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G. These classes include caterpillar, firecracker and some newly defined unicyclic graphs. We compute
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1. Introduction

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over a field K. Let M be a finitely
generated Zn-graded S -module. The K subspace aK[W] which is generated by all elements of the
form aw where a is a homogeneous element in M, w is a monomial in K[W] and W ⊆ {x1, x2, . . . , xn}.
K[W], is called a Stanley space of dimension |W | if it is a free K[W]-module. A decomposition D
of the K-vector space M as a finite direct sum of Stanley spaces D : M =

⊕r
j=1 a jK[W j], is called

Stanley decomposition of M. Stanley depth ofD is the minimum dimension of all the Stanley spaces.
The quantity

sdepth(M) := max{sdepth(D) | D is a S tanley decomposition o f M}

is called the Stanley depth of M.
Depth of a finitely generated R-module M, where R is the local Noetherian ring with unique

maximal ideal m := (x1, . . . , xn), is the common length of all maximal M-sequences in m. For
introduction to depth and Stanley depth we recommend the readers [5, 9, 15]. Stanley conjectured
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in [17] that for any Zn-graded S -module M, sdepth(M) ≥ depth(M). This conjecture has been studied
in various special cases; see [6, 12, 14], this conjecture was later disproved by Duval et al. [4] in 2016,
but it is still important to find classes of Zn-graded modules which satisfy the Stanley inequality. Let
I ⊂ J ⊂ S be monomial ideals. Herzog et al. [10] showed that the invariant Stanley depth of J/I is
combinatorial in nature. The most important thing about Stanley depth is that it shares some properties
and bounds with homological invariant depth; see [1, 6, 16].

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. A graph is called simple if
it has no loops and multiple edges. Through out this paper all graphs are simple. A graph G is
said to be connected if there is a path between any two vertices of G. If VG = {v1, v2, . . . , vn} and
S = K[x1, x2, . . . , xn], then edge ideal I(G) of the graph G is the ideal of S generated by all monomials
of the form xix j such that {vi, v j} ∈ EG. Let n ≥ 2. A path on n vertices say {u1, u2, . . . , uu} is a
graph denoted by Pn such that EPn = {{ui, ui+1} : 1 ≤ i ≤ n − 1}. Let n ≥ 3. A cycle on n vertices
{u1, u2, . . . , un} is a graph denoted by Cn such that ECn = {{ui, ui+1} : 1 ≤ i ≤ n − 1} ∪ {u1, un}. A simple
and connected graph T is said to be a tree if there exists a unique path between any two vertices of
T . If u, v ∈ VG then the distance between u and v is the length of the shortest path between u and v.
The maximum distance between any two vertices of G is called diameter of G, denoted by d(G). The
degree of a vertex u in a graph G is the number of edges incident on u, degree of u is denoted by deg(u).
A graph with only one vertex is called a trivial graph. We denote the trivial graph by T . Any vertex
with degree 1 is said to be a leaf or pendant vertex of G. Internal vertex is a vertex that is not a leaf. A
tree with one internal vertex and k − 1 leaves incident on it is called k-star, we denoted k−star by S k.

The aim of this paper is to study depth and Stanley depth of the quotient rings of the edge ideals
associated with the corona product of firecracker graphs, some classes of caterpillar graphs and some
newly defined unicyclic graphs with an arbitrary non-trivial connected graph G. We compute formulae
for the values of depth that are the functions of depth of the quotient ring of the edge ideal I(G) see
Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4. As a consequence we also prove that if
the Stanley’s inequality holds for the quotient ring of the edge ideal I(G), then it also holds for the
quotient rings of the edge ideals associated to the corona product of the graphs we considered with
G. We also compute values of depth and Stanley depth and verify Stanley’s inequality for the quotient
ring of the edge ideals associated with some special classes of caterpillar graphs, see Theorem 4.1 and
Theorem 4.2.

2. Definitions and notations

In this section some definitions from Graph Theory are presented. For more details we refer the
readers to [7,8,18]. We also present some known results from Commutative Algebra that are frequently
used in this paper. Note that by abuse of notation, xi will at times be used to denote both a vertex of
a graph G and the corresponding variable of the polynomial ring S . For a given graph G, K[VG] will
denote the polynomial ring whose variables are the vertices of the graph G.

Definition 2.1 ( [7]). Let G1 and G2 be two graphs with order n and m respectively. The corona product
of G1 and G2 denoted by G1 ◦G2, is the graph obtained by taking one copy of G1 and n copies of G2;
and then by joining the i-th vertex of G1 to every vertex in the i-th copy of G2; see Figure 1.
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Figure 1. From left to right C4 ◦C3 and P4 ◦C3.

Definition 2.2. Let z ≥ 1 and k ≥ 2 be integers and Pz be a path on z vertices u1, u2, . . . , uz that is,
EPz = {uiui+1 : 1 ≤ i ≤ z − 1} (for z = 1, EPz = ∅). We define a graph on zk vertices by attaching k − 1
pendant vertices at each ui. We denote this graph by Pz,k; see Figure 2.

Definition 2.3. Let z ≥ 3 and k ≥ 2 be integers and Cz be a cycle on z vertices u1, u2, . . . , uz that is,
ECz = {uiui+1 : 1 ≤ i ≤ z − 1} ∪ {u1uz}. We define a graph on zk vertices by attaching k − 1 pendant
vertices at each ui. We denote this graph by Cz,k; see Figure 2.

Figure 2. From left to right P3,5 and C3,5.

Definition 2.4 ( [18]). Firecracker is a graph formed by the concatenation of α number of k-stars by
linking exactly one leaf from each star. It is denoted by Fα,k; see Figure 3.

Definition 2.5. The graph obtained by joining the end vertices of the path joining the leaves of the α
stars in Fα,k. We call this graph circular firecracker and is denoted by CFα,k; see Figure 3.

Figure 3. From left to right F3,5 and CF3,5.

Definition 2.6. Let z ≥ 3 be an odd integer and k1, k3, k5, . . . , kz be integers greater than 1. Let Pz be a
path on z vertices u1, u2, . . . , uz that is, EPz = {uiui+1 : 1 ≤ i ≤ z − 1}. Let a ∈ {1, 3, 5, . . . , z}, we define
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a graph by attaching ka − 1 pendant vertices at each vertex ua of Pz. We denote this graph by Pz; see
Figure 4.

