
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(8): 8477–8496.
DOI:10.3934/math.2021492
Received: 01 April 2021
Accepted: 27 May 2021
Published: 03 June 2021

Research article

Convergence analysis of a gradient iterative algorithm with optimal
convergence factor for a generalized Sylvester-transpose matrix equation

Nunthakarn Boonruangkan and Pattrawut Chansangiam∗

Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok 10520, Thailand

* Correspondence: Email: pattrawut.ch@kmitl.ac.th; Tel: +66935266600;
Fax: +6602329840011 ext. 284.

Abstract: Consider a generalized Sylvester-transpose matrix equation with rectangular coefficient
matrices. Based on gradients and hierarchical identification principle, we derive an iterative algorithm
to produce a sequence of approximated solutions with a reasonable stopping rule concerning a relative
norm-error. A convergence analysis via Banach fixed-point theorem reveals the sequence converges to
a unique solution of the matrix equation for any given initial matrix if and only if the convergence factor
is chosen appropriately in a certain range. The performance of algorithm is theoretically analysed
through the convergence rate and error estimations. The optimal convergence factor is chosen to
attain the fastest asymptotic behaviour. Finally, numerical experiments are provided to illustrate
the capability and efficiency of the proposed algorithm, compared to recent gradient-based iterative
algorithms.

Keywords: generalized Sylvester-transpose matrix equation; gradient; Kronecker product; matrix
norm; Banach fixed-point theorem
Mathematics Subject Classification: 15A12, 15A60, 46A22, 65F45

1. Introduction

It is well known that the fundamental of differential equations deals with the algebraic linear system

x′(t) = Ax(t), (1.1)

where x(t) is an unknown vector-valued function and A is a given square matrix. To analyse the
stability of an equilibrium point of the system (1.1), it suffices to find a positive definite matrix L such
that AT L + LA is negative definite; see e.g., [1]. So, we need to solve the so-called Lyapunov equation

AX + XAT = R (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021492

8478

for some negative definite matrix R. To discuss the Eq (1.2), we investigate a more general form,
namely, the generalized Sylvester-transpose matrix equation

p∑
i=1

AiXBi +

q∑
j=1

C jXT D j = F, (1.3)

where Ai, Bi,C j,D j and F are given matrices of conforming dimensions and X is an unknown matrix
to be determined. The Eq (1.3) includes important practical problems that are written as the matrix
equations

AX + XB = C, (1.4)
AX + XT B = C, (1.5)
AXB + CXD = E, (1.6)
AXB + X = C, (1.7)

known as Sylvester, Sylvester-transpose, generalized Sylvester, Kalman-Yakubovich matrix equations,
respectively. The Eqs (1.2)–(1.7) have many essential applications in control theory; see e.g., [2–6].
In traditional method, a vectorization and the Kronecker product are used to find the unique solution.
However, the large size of the Kronecker multiplication leads to computationally difficulty in that
excessive computer. For this reason, iterative algorithms are received more attention.

Many researchers attempted to meliorate such iterative algorithms for finding the approximated
solutions of matrix equations (1.2)–(1.7) using many ideas, e.g., matrix sign function [7, 8], recursive
blocked algorithms [9, 10] and Hermitian and skew-Hermitian splitting algorithms [11–13]. In 2005,
gradient-based iterative algorithms were firstly introduced by F. Ding and T. Chen for solving (1.4),
(1.6) and (1.7); see [14, 15]. In a few year later, many iterative algorithms that relied on gradients and
hierarchical identification principle for solving (1.2)–(1.7) are established, e.g., RGI [16], JGI [17,18],
MGI [19] and AGBI [20]. See more information in [21–25]. The Frobenious norm ‖ · ‖F and the
spectral norm ‖ · ‖2 for matrices are used to analyse the convergence property of such algorithms. There
are defined respectively for any real matrix A by

‖A‖F = (tr AT A)
1
2 and ‖A‖2 = (λmax(AT A))

1
2 .

