$$
\operatorname{depth}\left(S / I\left(C_{3, k} \circ G\right)\right)=3(k-1+t) .
$$

2. Let $z \geq 4$. We consider the following subcases:
(a) Let $k=2$. Let u be a variable corresponding to the vertex of C_{z} in $C_{z, 2}$. Consider the following short exact sequence

$$
0 \longrightarrow S /(I: u) \longrightarrow S / I \longrightarrow S /(I, u) \longrightarrow 0
$$

we have $S /(I: u) \cong K\left[V\left(P_{z-3,2} \circ G\right)\right] / I\left(P_{z-3,2} \circ G\right) \underset{\substack{3 \\ j=1}}{\underset{K}{3}} K[V(G)] / I(G)$ $\underset{j=1}{\otimes_{K}^{2} K[V(T \circ G)] / I(T \circ G) \otimes_{K} K[e], ~}$

$$
\left.S /(I, u) \cong K\left[V\left(P_{z-1,2} \circ G\right)\right] / I\left(P_{z-1,2} \circ G\right) \otimes_{K} K[V(G)] / I(G)\right) \otimes_{K} K[V(T \circ G)] / I(T \circ G)
$$

Hence by using Lemma 3.1, [19, Theorem 2.2.21] and Theorem 3.1, we have

$$
\begin{gathered}
\operatorname{depth}(S /(I: u))=(z-3)(t+1)+3 t+2+1=z(t+1) \\
\operatorname{depth}(S /(I, u))=z(1+t)=\operatorname{depth}(S /(I: u))
\end{gathered}
$$

Thus by Depth Lemma we have depth $(S / I)=z(1+t)$.
(b) Let $k \geq 3$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{z} in $C_{z, k}$ and $I=I\left(C_{z, k} \circ G\right)$. For $0 \leq i \leq k-2, I_{i}:=\left(I_{i}, e_{i+1}\right)$ where $I_{0}=I$. Consider the chain of short exact sequences of the form

$$
\begin{aligned}
& 0 \longrightarrow S /\left(I_{0}: e_{1}\right) \longrightarrow S / I_{0} \longrightarrow S /\left(I_{0}, e_{1}\right) \longrightarrow 0 \\
& 0 \longrightarrow S /\left(I_{1}: e_{2}\right) \longrightarrow S / I_{1} \longrightarrow S /\left(I_{1}, e_{2}\right) \longrightarrow 0 \\
& 0 \longrightarrow S /\left(I_{k-2}: e_{k-1}\right) \longrightarrow S / I_{k-2} \longrightarrow S /\left(I_{k-2}, e_{k-1}\right) \longrightarrow 0 \\
& 0 \longrightarrow S /\left(I_{k-1}: u_{z}\right) \longrightarrow S / I_{k-1} \longrightarrow S /\left(I_{k-1}, u_{z}\right) \longrightarrow 0 \\
& S /\left(I_{i}: e_{i+1}\right) \cong K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z-1, k} \circ G\right) \\
& \underset{j=1}{\substack{\otimes_{K}-i}[V(T \circ G)] / I(T \circ G) \underset{j=1}{i+1} K[V(G)] / I(G) \otimes_{K} K\left[e_{i+1}\right] . ~}
\end{aligned}
$$

By using [19, Theorem 2.2.21]

$$
\begin{align*}
& \operatorname{depth}\left(S /\left(I_{i}: e_{i+1}\right)\right)=\operatorname{depth}\left(K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z-1, k} \circ G\right)\right)+ \\
& \sum_{j=1}^{i+1} \operatorname{depth}(K[V(G)] / I(G)) \quad+\sum_{j=1}^{k-2-i} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+\operatorname{depth} K\left[e_{i+1}\right] \tag{3.12}
\end{align*}
$$