Definition 2.7. Let z ≥ 2 and k ≥ 3 be integers and Pz be a path on z vertices {u1, u2, . . . , uz} that is,
EPz = {uiui+1 : 1 ≤ i ≤ z − 1}. We denote by Pz,k the graph obtained by attaching k + i − 2 pendant
vertices at each ui of Pz; see Figure 4.

Figure 4. From left to right P5 and P5,4.

Here we recall some known results that will be used in this paper.

Lemma 2.8 ( [2, Proposition 1.2.9]). (Depth Lemma) If 0 −→ E1 −→ E2 −→ E3 −→ 0 is a short exact
sequence of modules over a local ring S , or a Noetherian graded ring with S 0 local then

(1) depth(E1) ≥ min{depth(E2) , 1 + depth(E3)}.

(2) depth(E2) ≥ min{depth(E1) , depth(E3)}.

(3) depth(E3) ≥ min{depth(E1) − 1 , depth(E2)}.

Lemma 2.9 ( [14, Lemma 2.4]). If 0 → E1 → E → E2 → 0 is a short exact sequence of Zn−graded
S -module, then

sdepth(E) ≥ min{sdepth(E1), sdepth(E2)}.

Proposition 1 ( [16, Corollary 1.3]). If I ⊂ S is a monomial ideal and u ∈ S is a monomial such that
u < I, then depthS (S/(I : u)) ≥ depthS (S/I).

Proposition 2 ( [3, Proposition 2.7]). If I ⊂ S is a monomial ideal and u ∈ S is monomial such that
u < I, then sdepthS (S/(I : u)) ≥ sdepthS (S/I).

Lemma 2.10 ( [13, Lemma 3.6] ). Let I ⊂ S be a monomial ideal. If S ′ = S ⊗K K[xn+1] � S [xn+1],
then depth(S ′/I′S ′) = depth(S/I) + 1 and sdepth(S ′/I′S ′) = sdepth(S/I) + 1.

Lemma 2.11 ( [3, Proposition 1.1]). If I′ ⊂ S ′ = K[x1, . . . , xm] and I
′′

⊂ S ′′ = K[xm+1, . . . , xn] are
monomial ideals, with 1 ≤ m < n, then

depthS (S/(I′S + I
′′

S )) = depthS ′(S
′/I′) + depthS ′′(S

′′/I′′).

Lemma 2.12 ( [3, Proposition 1.1]). If I′ ⊂ S ′ = K[x1, . . . , xm] and I
′′

⊂ S ′′ = K[xm+1, . . . , xn] are
monomial ideals, with 1 ≤ m < n, then

depth(S ′/I′ ⊗K S ′′/I′′) = depthS (S/(I′S + I
′′

S )) = depthS ′(S
′/I′) + depthS ′′(S

′′/I′′).

Proof. Proof follows by [19, Proposition 2.2.20] and [19, Theorem 2.2.21]. �
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Theorem 2.1 ( [16, Theorem 3.1]). If I′ ⊂ S ′ = K[x1, . . . , xm] and I′′ ⊂ S ′′ = K[xm+1, . . . , xn] are
monomial ideals, with 1 ≤ m < n, then

sdepthS (S/(I′S + I′′S )) ≥ sdepthS ′(S
′/I′) + sdepthS ′′(S

′′/I′′).

Lemma 2.13. If I′ ⊂ S ′ = K[x1, . . . , xm] and I′′ ⊂ S ′′ = K[xm+1, . . . , xn] are monomial ideals, with
1 ≤ m < n, then

sdepth(S ′/I′ ⊗K S ′′/I′′)) ≥ sdepthS ′(S
′/I′) + sdepthS ′′(S

′′/I′′).

Proof. By [19, Proposition 2.2.20], we have S ′/I′ ⊗K S ′′/I′′ � S/(I′S + I′′S ), by Theorem 2.1 the
required result follows. �

Let m ≥ 2 be an integer, and consider {M j : 1 ≤ j ≤ m} and {Ni : 0 ≤ i ≤ m} be sequence of
Zn−graded S − modules and consider the chain of short exact sequences of the form

0 −→ M1 −→ N0 −→ N1 −→ 0

0 −→ M2 −→ N1 −→ N2 −→ 0
...

0 −→ Mm−1 −→ Nm−2 −→ Nm−1 −→ 0

0 −→ Mm −→ Nm−1 −→ Nm −→ 0.

Then the following lemmas play key role in the proofs of our theorems.

Lemma 2.14 ( [11, Lemma 3.1]). If depthMm ≤ depthNm and depthM j−1 ≤ depthM j, for all 2 ≤ j ≤ m,
then depthM1 = depthN0.

Lemma 2.15. sdepthN0 ≥ min{sdepthM j, sdepthNm : 1 ≤ j ≤ m}.

Proof. Proof follows by applying Lemma 2.9 on the above chain of short exact sequences. �

Proposition 3 ( [1] ). If I is an edge ideal of n-star, then depth(S/I) = sdepth(S/I) = 1, and
depth(S/It), sdepth(S/It) ≥ 1.

Corollary 2.16 ( [6, Theorem 3.2]). Let G be a connected graph. If I = I(G) and d is the diameter of
G, then

depth(S/I) ≥ d
d + 1

3
e.

Theorem 2.2 ( [6, Theorem 4.18]). Let G be a connected graph. If I = I(G) and d is the diameter of
G, then for 1 ≤ t ≤ 3 we have

sdepth(S/It) ≥ d
d − 4t + 5

3
e.

Corollary 2.17. Let G be connected graph. If I = I(G) and d is the diameter of G, then we have

sdepth(S/I) ≥ d
d + 1

3
e.
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3. Caterpillar and firecrackers graphs and the corona product

In this section we prove our main results related to corona product of graphs. We start this section
with some elementary results that are necessary for our main results. Let T be a trivial graph and G
any non-trivial and connected graph. The first lemma of this section give depth and Stanley depth of
the cyclic modules associated with T ◦G. For examples of T ◦G; see Figure 5.