A gradient-based iterative algorithm for solving (1.3) was presented as follows:

Theorem 1.1 ([25]). Suppose that the matrix equation (1.3) has a unique solution X. For each s =

1, 2, . . . , p and t = p + 1, . . . , q, construct

Xs(k) = X(k − 1) + τAT
s [F −

p∑
i=1

AiX(k − 1)Bi −

q∑
j=1

C jXT (k − 1)D j]BT
s ,

Xt(k) = X(k − 1) + τDt[F −
p∑

i=1

AiX(k − 1)Bi −

q∑
j=1

C jXT (k − 1)D j]TCt,

X(k) =
1

p + q

 p∑
s=1

Xs(k) +

q∑
t=p+1

Xt(k)

 .
AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8479

A necessary and sufficient condition for which the sequence {Xk} converges to X for any given initial
matrices X1(0), X2(0), . . . , Xp+q(0) is that

0 < τ < 2

 p∑
i=1

‖As‖
2
2‖Bs‖

2
2 +

q∑
t=p+1

‖Ct‖
2
2‖Dt‖

2
2

 .
Meanwhile, a least-squares based iterative algorithm for solving (1.3) was presented as follows:

Theorem 1.2 ([25]). For each s = 1, 2, . . . , p and t = p + 1, . . . , q, construct

R(k) = E −
p∑

i=1

AiX(k − 1)Bi −

q∑
j=1

C jXT (k − 1)D j,

Xs(k) = X(k − 1) + µ(AT
s As)−1AT

s R(k)BT
s (BsBT

s)−1,

Xt(k) = X(k − 1) + µ(DtDT
t)−1DtR(k)Ct(CT

t Ct)−1,

X(k) =
1

p + q

 p∑
s=1

Xs(k) +

q∑
t=p+1

Xt(k)

 .
The sequence {Xk} converges to a unique solution X for any given initial matrices
X1(0), X2(0), . . . , Xp+q(0) if and only if 0 < τ < 2(p + q).

In this work, we propose an effective iterative algorithm based on gradient and hierarchical
identification principle, namely, a gradient iterative algorithm with optimal convergence factor. The
proposed algorithm is applicable for the generalized Sylvester-transpose matrix equation (1.3); see
Section 2. Convergence analysis (see Section 3) via Banach fixed-point theorem reveals that the
iterative solutions converges to the unique solution for any initial value if and only if the convergence
factor is chosen appropriately belong to an open interval. Then we study the performance of the
algorithm from the convergence rate and error estimates. Moreover, we determine the fastest
asymptotic convergence rate to minimize the spectral radius of the iteration matrix. Furthermore, we
apply the algorithm to the Sylvester-transpose matrix equation; see Section 4. To show the
applicability and the performance of the algorithm, we give numerical experiments in Section 5. In
Section 6, we summarize the whole work. For benefits of reader, we include MATLAB-code for
numerical experiment in Appendix.

2. Introducing a gradient iterative algorithm

Let us denote by Rr×s the set of r × s real matrices. Consider the matrix equation (1.3) where
Ai ∈ R

m×n, Bi ∈ R
p×q, C j ∈ R

m×p, D j ∈ R
n×q, F ∈ Rm×q are given coefficient matrices and X ∈ Rn×p is

an unknown matrix to be determined. The dimension matching of matrices is assumed to be mq = np.

2.1. A traditional method for the generalize Sylvester-transpose matrix equation

Recall that the commutation matrix Kmn is defined by

Kmn =
[
Im ⊗ enT

1 Im ⊗ enT

2 · · · Im ⊗ enT

n

]
∈ Rmn×mn

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8480

where en
i is the ith column of the n × n identity matrix In. Essential properties of the commutation

matrices are given in the following lemma:

Lemma 2.1. (see e.g., [26, Ch. 4]) For any A ∈ Rm×n and B ∈ Rp×q, we have

vec(AT) = Kmn vec(A), (2.1)
K−1

mn = KT
mn = Knm, (2.2)

(B ⊗ A) = Kpm(A ⊗ B)Knq. (2.3)

A traditional method to solve the matrix equation (1.3) is to take the vector operator and utilize
Lemma 2.1. Indeed, we arrive at an equivalent linear system Qx = b where