by Lemma 3.1, Proposition 4 and Theorem 3.1, we get

$$
\begin{align*}
& \operatorname{depth} S /\left(I_{i}: e_{i+1}\right)=(z-1)(k-1+t)+\sum_{j=1}^{k-2-i} 1+\sum_{j=1}^{i+1} t+1 \\
&=(z-1)(k-1+t)+k-2-i+i t+t+1 \\
&= z(k-1+t)+i(t-1) . \tag{3.13}\\
& S /\left(I_{k-1}: u_{z}\right) \cong K\left[V\left(P_{z-3, k} \circ G\right)\right] / I\left(P_{z-3, k} \circ G\right) \underset{\substack{\otimes_{K} \\
j=1}}{k-1} K[V(T \circ G)] / I(T \circ G) \\
& \substack{k-1 \\
\otimes_{K} K \\
j=1} \\
& S[V(T) \circ G] / I(T \circ G) \underset{\substack{\otimes_{K} \\
j=1}}{k+1} K[V(G)] / I(G) \otimes_{K} K\left[u_{z}\right], \\
& S /\left(I_{k-1}, u_{z}\right) \cong K\left[V\left(P_{z-1, k} \circ G\right)\right] / I\left(P_{z-1, k} \circ G\right) \otimes_{K}^{k} K[V(G)] / I(G) \\
& j=1 \\
& k
\end{align*}
$$

by Lemma 3.1, [19, Theorem 2.2.21] and Theorem 3.1, we have

$$
\begin{gather*}
\operatorname{depth}\left(S /\left(I_{k-1}: u_{z}\right)\right)=z(k-1+t)+(k-2)(t-1) \tag{3.14}\\
\operatorname{depth}\left(S /\left(I_{k-1}, u_{z}\right)\right)=(z-1)(k-1+t)+k t=z(k-1+t)+(k-1)(t-1) . \tag{3.15}
\end{gather*}
$$

Hence by Lemma 2.14, we will have the required result

$$
\operatorname{depth}\left(S / I\left(C_{z, k} \circ G\right)\right)=z(k-1+t)
$$

For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.15 instead of Lemma 2.14.

Corollary 3.4. Stanley's inequality holds for $S / I\left(C_{z, k} \circ G\right)$ if it holds for $K[V(G)] / I(G)$.

Figure 8. $F_{3,5} \circ P_{3}$.

Theorem 3.3. Let $\alpha \geq 2$ and $k \geq 3$ be integers and G be a connected graph with $|V(G)| \geq 2$ and $S:=K\left[V\left(F_{\alpha, k} \circ G\right)\right]$. Then

$$
\operatorname{depth} S / I\left(F_{\alpha, k} \circ G\right)=\alpha(k-1+t)+\left\lceil\frac{\alpha-1}{2}\right\rceil(t-1),
$$

where $t=\operatorname{depth}((K[V(G)]) / I(G))$ and

$$
\text { sdepthS } / I\left(F_{\alpha, k} \circ G\right) \geq \alpha(k-1+s)+\left\lceil\frac{\alpha-1}{2}\right\rceil(s-1),
$$

where $s=\operatorname{sdepth}((K[V(G)]) / I(G))$ and $\lceil\alpha\rceil=\{n \in \mathbb{Z}: n \geq \alpha\}$; see Figure 8 .
Proof. We consider the following cases:

1. Let $\alpha=2$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{2} in $F(2, k)$ and $I=I\left(F_{2, k} \circ G\right)$. Consider the short exact sequence of the form

$$
0 \longrightarrow S /\left(I: e_{1}\right) \longrightarrow S / I \longrightarrow S /\left(I, e_{1}\right) \longrightarrow 0
$$

where e_{1} is leave of second star that is attached to the previous star.

$$
\begin{gathered}
S /\left(I: e_{1}\right) \cong K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \underset{\substack{\otimes_{K} \\
j=1}}{k-2} K[V(T \circ G)] / I(T \circ G) \\
{\underset{j}{j=1}}_{2}^{\otimes_{K}} K[V(G)] / I(G) \otimes_{K} K\left[e_{1}\right], \\
S /\left(I, e_{1}\right) \cong K\left[V\left(S_{k} \circ G\right)\right] / I\left(S_{k} \circ G\right) \otimes_{K} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1}\right) \otimes_{K} K[V(G)] / I(G) .
\end{gathered}
$$

By [19, Theorem 2.2.21]

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I: e_{1}\right)\right)= & \operatorname{depth}\left(K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right)\right)+2 \operatorname{depth}(K[V(G)] / I(G)) \\
& +\sum_{j=1}^{k-2} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+K\left[e_{1}\right]
\end{aligned}
$$

hence by Lemma 3.1 and Proposition 4, we get

$$
\begin{aligned}
\operatorname{depth} S /\left(I: e_{1}\right) & =k-2+t+\sum_{j=1}^{k-2} 1+2 t+1 \\
& =k-2+t+k-2+2 t+1=2(k-1+t)+(t-1)
\end{aligned}
$$

and similarly

$$
\operatorname{depth} S /\left(I, e_{1}\right)=(k-1+t)+(k-2+t)+t=2(k-1+t)+(t-1)
$$

So by using Depth Lemma, we have

$$
\operatorname{depth} S / I\left(F_{2, k} \circ G\right)=2(k-1+t)+(t-1) .
$$

2. Let $\alpha \geq 3$. Let $e_{1} . e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{α} in $F(z, k)$ and $I=I\left(F_{\alpha, k} \circ G\right)$.