Lemma 3.1. Let T be a trivial graph and G be any connected non-trivial graph. If I = I(T ◦ G) and
S := K[V(T ◦G)], then depth(S/I) = 1 and sdepth(S/I) = 1.

Proof. By definition of T ◦G the only vertex x of T has an edge with every vertex of G. Consider the
following short exact sequence

0 −→ S/(I : x) −→ S/I −→ S/(I, x) −→ 0.

Therefore S/(I : x) � K[x], and depth(S/(I : x)) = 1. Now S/(I, x) � S x/I(G), where S x := S/(x).
We have depth(S/(I, x)) = depth(S x/I(G)) ≥ 1, by Corollary 2.16. Now by using Depth Lemma, we
have depth(S/I) = 1. For the Stanley depth since S/(I : x) � K[x] we have sdepth(S/(I : x)) = 1.
Now S/(I, x) � S x/I(G). We have sdepth(S/(I, x)) = sdepth(S x/I(G)) ≥ 1, by using Lemma 2.9 and
Proposition 2, we have sdepth(S/I) = 1. �

Figure 5. From left to right T ◦C6 and T ◦ T19 (T19 is a tree on 19 vertices).

Proposition 4. For n, k ≥ 2, let G be a non-trivial connected graph. If S := K[V(S k ◦G)], then

depth(S/I(S k ◦G)) = k − 1 + t,

where t = depth(K[V(G)]/I(G)). Also

sdepth(S/I(S k ◦G)) ≥ k − 1 + s,

where s = sdepth(K[V(G)]/I(G)).

Proof. First we prove the result for depth. Let k = 2. If e be a variable corresponding to a leaf in S 2.
Consider the following short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

it is easy to see that S/(I : e) � K[V(G)]/I(G)⊗KK[e] and

S/(I, e) � K[V(T ◦G)]/I(T ◦G)⊗KK[V(G)]/I(G)).
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By Lemma 3.1, Lemma 2.10 and [19, Theorem 2.2.21], we have depth(S/(I : e)) = 1 + t and
depth(S/(I, e)) = 1 + t = depth(S/(I : e)). Thus by Depth Lemma we have depth(S/I) = 1 + t.

Let k ≥ 3. We will prove the required result by induction on k. Let e be a variable corresponding to
a leaf in S k. Consider the following short exact sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

we have
S/(I : e) �

k−2
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)⊗KK[V(G)]/I(G)⊗KK[e].

By Lemmma [19, Theorem 2.2.21], we have

depth(S/(I : e)) =
k−2∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)) + depth(K[V(G)]/I(G)) + depthK[e],

by Lemma 3.1, we get depth(S/(I : e)) = k − 2 + t + 1 = k − 1 + t. It can easily be seen that

S/(I, e) � K[V(S k−1 ◦G)]/I(S k−1 ◦G)⊗K(K[V(G)]/I(G)).

Thus by [19, Theorem 2.2.21]

depth(S/(I, e)) � depth(K[V(S k−1 ◦G)]/I(S k−1 ◦G)) + depth((K[V(G)]/I(G))),

applying induction on k we get

depth(S/(I, e)) = (k − 2 + t) + t = k + 2t − 2 ≥ k − 1 + t = depth(S/(I : e)).

Hence by Depth Lemma we have depth(S/I) = k − 1 + t. This completes the proof for depth.
For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.9
instead of Depth Lemma. �

Corollary 3.2. If Stanley’s inequality holds for K[V(G)]/I(G) then it also holds for S/I(S k ◦G).

Figure 6. From left to right P2,5 ◦C3 and P2,5 ◦ T6.

Theorem 3.1. Let z ≥ 1 and k ≥ 2 be integers. If G is a connected graph with |V(G)|≥ 2 and
S := K[V(Pz,k ◦G)], then

depth(S/I(Pz,k ◦G)) = z(k − 1 + t),

where t = depth((K[V(G)])/I(G)) and

sdepth(S/I(Pz,k ◦G)) ≥ z(k − 1 + s),

where s = depth((K[V(G)])/I(G)); see Figure 6.
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Proof. First we prove the result for depth. We consider the following cases.

1. If z = 1 and k ≥ 2 then the result follows from Proposition 4.

2. Let z = 2. We consider the following subcases:

(a) If k = 2 and e is a variable corresponding to a leaf in P2,2. Consider the following short exact
sequence

0 −→ S/(I : e) −→ S/I −→ S/(I, e) −→ 0

then S/(I : e) � K[V(S 2 ◦G)]/I(S 2 ◦G)⊗KK[V(G)]/I(G)⊗KK[e],
S/(I, e) � K[V(S 3 ◦G)]/I(S 3 ◦G)⊗KK[V(G)]/I(G)). By [19, Theorem 2.2.21],

depth(S/(I : e)) = depth(K[V(S 2 ◦G)]/I(S 2 ◦G))
+ depth(K[V(G)]/I(G)) + depth(K[e]),

depth(S/(I, e)) = depth(K[V(S 3 ◦G)]/I(S 3 ◦G)) + depth(K[V(G)]/I(G))).

By Proposition 4 we have depth(S/(I : e)) = t + 1 + t + 1 = 2(1 + t) and
depth(S/(I, e)) = 2 + t + 2 = 2(1 + t) = depth(S/(I : e)). Hence by Depth Lemma
we have depth(S/I) = 2(1 + t) and we are done in this special case.

(b) Let k ≥ 3. Let e1, e2, . . . , ek−1 be leaves attached to u2 in P2,k and I = I(P2,k ◦ G). For
0 ≤ i ≤ k − 2, Ii := (Ii, ei+1), where I0 = I. Consider the chain of short exact sequences of the
form

0 −→ S/(I0 : e1) −→ S/I0 −→ S/(I0, e1) −→ 0
0 −→ S/(I1 : e2) −→ S/I1 −→ S/(I1, e2) −→ 0

...

0 −→ S/(Ik−2 : ek−1) −→ S/Ik−2 −→ S/(Ik−2, ek−1) −→ 0
0 −→ S/(Ik−1 : u2) −→ S/Ik−1 −→ S/(Ik−1, u2) −→ 0

S/(Ii : ei+1) � K[V(S k ◦G)]/I(S k ◦G)
k−2−i
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

i+1
⊗K
j=1

K[V(G)]/I(G)⊗KK[ei+1].