Q =

p∑
i=1

(BT
i ⊗ Ai) +

q∑
j=1

(DT
j ⊗C j)Knp ∈ R

np×np,

x = vec[X] and b = vec[F]. From now on, assume that Q is invertible. So, the matrix equation (1.3)
has a unique solution

x = Q−1b. (2.4)

However, if the dimensions of Ai, Bi,C j,D j are not small, e.g., 102 × 102, then the dimension of Q is
104 × 104. Such a dimension problem leads to computational difficulty for computation and inversion
of large matrices. Hence, this approach is only applicable for small dimensional matrices.

2.2. Gradient iterative algorithm for the matrix equation

We now propose an effective iterative algorithm to solve (1.3). If p > q then we set C j = 0 and
D j = 0 for any j > q. If q > p then we set Ai = 0 and Bi = 0 for any i > p. For each i = 1, 2, . . . , p, we
assume that

Mi := F −

∑
s,i

(AsXBs + CsXT Ds)

 . (2.5)

From the main system (1.3), we would like to solve p subsystems

AiXBi + CiXT Di = Mi i = 1, 2, . . . , p, (2.6)

so that the following errors are minimized:

Li(X) := ‖AiXBi + CiXT Di − Mi‖
2
F , i = 1, 2, . . . , p. (2.7)

We can derive the gradient of each Li as follows:

∂

∂X
Li(X) =

∂

∂X
tr[(AiXBi + CiXT Di − Mi)T (AiXBi + CiXT Di − Mi)]

=
∂

∂X
tr(BT

i XT AT
i AiXBi) +

∂

∂X
tr(DT

i XCT
i AiXBi) −

∂

∂X
tr(MT

i AiXBi)

+
∂

∂X
tr(BT

i XT AT
i CiXT Di) +

∂

∂X
tr(DT

i XCT
i CiXT Di) −

∂

∂X
tr(MT

i CiXT Di)

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8481

−
∂

∂X
tr(BT

i XT AT
i Mi) −

∂

∂X
tr(DT

i XCT
i Mi) +

∂

∂X
tr(MT

i Mi)

= 2
[
AT

i (AiXBi + CiXT Di − Mi)BT
i + Di(AiXBi + CiXT Di − Mi)TCi

]
. (2.8)

Let Xi(k) be the approximated solution of the system (2.6) at iteration k. The recursive formula of Xi(k)
come from the gradient formula of Li(X) as follows:

Xi(k) = Xi(k − 1) + µ
∂

∂X
Li(X),

where µ is a step size parameter. To avoid duplicated computation, we introduce a matrix

E = F −
p∑

i=1

AiXBi −

q∑
j=1

C jXT D j.

Taking the arithmetic mean of X1(k), . . . , Xp(k) to get X(k):

X(k) =
1
p

p∑
i=1

Xi(k) = X(k − 1) + τ

 p∑
i=1

AT
i EBT

i +

q∑
j=1

D jETC j

 , (2.9)

where τ := −2µ/p is called a convergence factor. The hierarchical identification principle suggests to
replace the unknown solution X in (2.9) by its previous estimate X(k−1). Thus we obtain the following
procedure:

Algorithm 1: GIO for generalized Sylvester-transpose equation
Ai ∈ R

m×n, Bi ∈ R
p×q, C j ∈ R

m×p, D j ∈ R
n×q for i = 1, 2, . . . , p, j = 1, 2, . . . , q and F ∈ Rm×q.

initialization;
if p ≥ q then

C j = 0 and D j = 0 for any j > q;
else

Ai = 0 and Bi = 0 for any i > p.
end
Set A′i = AT

i and B′i = BT
i . Choose τ ∈ R. Set k := 0. Choose initial matrix X(0).

while k = 0, 1, 2, . . . , n do
E(k) = F −

∑p
i=1 AiX(k)Bi −

∑q
j=1 C jXT (k)D j.

if ‖E(k)‖F/‖F‖F < ε then
break;

else
X(k + 1) = X(k) + τ

(∑p
i=1 A′i E(k)B′i +

∑q
j=1 D jET (k)C j

)
,

update k.
end

end

For convenience, we write XT (k) and ET (k) for X(k)T and E(k)T , respectively. The matrices
E(k), A′i , B

′
i were introduced to avoid duplicate manipulations.