Consider the short exact sequence of the form

$$
0 \longrightarrow S /\left(I: e_{1}\right) \longrightarrow S / I \longrightarrow S /\left(I, e_{1}\right) \longrightarrow 0
$$

where e_{1} is leave of last star that is attached to the previous star in $F_{\alpha, k}$. We have

$$
\begin{aligned}
S /\left(I: e_{1}\right) \cong & K\left[V\left(F_{\alpha-2, k} \circ G\right)\right] / I\left(F_{\alpha-2, k} \circ G\right) \otimes_{K} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \\
& \underset{\substack{k-2 \\
\otimes_{K}}}{ } K[V(T \circ G)] / I(T \circ G) \otimes_{j=1}^{2} K[V(G)] / I(G) \otimes_{K} K\left[e_{1}\right], \\
S /\left(I, e_{1}\right) \cong & K\left[V\left(F_{\alpha-1, k} \circ G\right)\right] / I\left(F_{\alpha-1, k} \circ G\right) \otimes_{K} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \\
& \otimes_{K} K[V(G)] / I(G) .
\end{aligned}
$$

By [19, Theorem 2.2.21]

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I: e_{1}\right)\right)= & \operatorname{depth} K\left[V\left(F_{\alpha-2, k} \circ G\right)\right] / I\left(F_{\alpha-2, k} \circ G\right)+ \\
& \operatorname{depth}\left(K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right)\right) \\
+ & \sum_{j=1}^{k-2} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+2 \operatorname{depth}(K[V(G)] / I(G))+\operatorname{depth} K\left[e_{1}\right]
\end{aligned}
$$

hence by Lemma 3.1, Proposition 4 and induction on α, we get

$$
\begin{aligned}
\operatorname{depth} S /\left(I: e_{1}\right) & =(\alpha-2)(k-1+t)+\left\lceil\frac{\alpha-3}{2}\right\rceil(t-1)+(k-2+t)+\sum_{j=1}^{k-2} 1+2 t+1 \\
& =\alpha(k-1+t)+\left\lceil\frac{\alpha-1}{2}\right\rceil(t-1)
\end{aligned}
$$

and similarly

$$
\operatorname{depth} S /\left(I, e_{1}\right)=(\alpha-1)(k-1+t)+\left\lceil\frac{\alpha-2}{2}\right\rceil(t-1)+(k-2+t)+t
$$

$$
\begin{equation*}
\operatorname{depth} S /\left(I: e_{1}\right)=\alpha(k-1+t)+\left\lceil\frac{\alpha}{2}\right\rceil(t-1) \tag{3.16}
\end{equation*}
$$

So by using Depth Lemma, we have

$$
\operatorname{depth} S /\left(F_{\alpha, k} \circ G\right)=\alpha(k-1+t)+\left\lceil\frac{\alpha-1}{2}\right\rceil(t-1) .
$$

For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.9 instead of Depth Lemma.

Corollary 3.5. Stanley's inequality holds for $S / I\left(F_{\alpha, k} \circ G\right)$ if it holds for $K[V(G)] / I(G)$.
Theorem 3.4. Let $\alpha \geq 3$ and $k \geq 3$ be integers and G be a connected graph with $|V(G)| \geq 2$. Consider $S:=K\left[V\left(C F_{\alpha, k} \circ G\right)\right]$. Then

$$
\text { depthS } / I\left(C F_{\alpha, k} \circ G\right)=\alpha(k-1+t)+\left\lceil\frac{\alpha}{2}\right\rceil(t-1),
$$

where $t=\operatorname{depth}((K[V(G)]) / I(G))$ and

$$
\text { sdepthS } / I\left(C_{\alpha, k} \circ G\right) \geq \alpha(k-1+s)+\left\lceil\frac{\alpha}{2}\right\rceil(s-1),
$$

where $s=\operatorname{sdepth}((K[V(G)]) / I(G))$; see Figure 9.

Figure 9. $C F_{3,5} \circ P_{3}$.