By [19, Theorem 2.2.21]

depth(S/(Ii : ei+1)) = depth(K[V(S k ◦G)]/I(S k ◦G)) +
i+1∑
j=1

depth(K[V(G)]/I(G))

+

k−2−i∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)) + depth(k[ei+1]) (3.1)
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hence by Lemma 3.1 and Proposition 4, we get

depthS/(Ii : ei+1) = k − 1 + t +
k−2−i∑

j=1

1 +
i+1∑
j=1

t + 1

= k + t + k − 2 − i + (i + 1)t = 2(k − 1 + t) + i(t − 1). (3.2)

Also we have

S/(Ik−1 : u2) �
k−1
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)
k
⊗K
j=1

K[V(G)]/I(G)⊗KK[u1],

S/(Ik−1, u2) � K[V(S k ◦G)]/I(S k ◦G)
k
⊗K
j=1

K[V(G)]/I(G).

By [19, Theorem 2.2.21] we have

depth(S/(Ik−1 : u2)) = (
k−1∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)))+

(
k∑

j=1

depth(K[V(G)]/I(G))) + depth(K[u1])

and similarly

depthS/(Ik−1, u2) = depthK[V(S k ◦G)]/I(S k ◦G) +
k∑

j=1

depthK[V(G)]/I(G)

by Proposition 4, we get

depth(S/(Ik−1 : u2)) = k + kt = 2(k − 1 + t) + (k − 2)(t − 1), (3.3)

depth(S/(Ik−1, u2)) = k − 1 + t + kt = 2(k − 1 + t) + (k − 1)(t − 1). (3.4)

Hence by Lemma 2.14, we have

depth(S/I(P2,k ◦G)) = 2(k − 1 + t).

This completes the proof for z = 2.

3. Let z ≥ 3. We consider the following subcases:

(a) If k = 2, We will prove the result by induction on z. Let uz be the vertex in the definition of
Pz,2. Consider the following short exact sequence

0 −→ S/(I : uz) −→ S/I −→ S/(I, uz) −→ 0

we have S/(I : uz) � K[V(Pz−2,2 ◦G)]/I(Pz−2,2 ◦G)
2
⊗K
j=1

K[V(G)]/I(G)

⊗KK[V(T ◦G)]/I(T ◦G)⊗KK[e],

S/(I, uz) � K[V(Pz−1,2 ◦G)]/I(Pz−1,2 ◦G)⊗KK[V(G)]/I(G))⊗KK[V(T ◦G)]/I(T ◦G).
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By induction on z, [19, Theorem 2.2.21], and Lemma 3.1, we have

depth(S/(I : uz)) = (z − 2)(t + 1) + 2t + 2 = z(t + 1)

and similarly
depth(S/(I, uz)) = z(1 + t) = depth(S/(I : uz)).

Thus by Depth Lemma we have depth(S/I) = z(1 + t) and the result is proved for the case
k = 2.

(b) Now consider k ≥ 3. Let e1, e2, . . . , ek−1 be leaves attached to uz and I = I(Pz,k ◦ G). For
0 ≤ i ≤ k − 2, Ii := (Ii, ei+1) where I0 = I. Consider the chain of short exact sequences of the
form

0 −→ S/(I0 : e1) −→ S/I0 −→ S/(I0, e1) −→ 0
0 −→ S/(I1 : e2) −→ S/I1 −→ S/(I1, e2) −→ 0

...

0 −→ S/(Ik−2 : ek−1) −→ S/Ik−2 −→ S/(Ik−2, ek−1) −→ 0
0 −→ S/(Ik−1 : uz) −→ S/Ik−1 −→ S/(Ik−1, uz) −→ 0

we have,

S/(Ii : ei+1) � K[V(Pz−1,k ◦G)]/I(Pz−1,k ◦G)
k−2−i
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

i+1
⊗K
j=1

K[V(G)]/I(G)⊗KK[ei+1].

By [19, Theorem 2.2.21] we have

depth(S/(Ii : ei+1)) = depth(K[V(Pz−1,k ◦G)]/I(Pz−1,k ◦G))+
i+1∑
j=1

depth(K[V(G)]/I(G)) +
k−2−i∑

j=1

depth(K[V(T ◦G)]/I(T ◦G)) + 1.

Thus by Lemma 3.1, Proposition 4 and induction on z we get,

depthS/(Ii : ei+1) = (z − 1)(k − 1 + t) +
k−2−i∑

j=1

1 +
i+1∑
j=1

t + 1

= (z − 1)(k − 1 + t) + k − 2 − i + (i + 1)t + 1
= z(k − 1 + t) + i(t − 1). (3.5)

Also we have

S/(Ik−1 : uz) � K[V(Pz−2,k ◦G)]/I(Pz−2,k ◦G)
k−1
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

k
⊗K
j=1

K[V(G)]/I(G)⊗KK[uz]
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and similarly

S/(Ik−1, uz) � K[V(Pz−1,k ◦G)]/I(Pz − 1, k ◦G)
k
⊗K
j=1

K[V(G)]/I(G).

By [19, Theorem 2.2.21] and Proposition 4, we get

depth(S/(Ik−1 : uz)) = z(k − 1 + t) + (k − 2)(t − 1), (3.6)

depthS/(Ik−1, uz) = depthK[V(Pz−1,k ◦G)]/I(Pz−1,k ◦G) +
k∑

j=1

depthK[V(G)]/I(G)

depth(S/(Ik−1, uz)) = (z − 1)(k − 1 + t) + kt = z(k − 1 + t) + (k − 1)(t − 1). (3.7)

Hence by Lemma 2.14, we get

depth(S/I(Pz,k ◦G)) = z(k − 1 + t).

This completes the proof.

For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.15
instead of Lemma 2.14. �

Corollary 3.3. If Stanley’s inequality holds for K[V(G)]/I(G) then it also holds for S/I(Pz,k ◦G).

Figure 7. From left to right C3,5 ◦ P3 and C3,5 ◦ T6.