Remark 2.2. To break the procedure, if ‖F‖F is close to zero, then we should consider the error ‖E(k)‖F
or ‖X(k) − X(k − 1)‖F instead of the relative error ‖E(k)‖F/‖F‖F .

The convergent property of the algorithm relies on the convergence factor τ, which will be discussed
in the next section.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8482

3. Convergence analysis of GIO algorithm

In this section, we discuss a convergence criteria for the applicability of Algorithm 1. Then, we
analyse the performance of the algorithm through its convergence rate and error estimates. The last
job is to determine the convergence factor for which the algorithm fits with the fastest asymptotic
behaviour. The main idea for the analysis starts with transforming a recursive equation of the error
of approximated solutions into a fixed-point iteration x(k) = S x(k − 1), where S : Rnp → Rnp is
a contraction mapping. Then, we apply the following Banach fixed-point theorem to analysis the
algorithm.

Theorem 3.1. (see e.g., [27]) Let (X, d) be a non-empty complete metric space with a contraction
mapping T : X → X. Then

(i) The map T admits a unique fixed-point x∗ in X i.e. T (x∗) = x∗.
(ii) The fixed-point x∗ can be found as follows: start with an arbitrary element x0 in X and define a

sequence {xn} by xn = T (xn−1) for n ≥ 1. Then xn → x∗.
(iii) The following inequalities hold and describe the speed of convergence:

d(x∗, xn) ≤
zn

1 − z
d(x1, x0) (3.1)

d(x∗, xn+1) ≤
z

1 − z
d(xn+1, xn) (3.2)

d(x∗, xn+1) ≤ zd(x∗, xn). (3.3)

3.1. Convergence criteria

From Algorithm 1, at each k-th iteration, we start with considering the error matrix X̂(k) = X(k)−X.
Indeed, we have

X̂(k) = X(k − 1) + τ

 p∑
i=1

AT
i E(k − 1)BT

i +

q∑
j=1

D jET (k − 1)C j

 − X

= X̂(k − 1) + τ

 p∑
i=1

AT
i E(k − 1)BT

i +

q∑
j=1

D jET (k − 1)C j

 , (3.4)

and

E(k − 1) = −

 p∑
i=1

AiX̂(k − 1)Bi +

q∑
j=1

C jX̂T (k − 1)D j

 .
Thus, Lemma 2.1 implies that

vec E(k − 1) = −

p∑
i=1

(BT
i ⊗ Ai) vec X̂(k − 1) −

q∑
j=1

(DT
j ⊗C j) vec X̂T (k − 1)

= −

p∑
i=1

(BT
i ⊗ Ai) vec X̂(k − 1) −

q∑
j=1

(DT
j ⊗C j)Knp vec X̂(k − 1)

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8483

= −Q vec X̂(k − 1). (3.5)

Taking the vector operator to the Eq (3.4) and utilizing (3.5), we get

vec X̂(k) = vec X̂(k − 1) + τ

 p∑
i=1

vec AT
i E(k − 1)BT

i +

q∑
j=1

vec D jET (k − 1)C j


= vec X̂(k − 1) + τ

 p∑
i=1

(Bi ⊗ AT
i) vec E(k − 1) +

q∑
j=1

(CT
j ⊗ D j)Kmq vec E(k − 1)


= vec X̂(k − 1) − τ

 p∑
i=1

(Bi ⊗ AT
i)Q vec X̂(k − 1) +

q∑
j=1

Kpn(D j ⊗CT
j)Q vec X̂(k − 1)


= (Inp − τQT Q) vec X̂(k − 1).