Proof. We consider the following cases:

1. Consider $\alpha=3$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{3} in $C F(3, k)$ and $I=I\left(C F_{3, k} \circ G\right)$.

Consider the short exact sequence of the form

$$
0 \longrightarrow S /\left(I: e_{1}\right) \longrightarrow S / I \longrightarrow S /\left(I, e_{1}\right) \longrightarrow 0
$$

where e_{1} is leave of third star that is attached to the previous star and first star in $C F_{3, k}$. We have

$$
\begin{aligned}
S /\left(I: e_{1}\right) & \cong \underset{j=1}{\otimes_{K}} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \\
& \begin{array}{c}
k-2 \\
\otimes_{K} \\
j=1 \\
\hline
\end{array} K[(T \circ G)] / I(T \circ G) \otimes_{K}^{3} K[V(G)] / I(G) \otimes_{K} K\left[e_{1}\right],
\end{aligned}
$$

$$
S /\left(I, e_{1}\right) \cong K\left[V\left(F_{2, k} \circ G\right)\right] / I\left(F_{2, k} \circ G\right) \otimes_{K} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \otimes_{K} K[V(G)] / I(G)
$$

By [19, Theorem 2.2.21]

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I: e_{1}\right)\right)= & 2 \operatorname{depth}\left(K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right)\right)+3 \operatorname{depth}(K[V(G)] / I(G)) \\
& \sum_{j=1}^{k-2} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G))+\operatorname{depth} K\left[e_{1}\right]
\end{aligned}
$$

hence by Lemma 3.1 and Proposition 4, we get

$$
\begin{equation*}
\operatorname{depth} S /\left(I: e_{1}\right)=2(k-2+t)+\sum_{j=1}^{k-2} 1+3 t+1=3(k-1+t)+2(t-1) \tag{3.17}
\end{equation*}
$$

and similarly

$$
\begin{align*}
\operatorname{depth} S /\left(I, e_{1}\right) & =2(k-1+t)+(t-1)+(k-2+t)+t \\
\operatorname{depth} S /\left(I, e_{1}\right) & =3(k-1+t)+2(t-1) . \tag{3.18}
\end{align*}
$$

So by using Depth Lemma 2.8, we have

$$
\operatorname{depth} S /\left(C F_{3, k} \circ G\right)=3(k-1+t)+2(t-1)
$$

2. Let $\alpha \geq 3$. Let $e_{1}, e_{2}, \ldots, e_{k-1}$ be leaves attached to u_{α} in $C F(\alpha, k)$ and $I=I\left(C F_{\alpha, k} \circ G\right)$. Consider the short exact sequence of the form

$$
0 \longrightarrow S /\left(I: e_{1}\right) \longrightarrow S / I \longrightarrow S /\left(I, e_{1}\right) \longrightarrow 0
$$

where e_{1} is leave of last star that is attached to the previous star and first star in $C F_{\alpha, k}$. We have

$$
\begin{gathered}
S /\left(I: e_{1}\right) \cong K\left[V\left(F_{\alpha-3, k} \circ G\right)\right] / I\left(F_{\alpha-3, k} \circ G\right) \otimes_{j=1}^{2} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \\
\substack{k-2 \\
\otimes_{K} \\
j=1} \\
\left.S /\left(I, e_{1}\right) \cong K(T \circ G)\right] / I(T \circ G) \otimes_{j=1}^{3} K[V(G)] / I(G) \otimes_{K} K\left[e_{1}\right], \\
j=1 \\
\left.\left.F_{\alpha-1, k} \circ G\right)\right] / I\left(F_{\alpha-1, k} \circ G\right) \otimes_{K} K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right) \otimes_{K} K[V(G)] / I(G)
\end{gathered}
$$

By using [19, Theorem 2.2.21]

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I: e_{1}\right)\right)=\operatorname{depth} K & {\left[V\left(F_{\alpha-3, k} \circ G\right)\right] / I\left(F_{\alpha-3, k} \circ G\right)+\sum_{j=1}^{k-2} \operatorname{depth}(K[V(T \circ G)] / I(T \circ G)) } \\
+ & 2 \operatorname{depth}\left(K\left[V\left(S_{k-1} \circ G\right)\right] / I\left(S_{k-1} \circ G\right)\right)+3 \operatorname{depth}(K[V(G)] / I(G))+1
\end{aligned}
$$