Theorem 3.2. Let z ≥ 3 and k ≥ 2 be integers and G be a connected graph with |V(G)|≥ 2. Consider
S := K[V(Cz,k ◦G)]. We have

depth(S/I(Cz,k ◦G)) = z(k − 1 + t),

where t = depth((K[V(G)])/I(G)) and

sdepth(S/I(Cz,k ◦G)) ≥ z(k − 1 + s),

where s = sdepth((K[V(G)])/I(G)); see Figure 7.
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Proof. First we prove the result for depth.

1. Let z = 3. We consider the following subcases:

(a) Let k = 2. Let u be a variable corresponding to a vertex of C3 in C3,2. Consider the following
short exact sequence

0 −→ S/(I : u) −→ S/I −→ S/(I, u) −→ 0

we have
S/(I : u) �

2
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)
3
⊗K
j=1

K[V(G)]/I(G)⊗KK[e],

S/(I, u) � K[V(P2,2 ◦G)]/I(P2,2 ◦G)⊗KK[V(G)]/I(G)⊗KK[V(T ◦G)]/I(T ◦G).

Hence by using Lemma 3.1, [19, Theorem 2.2.21] and Theorem 3.1, we have

depth(S/(I : u)) = 2 + 3t + 1 = 3(t + 1),

depth(S/(I, u)) = 3(1 + t) = depth(S/(I : e)).

Thus by Depth Lemma we have depth(S/I) = 3(1 + t).

(b) Let k ≥ 3. Let e1, e2, . . . , ek−1 be leaves attached to u3 in C3,k and I = I(C3,k ◦ G). For
0 ≤ i ≤ k − 2, Ii := (Ii, ei+1) where I0 = I. Consider the chain of short exact sequences of the
form

0 −→ S/(I0 : e1) −→ S/I0 −→ S/(I0, e1) −→ 0
0 −→ S/(I1 : e2) −→ S/I1 −→ S/(I1, e2) −→ 0

...

0 −→ S/(Ik−2 : ek−1) −→ S/Ik−2 −→ S/(Ik−2, ek−1) −→ 0
0 −→ S/(Ik−1 : u3) −→ S/Ik−1 −→ S/(Ik−1, u3) −→ 0

we have,

S/(Ii : ei+1) � K[V(P2,k ◦G)]/I(P2,k ◦G)
k−2−i
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

i+1
⊗K
j=1

K[V(G)]/I(G)⊗K
K

K[ei+1].

(3.8)

By using [19, Theorem 2.2.21]

depth(S/(Ii : ei+1)) = depth(K[V(Pk,2 ◦G)]/I(Pk,2 ◦G))+
i+1∑
j=1

depth(K[V(G)]/I(G)) +
k−2−i∑

j=1

depth(K[V(T ◦G)]/I(T ◦G)) + depthK[ei+1]
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hence by Lemma 3.1, Proposition 4 and Theorem 3.1, we get

depthS/(Ii : ei+1) = 2(k − 1 + t) +
k−2−i∑

j=1

1 +
i+1∑
j=1

+1

= 2(k − 1 + t) + k − 2 − i + it + t + 1
= 3(k − 1 + t) + i(t − 1). (3.9)

S/(Ik−1 : u3) �
k−1
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)
k−1
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

k+1
⊗K
j=1

K[V(G)]/I(G)⊗KK[u3],

S/(Ik−1, u3) � K[V(P2,k ◦G)]/I(P2,k ◦G)
k
⊗K
j=1

K[V(G)]/I(G).

By [19, Theorem 2.2.21]

depthS/(Ik−1, u3) = depthK[V(P2,k ◦G)]/I(P2,k ◦G) +
k∑

j=1

depthK[V(G)]/I(G)

by Lemma 3.1 and Theorem 3.1, we get

depth(S/(Ik−1 : u1)) = 3(k − 1 + t) + (k − 2)(t − 1). (3.10)

depth(S/(Ik−1, u3)) = 2(k − 1 + t) + kt = 3(k − 1 + t) + (k − 1)(t − 1). (3.11)

Hence by Lemma 2.14, we get

depth(S/I(C3,k ◦G)) = 3(k − 1 + t).

2. Let z ≥ 4. We consider the following subcases:

(a) Let k = 2. Let u be a variable corresponding to the vertex of Cz in Cz,2. Consider the following
short exact sequence

0 −→ S/(I : u) −→ S/I −→ S/(I, u) −→ 0

we have S/(I : u) � K[V(Pz−3,2 ◦G)]/I(Pz−3,2 ◦G)
3
⊗K
j=1

K[V(G)]/I(G)

2
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)⊗KK[e],

S/(I, u) � K[V(Pz−1,2 ◦G)]/I(Pz−1,2 ◦G)⊗KK[V(G)]/I(G))⊗KK[V(T ◦G)]/I(T ◦G).

Hence by using Lemma 3.1, [19, Theorem 2.2.21] and Theorem 3.1, we have

depth(S/(I : u)) = (z − 3)(t + 1) + 3t + 2 + 1 = z(t + 1)

depth(S/(I, u)) = z(1 + t) = depth(S/(I : u)).

Thus by Depth Lemma we have depth(S/I) = z(1 + t).
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(b) Let k ≥ 3. Let e1, e2, . . . , ek−1 be leaves attached to uz in Cz,k and I = I(Cz,k ◦ G). For
0 ≤ i ≤ k − 2, Ii := (Ii, ei+1) where I0 = I. Consider the chain of short exact sequences of the
form

0 −→ S/(I0 : e1) −→ S/I0 −→ S/(I0, e1) −→ 0
0 −→ S/(I1 : e2) −→ S/I1 −→ S/(I1, e2) −→ 0

...

0 −→ S/(Ik−2 : ek−1) −→ S/Ik−2 −→ S/(Ik−2, ek−1) −→ 0
0 −→ S/(Ik−1 : uz) −→ S/Ik−1 −→ S/(Ik−1, uz) −→ 0

S/(Ii : ei+1) � K[V(Pz−1,k ◦G)]/I(Pz−1,k ◦G)
k−2−i
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)
i+1
⊗K
j=1

K[V(G)]/I(G)⊗KK[ei+1].