Letting S = Inp − τQT Q and x(k) = vec X̂(k − 1), we get a linear iteration

x(k) = S x(k − 1). (3.6)

Using Theorem 3.1 and [28, Theorem 1], we deduce that the following are equivalent:

(i) the sequence {X(k)} converges to X for any initial value X(0);
(ii) S is a contraction mapping (here, we view S : Rnp → Rnp as a mapping);

(iii) the spectral norm of S is less than 1.

Since S is symmetric, all its eigenvalue are real. Note that the eigenvalues of S are of the form 1 − τλ
where λ is any eigenvalue of QT Q. We can compute the spectral radius of S as follows:

ρ[S] = max{|1 − τλmax(QT Q)|, |1 − τλmin(QT Q)|}. (3.7)

Thus, ρ[S] < 1 if and only if
0 < τλmax(QT Q) < 2. (3.8)

Since Q is invertible, the matrix QT Q is positive definite and hence, ‖Q‖22 = λmax(QT Q) > 0. The
condition (3.8) now becomes

0 < τ <
2
‖Q‖22

. (3.9)

We summarize convergence criteria for Algorithm 1 as follows:

Theorem 3.2. Consider the matrix equation (1.3) under the assumption that the matrix Q is invertible
(i.e., Eq (1.3) has a unique solution). Let τ ∈ R. Then a necessary and sufficient condition for which
Algorithm 1 is applicable for any initial matrix X(0) is the condition (3.9).

3.2. Performance of the algorithm

We now discuss the performance of Algorithm 1 through its convergence rate and error estimates.
Considering Eq (3.6), we get

‖X(k) − X‖F = ‖X̂(k)‖F = ‖ vec X̂(k)‖F

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8484

= ‖S vec X̂(k − 1)‖F ≤ ‖S ‖2‖ vec X̂(k − 1)‖F .

Since S is symmetric, we have ‖S ‖2 = ρ[S]. Thus the Eq (3.3) implies that

‖X(k) − X‖F ≤ ρ[S] ‖X(k − 1) − X‖F , (3.10)

By induction, we obtain

‖X(k) − X‖F ≤ ρk[S] ‖X(0) − X‖F . (3.11)

According to the estimate (3.11), the asymptotic convergence rate of the algorithm relies on ρ[S].
Moreover, given an error ε > 0, we would like to find the iteration number k for which

ρk(S)‖X(0) − X‖F < ε. (3.12)

By taking the 10th-base logarithms, we obtain the following equivalent requirement:

k >
log ε − log ‖X(0) − X‖F

log ρ(S)
. (3.13)

Moreover, by Theorem 3.1(iii), we have

‖X(k) − X‖F ≤
ρk[S]

1 − ρ[S]
‖X(1) − X(0)‖F , (3.14)

‖X(k + 1) − X‖F ≤
ρ[S]

1 − ρ[S]
‖X(k + 1) − X(k)‖F . (3.15)

The following results are discussed to concluding the convergence rate and several estimates of the
proposed algorithm.

Theorem 3.3. Suppose the convergence factor τ is chosen so that Algorithm 1 is applicable for any
initial matrix X(0).

(i) The spectral radius ρ[S] in (3.7) governs the asymptotic convergence rate of the algorithm.

(ii) Equations (3.10) and (3.11) show the error estimates ‖X(k)− X‖F compared to the previous step
and the first step, respectively. Meanwhile, the error at each iteration reduces from the previous
one.

(iii) The prior and posterior estimates are presented in (3.14) and (3.15), respectively.

(iv) For each given error ε > 0, we have ‖X(k) − X‖F < ε after the k-th iteration for any k ∈ N that
satisfies (3.13).

We can see that Ai, Bi,C j,D j affect the convergence rate of Algorithm 1 but E is not. However,
the matrix E is required for stopping process. Furthermore, If we take ε = 0.5 × 10−n in (3.13) and k
satisfies

k >
log 0.5 − log ‖X(0) − X‖F − n

log ρ(S)
,

then the approximated X(k) has an accuracy of n decimal digit.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8485

3.3. Optimal convergence factor

The fastest convergence factor of Algorithm 1 is discussed intensively. Recall that the condition
number of a matrix A (relative to the spectral norm) is defined by

κ(A) =

(
λmax(AT A)
λmin(AT A)

) 1
2

.