hence by Lemma 3.1, Proposition 4 and Theorem 3.3, we get

$$
\operatorname{depth} S /\left(I: e_{1}\right)=(\alpha-3)(k-1+t)+\left\lceil\frac{\alpha-4}{2}\right\rceil(t-1)+2(k-2+t)+\sum_{j=1}^{k-2} 1+3 t+1
$$

$$
\begin{equation*}
=\alpha(k-1+t)+\left\lceil\frac{\alpha}{2}\right\rceil(t-1) \tag{3.19}
\end{equation*}
$$

and similarly

$$
\begin{align*}
& \operatorname{depth} S /\left(I, e_{1}\right)=(\alpha-1)(k-1+t)+\left\lceil\frac{\alpha-2}{2}\right\rceil(t-1)+(k-2+t)+t \\
& \operatorname{depth} S /\left(I, e_{1}\right)=\alpha(k-1+t)+\left\lceil\frac{\alpha}{2}\right\rceil(t-1) \tag{3.20}
\end{align*}
$$

So by using Depth Lemma 2.8, we have

$$
\operatorname{depth} S /\left(C F_{\alpha, k} \circ G\right)=\alpha(k-1+t)+\left\lceil\frac{\alpha}{2}\right\rceil(t-1)
$$

For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.9 instead of Depth Lemma.

Corollary 3.6. Stanley's inequality holds for $S / I\left(C F_{\alpha, k} \circ G\right)$ if it holds for $K[V(G)] / I(G)$.

4. Some special classes of caterpillar trees

In this section we calculate values of depth and Stanley depth of the quotient rings associated with edge ideals of some class of caterpillar graphs. We also prove that the values of both depth and Stanley depth for these classes of graphs are exactly the same. As a consequence the Stanley's inequality holds for the quotient ring of edge ideals of these classes of graphs.

Theorem 4.1. Let $z \geq 3$ and $S=K\left[V\left(\mathcal{P}_{z}\right)\right]$. For $a \in\{1,3,5, \ldots, z\}$, if $k_{a}>1$ and $I=I\left(\mathcal{P}_{z}\right)$, then

$$
\operatorname{depth}(S / I)=\operatorname{sdepth}(S / I)=\frac{z+1}{2} .
$$

Proof. The proof is done by induction on z. Let $z=3$. Consider the following short exact sequence

$$
0 \longrightarrow S /\left(I: u_{3}\right) \longrightarrow S / I \longrightarrow S /\left(I, u_{3}\right) \longrightarrow 0
$$

We have $\left(I: u_{3}\right)=\left(x: x \in N\left(u_{3}\right)\right)+I\left(S_{k_{1}}\right)$ and $S /\left(I: u_{3}\right) \cong K\left[V\left(S_{k_{1}}\right) \cup\left\{u_{3}\right\}\right] / I\left(S_{k_{1}}\right)$, thus by Lemma 2.10 and Proposition 3, depth $S /\left(I: u_{3}\right)=\operatorname{sdepth} S /\left(I: u_{3}\right)=1+1=2$. Clearly $\left(I, u_{3}\right)=\left(I\left(S_{k_{1}+1}\right), u_{3}\right)$ and $S /\left(I, u_{3}\right) \cong K\left[V\left(S_{k_{1}+1}\right) \cup\left\{u_{3}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{k_{3}}\right\}\right] / I\left(S_{k_{1}+1}\right)$ by Lemma 2.10 and Proposition 3, depth $S /\left(I, u_{3}\right)=\operatorname{sdepth} S /\left(I, u_{3}\right)=1+k_{3}-1=k_{3}$, by using Depth Lemma, Lemma 2.9 and Proposition 2 we have

$$
\operatorname{depth} S / I\left(\mathcal{P}_{3}\right)=\operatorname{sdepth} S / I\left(\mathcal{P}_{3}\right)=2
$$

Now assume that $z \geq 5$, consider a short exact sequence of the form

$$
0 \longrightarrow S /\left(I: u_{z}\right) \longrightarrow S / I \longrightarrow S /\left(I, u_{z}\right) \longrightarrow 0
$$

it is easy to see that $\left(I: u_{z}\right)=\left(x: x \in N\left(u_{z}\right)\right)+I\left(\mathcal{P}_{z-2}\right)$ and $S /\left(I: u_{z}\right) \cong K\left[V\left(\mathcal{P}_{z-2}\right) \cup\left\{u_{z}\right\}\right] / I\left(\mathcal{P}_{z-2}\right)$ so by Lemma 2.10 and induction on z, we get

$$
\operatorname{depth} S /\left(I: u_{z}\right)=\operatorname{sdepth} S /\left(I: u_{z}\right)=\frac{z-2+1}{2}+1=\frac{z+1}{2} .
$$