By using [19, Theorem 2.2.21]

depth(S/(Ii : ei+1)) = depth(K[V(Pz−1,k ◦G)]/I(Pz−1,k ◦G))+
i+1∑
j=1

depth(K[V(G)]/I(G)) +

k−2−i∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)) + depthK[ei+1] (3.12)

by Lemma 3.1, Proposition 4 and Theorem 3.1, we get

depthS/(Ii : ei+1) = (z − 1)(k − 1 + t) +
k−2−i∑

j=1

1 +
i+1∑
j=1

t + 1

= (z − 1)(k − 1 + t) + k − 2 − i + it + t + 1
= z(k − 1 + t) + i(t − 1). (3.13)

S/(Ik−1 : uz) � K[V(Pz−3,k ◦G)]/I(Pz−3,k ◦G)
k−1
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

k−1
⊗K
j=1

K[V(T ) ◦G]/I(T ◦G)
k+1
⊗K
j=1

K[V(G)]/I(G)⊗KK[uz],

S/(Ik−1, uz) � K[V(Pz−1,k ◦G)]/I(Pz−1,k ◦G)
k
⊗K
j=1

K[V(G)]/I(G)

by Lemma 3.1, [19, Theorem 2.2.21] and Theorem 3.1, we have

depth(S/(Ik−1 : uz)) = z(k − 1 + t) + (k − 2)(t − 1). (3.14)

depth(S/(Ik−1, uz)) = (z − 1)(k − 1 + t) + kt = z(k − 1 + t) + (k − 1)(t − 1). (3.15)

Hence by Lemma 2.14, we will have the required result

depth(S/I(Cz,k ◦G)) = z(k − 1 + t).
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For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.15
instead of Lemma 2.14. �

Corollary 3.4. Stanley’s inequality holds for S/I(Cz,k ◦G) if it holds for K[V(G)]/I(G).

Figure 8. F3,5 ◦ P3.

Theorem 3.3. Let α ≥ 2 and k ≥ 3 be integers and G be a connected graph with |V(G)|≥ 2 and
S := K[V(Fα,k ◦G)]. Then

depthS/I(Fα,k ◦G) = α(k − 1 + t) + d
α − 1

2
e(t − 1),

where t = depth((K[V(G)])/I(G)) and

sdepthS/I(Fα,k ◦G) ≥ α(k − 1 + s) + d
α − 1

2
e(s − 1),

where s = sdepth((K[V(G)])/I(G)) and dαe = {n ∈ Z : n ≥ α}; see Figure 8.

Proof. We consider the following cases:

1. Let α = 2. Let e1, e2, . . . , ek−1 be leaves attached to u2 in F(2, k) and
I = I(F2,k ◦G). Consider the short exact sequence of the form

0 −→ S/(I : e1) −→ S/I −→ S/(I, e1) −→ 0

where e1 is leave of second star that is attached to the previous star.

S/(I : e1) � K[V(S k−1 ◦G)]/I(S k−1 ◦G)
k−2
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)

2
⊗K
j=1

K[V(G)]/I(G)⊗KK[e1],

S/(I, e1) � K[V(S k ◦G)]/I(S k ◦G)⊗KK[V(S k−1 ◦G)]/I(S k−1)⊗KK[V(G)]/I(G).

By [19, Theorem 2.2.21]

depth(S/(I : e1)) = depth(K[V(S k−1 ◦G)]/I(S k−1 ◦G)) + 2depth(K[V(G)]/I(G))

+

k−2∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)) + K[e1]
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hence by Lemma 3.1 and Proposition 4, we get

depthS/(I : e1) = k − 2 + t +
k−2∑
j=1

1 + 2t + 1

= k − 2 + t + k − 2 + 2t + 1 = 2(k − 1 + t) + (t − 1)

and similarly

depthS/(I, e1) = (k − 1 + t) + (k − 2 + t) + t = 2(k − 1 + t) + (t − 1)

So by using Depth Lemma, we have

depthS/I(F2,k ◦G) = 2(k − 1 + t) + (t − 1).

2. Let α ≥ 3. Let e1.e2, ..., ek−1 be leaves attached to uα in F(z, k) and I = I(Fα,k ◦G).

Consider the short exact sequence of the form

0 −→ S/(I : e1) −→ S/I −→ S/(I, e1) −→ 0

where e1 is leave of last star that is attached to the previous star in Fα,k. We have

S/(I : e1) � K[V(Fα−2,k ◦G)]/I(Fα−2,k ◦G)⊗KK[V(S k−1 ◦G)]/I(S k−1 ◦G)
k−2
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)
2
⊗K
j=1

K[V(G)]/I(G)⊗KK[e1],

S/(I, e1) � K[V(Fα−1,k ◦G)]/I(Fα−1,k ◦G)⊗KK[V(S k−1 ◦G)]/I(S k−1 ◦G)
⊗KK[V(G)]/I(G).

By [19, Theorem 2.2.21]

depth(S/(I : e1)) = depthK[V(Fα−2,k ◦G)]/I(Fα−2,k ◦G)+
depth(K[V(S k−1 ◦G)]/I(S k−1 ◦G))

+

k−2∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)) + 2depth(K[V(G)]/I(G)) + depthK[e1]

hence by Lemma 3.1, Proposition 4 and induction on α, we get

depthS/(I : e1) = (α − 2)(k − 1 + t) + d
α − 3

2
e(t − 1) + (k − 2 + t) +

k−2∑
j=1

1 + 2t + 1

= α(k − 1 + t) + d
α − 1

2
e(t − 1)

and similarly

depthS/(I, e1) = (α − 1)(k − 1 + t) + d
α − 2

2
e(t − 1) + (k − 2 + t) + t

AIMS Mathematics Volume 6, Issue 8, 8544–8566.



8560

depthS/(I : e1) = α(k − 1 + t) + d
α

2
e(t − 1). (3.16)

So by using Depth Lemma, we have

depthS/(Fα,k ◦G) = α(k − 1 + t) + d
α − 1

2
e(t − 1).

For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.9
instead of Depth Lemma. �

Corollary 3.5. Stanley’s inequality holds for S/I(Fα,k ◦G) if it holds for K[V(G)]/I(G).

Theorem 3.4. Let α ≥ 3 and k ≥ 3 be integers and G be a connected graph with |V(G)|≥ 2. Consider
S := K[V(CFα,k ◦G)]. Then

depthS/I(CFα,k ◦G) = α(k − 1 + t) + d
α

2
e(t − 1),

where t = depth((K[V(G)])/I(G)) and

sdepthS/I(Cα,k ◦G) ≥ α(k − 1 + s) + d
α

2
e(s − 1),

where s = sdepth((K[V(G)])/I(G)); see Figure 9.