Assume that Eq (3.9) holds. The convergence rate of Algorithm 1 is the same as that of the linear
iteration (3.6), and thus, it is given by the spectral radius (3.7) of the iteration matrix S . The fastest
convergence rate is equivalent to the smallest of ρ[S]. Thus, we would like to minimize this spectral
radius subject to the condition (3.9). Now, we apply the following lemma:

Lemma 3.4. ([19]) For any real number a, b with b > a > 0, we have

min
0<x< 2

b

{max {| 1 − ax |, | 1 − bx |}} =
b − a
b + a

.

The minimality is reached at xopt =
2

a + b
.

Then the minimum value of ρ[S] is

τopt =
2

λmax(QT Q) + λmin(QT Q)
. (3.16)

Meanwhile, we can notice that spectral radius of the iteration matrix is

ρ[S] =
λmax(QT Q) − λmin(QT Q)
λmax(QT Q) + λmin(QT Q)

=
κ2(Q) − 1
κ2(Q) + 1

. (3.17)

Thus, we obtain the following theorem:

Theorem 3.5. Among the convergence factors τ that meet the criteria of Algorithm 1, the one in
Eq (3.16) attains the fastest asymptotic convergence rate of the algorithm, which is governed by the
spectral radius (3.17).

The above theorem tells us that if λmax(QT Q) is neighbouring to λmin(QT Q), or equivalently, the
condition number is close to one then Algorithm 1 has a fast convergence.

4. The proposed algorithm for Sylvester-transpose matrix equation

In this section, we consider an important special case of the matrix equation (1.3), namely, the
Sylvester-transpose matrix equation. We apply GIO algorithm for this equation, and investigate the
convergence property of the algorithm.

Let m, n ∈ N. Consider the Sylvester-transpose matrix equation (1.5) where A ∈ Rm×n, B ∈ Rn×m,
F ∈ Rm×m are given constant matrices and X ∈ Rn×m is an unknown matrix to be solved. Suppose that
(1.5) has a unique solution, i.e., that following matrix is invertible:

P := (I ⊗ A) + (BT ⊗ I)Knm ∈ R
mn×mn.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8486

Algorithm 2: GIO for Sylvester-transpose equation
initialization;
Set A′i = AT

i and B′i = BT
i . Choose τ ∈ R. Set k := 0. Choose initial matrix X(0).

while k = 0, 1, 2, . . . , n do
E(k) = F − AX(k) − XT (k)B.
if ‖E(k)‖F/‖F‖F < ε then

break;
else

X(k + 1) = X(k) + τ[A′E(k) + BET (k)],
update k.

end
end

Corollary 4.1. Consider the matrix equation (1.5) when the matrix P is invertible. Let τ ∈ R. Then
the given statements hold:

(i) A equivalent condition for which Algorithm 2 is applicable for any initial matrix X(0) is

0 < τ <
2
‖P‖22

. (4.1)

Meanwhile, the spectral radius of the iteration matrix T = Inp − τPT P is given by

ρ[T] = max{|1 − τλmax(PT P)|, |1 − τλmin(PT P)|}. (4.2)

(ii) The spectral radius ρ[T] in (4.2) represents the asymptotic convergence rate of Algorithm 2.
(iii) The fastest asymptotic convergence factor is determined by

τopt =
2

λmax(PT P) + λmin(PT P)
. (4.3)

5. Numerical simulations with discussion

In this section, we report some numerical results to illustrate the applicability the effectiveness of
Algorithm 1. All simulations have been carried out by MATLAB R2018a, AMD Ryzen7 3700U with
Redeon Vega Mobile Gfx @ 2.30 GHz, RAM 12.00 GB PC environment. In Example 5.1, we show
that our algorithm is applicable for small-square-matrices in the case p > q. We also show that our
algorithm is applicable and efficient for large-square-matrices and consider the effect of changing the
convergence factor τ in Example 5.2. In Example 5.3, we illustrate the efficiency of Algorithm 1
when coefficients are non-square matrices of different moderate sizes. In Examples 5.4 and 5.5, we do
experiments in the cases p > q and q > p with rectangular coefficient matrices. In Example 5.6, we
test Algorithm 2 for the Sylvester-transpose equation with square coefficient matrices. In all
examples, we compare the proposed algorithm to both the traditional method (Eq (2.4)) and recent
iterative algorithms. The computational time is measured in seconds by MATLAB functions tic and
toc.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8487