Since $\left(I, u_{z}\right)=\left(I\left(\mathcal{P}_{z-2}\right), u_{z}\right)$ and

$$
S /\left(I, u_{z}\right) \cong K\left[V\left(\mathcal{P}_{z-2}\right) \cup\left\{u_{z}\right\} \cup\left\{e_{1}, e_{2}, \ldots, e_{k_{z}}\right\}\right] /\left(I\left(\mathcal{P}_{z-2}\right), u_{z}\right),
$$

therefore by using Lemma 2.10 and induction on z, we get

$$
\operatorname{depth} S /\left(I, u_{z}\right)=\operatorname{sdepth} S /\left(I, u_{z}\right)=\frac{z-2+1}{2}+k_{z}-1=\frac{z+1}{2}+k_{z}-2 .
$$

Hence by Depth Lemma we have depthS $/ I=\frac{z+1}{2}$ and by Lemma 2.9 sdepth $S / I \geq \frac{z+1}{2}$. Now for the upper bound by Proposition 2 we have sdepth $S /(I) \leq$
$\operatorname{sdepth} S /\left(I: u_{z}\right)=\frac{z+1}{2}$ and hence $\operatorname{sdepth}(S / I)=\frac{z+1}{2}$.
Theorem 4.2. Let $z \geq 2, k \geq 3$ and $S:=K\left[V\left(\mathcal{P}_{z, k}\right)\right]$. If $I=I\left(\mathcal{P}_{z, k}\right)$, then

$$
\operatorname{depth}(S / I)=\operatorname{sdepth}(S / I)= \begin{cases}k, & \text { if } z=2 ; \\ \left\lfloor\frac{z}{2}\right\rfloor(k-2)+z+\sum_{m=1}^{\left[\frac{\pi}{2}\right]-1}(z-2 m), & \text { if } z \geq 3 .\end{cases}
$$

Where $\lfloor\alpha\rfloor=\{n \in \mathbb{Z}: n \leq \alpha\}$.
Proof. The proof is done by induction on z. Let $z=2$. Consider the following short exact sequence

$$
0 \longrightarrow S /\left(I: u_{2}\right) \xrightarrow{\cdot u_{2}} S / I \longrightarrow S /\left(I, u_{2}\right) \longrightarrow 0
$$

we have $\left(I: u_{2}\right)=\left(x: x \in N\left(u_{2}\right)\right)$ and $S /\left(I: u_{2}\right) \cong K\left[\mathcal{L}\left(u_{1}\right) \cup\left\{u_{2}\right\}\right]$, where $N\left(u_{2}\right)$ are the neighbours of u_{2} and $\mathcal{L}\left(u_{1}\right)$ represent the number of leaves at u_{1}. Thus by Lemma 2.10, $\operatorname{depth}\left(S /\left(I: u_{2}\right)\right)=$ $1+k-1=k$. Also $\left(I, u_{2}\right)=\left(I\left(S_{k}\right), u_{2}\right)$ and $S /\left(I, u_{2}\right) \cong K\left[V\left(S_{k}\right) \cup \mathcal{L}\left(u_{2}\right)\right] / I\left(S_{k}\right)$, therefore by $\operatorname{Proposition} 2.10, \operatorname{depth}\left(S /\left(I, u_{2}\right)\right)=1+(k+1-1)=k+1$ thus by Depth Lemma depth $(S / I)=k$. Now by Lemma $2.9 \operatorname{sdepth}(S / I) \geq k$ and by using Proposition 2 and Lemma 3 we have $\operatorname{sdepth}(S / I) \leq k$. Thus $\operatorname{sdepth}(S / I)=k$. Let $z=3$. Consider the following short exact sequence

$$
0 \longrightarrow S /\left(I: u_{3}\right) \xrightarrow{\cdot u_{3}} S / I \longrightarrow S /\left(I, u_{3}\right) \longrightarrow 0
$$