Figure 9. CF3,5 ◦ P3.

Proof. We consider the following cases:

1. Consider α = 3. Let e1, e2, ..., ek−1 be leaves attached to u3 in CF(3, k) and I = I(CF3,k ◦G).

Consider the short exact sequence of the form

0 −→ S/(I : e1) −→ S/I −→ S/(I, e1) −→ 0

where e1 is leave of third star that is attached to the previous star and first star in CF3,k. We have

S/(I : e1) �
2
⊗K
j=1

K[V(S k−1 ◦G)]/I(S k−1 ◦G)

k−2
⊗K
j=1

K[(T ◦G)]/I(T ◦G)
3
⊗K
j=1

K[V(G)]/I(G)⊗KK[e1],
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S/(I, e1) � K[V(F2,k ◦G)]/I(F2,k ◦G)⊗KK[V(S k−1 ◦G)]/I(S k−1 ◦G)⊗KK[V(G)]/I(G).

By [19, Theorem 2.2.21]

depth(S/(I : e1)) = 2depth(K[V(S k−1 ◦G)]/I(S k−1 ◦G)) + 3depth(K[V(G)]/I(G))
k−2∑
j=1

depth(K[V(T ◦G)]/I(T ◦G)) + depthK[e1]

hence by Lemma 3.1 and Proposition 4, we get

depthS/(I : e1) = 2(k − 2 + t) +
k−2∑
j=1

1 + 3t + 1 = 3(k − 1 + t) + 2(t − 1) (3.17)

and similarly

depthS/(I, e1) = 2(k − 1 + t) + (t − 1) + (k − 2 + t) + t

depthS/(I, e1) = 3(k − 1 + t) + 2(t − 1). (3.18)

So by using Depth Lemma 2.8, we have

depthS/(CF3,k ◦G) = 3(k − 1 + t) + 2(t − 1).

2. Let α ≥ 3. Let e1, e2, . . . , ek−1 be leaves attached to uα in CF(α, k) and
I = I(CFα,k ◦G). Consider the short exact sequence of the form

0 −→ S/(I : e1) −→ S/I −→ S/(I, e1) −→ 0

where e1 is leave of last star that is attached to the previous star and first star in CFα,k. We have

S/(I : e1) � K[V(Fα−3,k ◦G)]/I(Fα−3,k ◦G)
2
⊗K
j=1

K[V(S k−1 ◦G)]/I(S k−1 ◦G)

k−2
⊗K
j=1

K[V(T ◦G)]/I(T ◦G)
3
⊗K
j=1

K[V(G)]/I(G)⊗KK[e1],

S/(I, e1) � K[V(Fα−1,k ◦G)]/I(Fα−1,k ◦G)⊗KK[V(S k−1 ◦G)]/I(S k−1 ◦G)⊗KK[V(G)]/I(G).

By using [19, Theorem 2.2.21]

depth(S/(I : e1)) = depthK[V(Fα−3,k ◦G)]/I(Fα−3,k ◦G) +
k−2∑
j=1

depth(K[V(T ◦G)]/I(T ◦G))

+ 2depth(K[V(S k−1 ◦G)]/I(S k−1 ◦G)) + 3depth(K[V(G)]/I(G)) + 1

hence by Lemma 3.1, Proposition 4 and Theorem 3.3, we get

depthS/(I : e1) = (α − 3)(k − 1 + t) + d
α − 4

2
e(t − 1) + 2(k − 2 + t) +

k−2∑
j=1

1 + 3t + 1
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= α(k − 1 + t) + d
α

2
e(t − 1) (3.19)

and similarly

depthS/(I, e1) = (α − 1)(k − 1 + t) + d
α − 2

2
e(t − 1) + (k − 2 + t) + t

depthS/(I, e1) = α(k − 1 + t) + d
α

2
e(t − 1). (3.20)

So by using Depth Lemma 2.8, we have

depthS/(CFα,k ◦G) = α(k − 1 + t) + d
α

2
e(t − 1).

For Stanley depth the result follows by Lemma 2.13 instead of [19, Theorem 2.2.21] and Lemma 2.9
instead of Depth Lemma. �

Corollary 3.6. Stanley’s inequality holds for S/I(CFα,k ◦G) if it holds for K[V(G)]/I(G).

4. Some special classes of caterpillar trees

In this section we calculate values of depth and Stanley depth of the quotient rings associated with
edge ideals of some class of caterpillar graphs. We also prove that the values of both depth and Stanley
depth for these classes of graphs are exactly the same. As a consequence the Stanley’s inequality holds
for the quotient ring of edge ideals of these classes of graphs.

Theorem 4.1. Let z ≥ 3 and S = K[V(Pz)]. For a ∈ {1, 3, 5, . . . , z}, if ka > 1 and I = I(Pz), then

depth(S/I) = sdepth(S/I) =
z + 1

2
.

Proof. The proof is done by induction on z. Let z = 3. Consider the following short exact sequence

0 −→ S/(I : u3) −→ S/I −→ S/(I, u3) −→ 0

We have (I : u3) = (x : x ∈ N(u3)) + I(S k1) and S/(I : u3) � K[V(S k1) ∪ {u3}]/I(S k1), thus
by Lemma 2.10 and Proposition 3, depthS/(I : u3) = sdepthS/(I : u3) = 1 + 1 = 2. Clearly
(I, u3) = (I(S k1+1), u3) and S/(I, u3) � K[V(S k1+1)∪{u3}∪{e1, e2, . . . , ek3}]/I(S k1+1) by Lemma 2.10 and
Proposition 3, depthS/(I, u3) = sdepthS/(I, u3) = 1 + k3 − 1 = k3, by using Depth Lemma, Lemma 2.9
and Proposition 2 we have

depthS/I(P3) = sdepthS/I(P3) = 2.