Example 5.1. Consider the matrix equation

A1XB1 + C1XT D1 + A2XB2 = F,

where

A1 =


−0.123 0.002 0.780 −0.563 0.009
−0.123 −0.008 0.005 0.097 0.002
0.398 0.007 −0.023 0.094 0.001
−0.009 0.478 −0.994 0.001 0.005
0.013 −0.003 0.028 0.004 −0.456


, A2 =


0.112 −0.302 −0.785 0.312 −0.049
0.709 −0.996 −0.733 0.219 −0.005
0.261 −0.005 −0.003 0.114 −0.111
0.219 0.005 −0.123 −0.125 0.009
0.001 0.000 0.018 −0.994 0.956


,

B1 =


0.667 −0.209 0.346 −0.675 −0.099
0.099 −0.218 0.278 −0.219 0.004
−0.002 0.005 0.109 0.678 −0.234
0.056 −0.005 −0.006 0.195 0.009
0.004 0.065 −0.187 −0.984 0.000


, B2 =


−0.004 0.056 −0.005 0.004 0.049
0.579 0.096 0.114 −0.008 0.112
−0.113 −0.119 0.284 −0.003 0.014
0.089 0.027 −0.009 −0.145 0.036
−0.001 −0.079 0.456 −0.458 1.000


,

C1 =


−0.163 0.021 0.007 −0.152 0.193
−0.474 −0.098 0.001 0.384 0.193
−0.085 0.109 0.093 −0.017 0.173
0.812 −0.742 −0.841 0.941 0.485
0.197 0.934 0.012 0.845 −0.917


,D1 =


−0.002 0.074 0.004 −0.072 0.284
0.056 0.037 0.485 0.188 0.485
0.863 −0.072 0.475 0.945 −0.594
0.016 −0.034 0.004 0.001 0.855
0.854 0.003 0.927 −0.923 0.567


.

In fact, the unique solution is given by

X =


1.000 0.010 −0.224 −0.111 0.908
0.980 0.765 −0.365 0.482 0.528
−0.649 0.309 0.849 −0.030 0.612
−0.495 0.008 0.862 −0.001 −0.004
0.239 0.937 0.251 0.364 0.062


.

Let us apply Algorithm 1 to compute the sequence {X(k)} of approximated solutions. Take an initial
point X(0) = 0. The optimal convergence factor can be computed according to Theorem 3.2 as follows:

τopt =
2

λmin(QT Q) + λmax(QT Q)
≈

2
8.3389 × 10−6 + 14.5024

≈ 0.1379.

Table 1 shows that the direct method consumes 15 ms to get the exact solution, while GIO algorithm
takes 6 ms to perform 10 iterations in order to get an approximated solution with a small relative
error. Figure 1 and Table 1 illustrate that the computational time of GIO algorithm is less than that
for GI algorithm with preferable relative error. Figure 1 and Table 1 also show that GIO algorithm is
outperform than LS algorithm.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8488

Table 1. Numerical results for Example 5.1.

Algorithm IT CT relative error
Direct - 0.0150 -
GIO 10 0.0060 0.5088
GI with τ = 0.127 10 0.0078 0.7510
GI with τ = 0.009 10 0.0069 0.9755
LS 10 0.0223 1.0000

Figure 1. Relative error for Example 5.1.

Example 5.2. Consider the matrix equation

2∑
i=1

AiXBi +

2∑
j=1

C jXT D j = F

where all coefficients are 100 × 100 tridiagonal matrices given by

A1 = tridiag(3, 1,−1), A2 = tridiag(1, 0, 4), B1 = tridiag(−1, 3, 2), B2 = tridiag(−1,−2,−1),
C1 = tridiag(1, 0,−2), C2 = tridiag(1,−2, 3), D1 = tridiag(0, 2,−4), D2 = tridiag(1,−1, 1).