we have $\left(I: u_{3}\right)=I\left(S_{k}\right)+\left(x: x \in N\left(u_{3}\right)\right)$ and $S /\left(I: u_{3}\right) \cong\left[V\left(\mathcal{S}_{k}\right) \cup \mathcal{L}\left(u_{2}\right) \cup\left\{u_{3}\right\}\right] / I\left(\mathcal{S}_{k}\right)$. Thus by Lemma 2.10 and $\operatorname{Proposition,3,~} \operatorname{depth}\left(S /\left(I: u_{3}\right)\right)=\operatorname{sdepth}\left(S /\left(I: u_{3}\right)\right)=1+(k+1-1)+1=k+2$. Further $\left(I, u_{3}\right)=\left(I\left(\mathcal{P}_{2, k}\right), u_{3}\right)$ and $S /\left(I, u_{3}\right) \cong K\left[V\left(\mathcal{P}_{2, k}\right) \cup \mathcal{L}\left(u_{3}\right)\right] / I\left(\mathcal{P}_{2, k}\right)$. Therefore by Lemma 2.10, and the above case we have $\operatorname{depth}\left(S /\left(I, u_{3}\right)\right)=\operatorname{sdepth}\left(S /\left(I, u_{3}\right)\right)=k+(k+2-1)=2 k+1$. Applying Depth Lemma we get depth $(S / I)=k+2$. Now by Lemma 2.9 and Proposition 2 we get $\operatorname{sdepth}(S / I)=k+2$. Let $z \geq 4$. Consider the following short exact sequence

$$
0 \longrightarrow S /\left(I: u_{z}\right) \xrightarrow{\cdot u_{z}} S / I \longrightarrow S /\left(I, u_{z}\right) \longrightarrow 0
$$

it is easy to see that $\left(I: u_{z}\right)=\left(x: x \in N\left(u_{z}\right)\right)+I\left(\mathcal{P}_{z-2, k}\right)$ and $S /\left(I: u_{z}\right) \cong K\left[V\left(\mathcal{P}_{z-2, k}\right) \cup \mathcal{L}\left(u_{z-1}\right) \cup\right.$ $\left.\left\{u_{z}\right\}\right] / I\left(\mathcal{P}_{z-2, k}\right)$ also $\left(I, u_{z}\right)=\left(I\left(\mathcal{P}_{z-1, k}\right), u_{z}\right)$ and $S /\left(I, u_{z}\right) \cong K\left[V\left(\mathcal{P}_{z-1, k}\right) \cup \mathcal{L}\left(u_{z}\right)\right] / I\left(\mathcal{P}_{z-1, k}\right)$.

Thus by using induction on z and Lemma 2.10

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I: u_{z}\right)\right) & =\operatorname{depth} K\left[V\left(\mathcal{P}_{z-2, k}\right)\right\rfloor / I\left(\mathcal{P}_{z-2, k}\right)+\left|\mathcal{L}\left(u_{z-1}\right)\right|+1 \\
& =\left\lfloor\frac{z-2}{2}\right\rfloor(k-2)+(z-2)+\sum_{m=1}^{\left\lceil\frac{5-2}{2}\right\rceil-1}(z-2-2 m)+(k+z-3)+1 \\
& =\left\lfloor\frac{z-2}{2}\right\rfloor(k-2)+z-2+\sum_{m=1}^{\left\lceil\frac{z-2}{2}\right\rceil-1}(z-2-2 m)+k+z-2 \\
& =\left\lfloor\frac{z}{2}\right\rfloor(k-2)-(k-2)+\sum_{m=0}^{\left\lceil\frac{z-2}{2}\right\rceil-1}(z-2-2 m)+k+z-2 \\
& =\left\lfloor\frac{z}{2}\right\rfloor(k-2)+z+\sum_{m=0}^{\left[\frac{[z-2}{2}\right\rceil-1}(z-2-2 m)
\end{aligned}
$$

introducing the transformation $j:=m+1$ we get depth $\left(S /\left(I: u_{z}\right)\right)=\left\lfloor\frac{z}{2}\right\rfloor(k-2)+z+\sum_{j=1}^{\left\lceil\frac{z}{2}\right\rceil-1}(z-2 j)$, where j is dummy variable so by replacing j with m we get

$$
\operatorname{depth}\left(S /\left(I: u_{z}\right)\right)=\left\lfloor\frac{z}{2}\right\rfloor(k-2)+z+\sum_{m=1}^{\left\lceil\frac{2}{2}\right]-1}(z-2 m)
$$