Now assume that z ≥ 5, consider a short exact sequence of the form

0 −→ S/(I : uz) −→ S/I −→ S/(I, uz) −→ 0

it is easy to see that (I : uz) = (x : x ∈ N(uz)) + I(Pz−2) and S/(I : uz) � K[V(Pz−2) ∪ {uz}]/I(Pz−2) so
by Lemma 2.10 and induction on z, we get

depthS/(I : uz) = sdepthS/(I : uz) =
z − 2 + 1

2
+ 1 =

z + 1
2

.
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Since (I, uz) = (I(Pz−2), uz) and

S/(I, uz) � K[V(Pz−2) ∪ {uz} ∪ {e1, e2, . . . , ekz}]/(I(Pz−2), uz),

therefore by using Lemma 2.10 and induction on z, we get

depthS/(I, uz) = sdepthS/(I, uz) =
z − 2 + 1

2
+ kz − 1 =

z + 1
2
+ kz − 2.

Hence by Depth Lemma we have depthS/I = z+1
2 and by Lemma 2.9 sdepthS/I ≥ z+1

2 . Now for the
upper bound by Proposition 2 we have sdepthS/(I) ≤
sdepthS/(I : uz) = z+1

2 and hence sdepth(S/I) = z+1
2 . �

Theorem 4.2. Let z ≥ 2, k ≥ 3 and S := K[V(Pz,k)]. If I = I(Pz,k), then

depth(S/I) = sdepth(S/I) =

k, if z = 2;

b z
2c(k − 2) + z +

∑d z
2 e−1

m=1 (z − 2m), if z ≥ 3.

Where bαc = {n ∈ Z : n ≤ α}.

Proof. The proof is done by induction on z. Let z = 2. Consider the following short exact sequence

0 −→ S/(I : u2)
·u2
−−→ S/I −→ S/(I, u2) −→ 0

we have (I : u2) = (x : x ∈ N(u2)) and S/(I : u2) � K[L(u1) ∪ {u2}], where N(u2) are the neighbours
of u2 and L(u1) represent the number of leaves at u1. Thus by Lemma 2.10, depth(S/(I : u2)) =
1 + k − 1 = k. Also (I, u2) = (I(S k), u2) and S/(I, u2) � K[V(S k) ∪ L(u2)]/I(S k), therefore by
Proposition 2.10, depth(S/(I, u2)) = 1+ (k+1−1) = k+1 thus by Depth Lemma depth(S/I) = k. Now
by Lemma 2.9 sdepth(S/I) ≥ k and by using Proposition 2 and Lemma 3 we have sdepth(S/I) ≤ k.
Thus sdepth(S/I) = k. Let z = 3. Consider the following short exact sequence

0 −→ S/(I : u3)
·u3
−−→ S/I −→ S/(I, u3) −→ 0

we have (I : u3) = I(S k)+(x : x ∈ N(u3)) and S/(I : u3) � [V(Sk)∪L(u2)∪{u3}]/I(Sk). Thus by Lemma
2.10 and Proposition,3, depth(S/(I : u3)) = sdepth(S/(I : u3)) = 1 + (k + 1 − 1) + 1 = k + 2. Further
(I, u3) = (I(P2,k), u3) and S/(I, u3) � K[V(P2,k) ∪ L(u3)]/I(P2,k). Therefore by Lemma 2.10, and the
above case we have depth(S/(I, u3)) = sdepth(S/(I, u3)) = k + (k + 2 − 1) = 2k + 1. Applying Depth
Lemma we get depth(S/I) = k + 2. Now by Lemma 2.9 and Proposition 2 we get sdepth(S/I) = k + 2.
Let z ≥ 4. Consider the following short exact sequence

0 −→ S/(I : uz)
·uz
−−→ S/I −→ S/(I, uz) −→ 0

it is easy to see that (I : uz) = (x : x ∈ N(uz)) + I(Pz−2,k) and S/(I : uz) � K[V(Pz−2,k) ∪ L(uz−1) ∪
{uz}]/I(Pz−2,k) also (I, uz) = (I(Pz−1,k), uz) and S/(I, uz) � K[V(Pz−1,k) ∪ L(uz)]/I(Pz−1,k).
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Thus by using induction on z and Lemma 2.10

depth(S/(I : uz)) = depthK[V(Pz−2,k)]/I(Pz−2,k) + |L(uz−1)|+1

= b
z − 2

2
c(k − 2) + (z − 2) +

d z−2
2 e−1∑
m=1

(z − 2 − 2m) + (k + z − 3) + 1

= b
z − 2

2
c(k − 2) + z − 2 +

d z−2
2 e−1∑
m=1

(z − 2 − 2m) + k + z − 2

= b
z
2
c(k − 2) − (k − 2) +

d z−2
2 e−1∑
m=0

(z − 2 − 2m) + k + z − 2

= b
z
2
c(k − 2) + z +

d z−2
2 e−1∑
m=0

(z − 2 − 2m)

introducing the transformation j := m + 1 we get depth(S/(I : uz)) = b z
2c(k − 2) + z +

∑d z
2 e−1

j=1 (z − 2 j),
where j is dummy variable so by replacing j with m we get

depth(S/(I : uz)) = b
z
2
c(k − 2) + z +

d z
2 e−1∑
m=1

(z − 2m).

Now by considering the inequality dx + ye ≥ dxe + dye − 1, we get

depth(S/(I, uz)) = depthK[V(Pz−1,k)/I(Pz−1,k)) + |L(uz)|

= b
z − 1

2
c(k − 2) + z − 1 +

d z−1
2 e−1∑
m=1

(z − 1 − 2m) + k + z − 2

≥ b
z − 2

2
c(k − 2) +

d z−1+2−2
2 e−1∑
m=0

(z − 1 − 2m) + k + z − 2

≥ b
z
2
c(k − 2) − (k − 2) +

d z
2 e−2∑
m=0

(z − 1 − 2m) + k + z − 2

= b
z
2
c(k − 2) + z +

d z
2 e−2∑
m=0

(z − 1 − 2m)

≥ b
z
2
c(k − 2) + z +

d z
2 e−1∑
m=1

(z − 2m).

Thus by Depth Lemma

depth(S/I) = b
z
2
ck +

d z
2 e−1∑
m=1

(z − 2m) + z − 2b
z
2
c.

For Stanley depth the result follows by Lemma 2.9 and 2 instead of Depth Lemma. Clearly, one can
see that Stanley’s inequality holds for these classes of graphs. �
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