Now by considering the inequality $\lceil x+y\rceil \geq\lceil x\rceil+\lceil y\rceil-1$, we get

$$
\begin{aligned}
\operatorname{depth}\left(S /\left(I, u_{z}\right)\right) & =\operatorname{depth} K\left[V\left(\mathcal{P}_{z-1, k}\right) / I\left(\mathcal{P}_{z-1, k}\right)\right)+\left|\mathcal{L}\left(u_{z}\right)\right| \\
& =\left\lfloor\frac{z-1}{2}\right\rfloor(k-2)+z-1+\sum_{m=1}^{\left\lceil\frac{z-1}{2}\right]-1}(z-1-2 m)+k+z-2 \\
& \geq\left\lfloor\frac{z-2}{2}\right\rfloor(k-2)+\sum_{m=0}^{\left\lceil\frac{z-1+2-2}{2-2}\right\rceil-1}(z-1-2 m)+k+z-2 \\
& \geq\left\lfloor\frac{z}{2}\right\rfloor(k-2)-(k-2)+\sum_{m=0}^{\left\lceil\frac{z}{2}\right\rceil-2}(z-1-2 m)+k+z-2 \\
& =\left\lfloor\frac{z}{2}\right\rfloor(k-2)+z+\sum_{m=0}^{\left\lceil\frac{z}{2}\right]-2}(z-1-2 m) \\
& \geq\left\lfloor\frac{z}{2}\right\rfloor(k-2)+z+\sum_{m=1}^{\left\lceil\frac{z}{2}\right]-1}(z-2 m) .
\end{aligned}
$$

Thus by Depth Lemma

$$
\operatorname{depth}(S / I)=\left\lfloor\frac{z}{2}\right\rfloor k+\sum_{m=1}^{\left\lceil\frac{\sqrt{2}}{2}\right\rceil-1}(z-2 m)+z-2\left\lfloor\frac{z}{2}\right\rfloor .
$$

For Stanley depth the result follows by Lemma 2.9 and 2 instead of Depth Lemma. Clearly, one can see that Stanley's inequality holds for these classes of graphs.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. A. Alipour, A. Tehranian, Depth and Stanley Depth of Edge Ideals of Star Graphs, International Journal of Applied Mathematics and Statistics, 56 (2017), 63-69.
2. W. Bruns, H. J. Herzog, Cohen-macaulay rings, No. 39, Cambridge university press, 1998.
3. M. Cimpoeas, Several inequalities regarding Stanley depth, Romanian Journal of Math and Computer Science, 2 (2012), 28-40.
4. A. M. Duval, B. Goeckner, C. J. Klivans, J. L. Martine, A non-partitionable CohenMacaulay simplicial complex, Adv. Math., 299 (2016), 381-395.
5. S. A. S. Fakhari, On the Stanley Depth of Powers of Monomial Ideals, Mathematics, 7 (2019), 607.
6. L. Fouli, S. Morey, A lower bound for depths of powers of edge ideals, J. Algebr. Comb., 42 (2015), 829-848.
7. R. Frucht, F. Harary, On the corona of two graphs, Aeq. Math., 4 (1970), 322-325.
8. R. Hammack, W. Imrich, S. Klavar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.
9. J. Herzog, A survey on Stanley depth, In Monomial ideals, computations and applications, (2013), 3-45. Springer, Heidelberg.
10. J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
11. Z. Iqbal, M. Ishaq, Depth and Stanley depth of the edge ideals of the powers of paths and cycles, An. Sti. U. Ovid. Co-Mat, 27 (2019), 113-135.
12. Z. Iqbal, M. Ishaq, M. A. Binyamin, Depth and Stanley depth of the edge ideals of the strong product of some graphs, Hacet. J. Math. Stat., 50 (2021), 92-109.
13. S. Morey, Depths of powers of the edge ideal of a tree, Commun. Algebra, 38 (2010), 4042-4055.
14. R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebr., 3 (2011), 83-88.
15. M. R. Pournaki, S. A. S. Fakhari, M. Tousi, S. Yassemi, What is Stanley depth? Not. Am. Math. Soc., 56 (2009), 1106-1108.
16. A. Rauf, Depth and Stanley depth of multigraded modules, Commun. Algebra, 38 (2010), 773-784.
17. R. P. Stanley, Linear Diophantine equations and local cohomolog, Invent. Math., 68 (1982), 175193.
18. V. Swaminathan, P. Jeyanthi, Super edge-magic strength of fire crackers, banana trees and unicyclic graphs, Discrete math., 306 (2006), 1624-1636.
19. R. H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, Vol. 238, 2011.
20. D. B. West, Introduction to graph theory, Upper Saddle River, NJ: Prentice hall, Vol. 2, 1996.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