In fact, the unique solution is given by X = tridiag(0, 1,−1). Let us apply Algorithm 1 to compute the
sequence {X(k)} of approximated solutions. Take an initial point

X(0) = 10−6 × tridiag(−1,−1,−1).

The optimal convergence factor can be computed according to Theorem 3.2 as follows:

τopt =
2

λmin(QT Q) + λmax(QT Q)
≈

2
4.15 × 10−13 + 7.15 × 104 ≈ 0.000028.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8489

The computing results of changing τ are listed in Figure 2 and Table 2. Figure 2 shows that, for the
given initial point, as k increases, for τ = τopt, τ = 0.00002, τ = 0.000015, and τ = 0.00001, we see
that the terms ‖E(k)‖F/‖F‖F are becoming smaller and approaching to zero. Moreover, the relative
errors ‖E(k)‖F/‖F‖F for τopt go faster to 0 than those for another convergence factors. Furthermore,
when τ = 0.00004 and τ = −0.00001 which do not satisfy the criteria (3.9), the approximated solutions
diverge. Table 2 confirms that the computational time of the proposed algorithm is significantly less
than the time of the traditional method. Thus, in this case, Algorithm 1 is applicable and effective.

Figure 2. Relative errors for Example 5.2.

Table 2. Numerical results for Example 5.2.

Algorithm IT CT relative error
Direct - 15.2058 -
GIO 100 0.5467 0.8005
GI with τ = 0.00002 100 1.6245 0.8099
GI with τ = 0.000015 100 1.7007 0.8512
GI with τ = 0.00001 100 2.8129 0.8619
GI with τ = 0.00004 100 2.9998 1.0055
GI with τ = −0.00001 100 4.0097 1.3314

Example 5.3. Consider the matrix equation

3∑
i=1

AiXBi +

3∑
j=1

C jXT D j = F

when Ai ∈ R
40×60, Bi ∈ R

20×30, C j ∈ R
40×20, D j ∈ R

60×30 and F ∈ R40×30 are tridiagonal matrices given

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8490

by

A1 = tridiag(1,−1, 1), A2 = tridiag(2, 0,−3), A3 = tridiag(−2,−1,−2),
B1 = tridiag(1,−3, 0), B2 = tridiag(−1,−2,−1), B3 = tridiag(0, 1,−3),
C1 = tridiag(−3, 0,−2), C2 = tridiag(−1,−2, 3), C3 = tridiag(2,−1, 2),
D1 = tridiag(0, 2,−1), D2 = tridiag(1, 2,−1), D3 = tridiag(0, 1,−1).

Then the unique solution is X = tridiag(0, 1,−1) ∈ R60×20. We take the initial matrix

X(0) = 10−6 × tridiag(1, 1, 1).

The computing results of changing τ are listed in Figure 3. As k large enough, the terms ‖E(k)‖F/‖F‖F
for τopt ≈ 0.000085 are becoming smaller and go faster to zero than another convergence factors.
Moreover, for τ = 0.0003 and τ = −0.000001 which do not satisfy the condition (3.9), we see that the
term ‖E(k)‖F/‖F‖F do not approach zero, so the approximated solutions diverge. From Table 3, it is
clear that the computational time of GIO algorithm is significantly less than the time of the traditional
method and another GI with different convergence factors.

Figure 3. Relative error for Example 5.3.

Table 3. Numerical results for Example 5.3.

Algorithm IT CT relative error
Direct - 4.7478 -
GIO 100 0.2350 0.3012
GI with τ = 0.00006 100 1.6954 0.3465
GI with τ = 0.00003 100 2.7760 0.4802
GI with τ = 0.00001 100 3.9008 0.7219
GI with τ = 0.0003 100 4.4435 0.7906
GI with τ = −0.00001 100 4.0978 1.0244

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8491

Example 5.4. Consider the matrix equation

3∑
i=1

AiXBi +

2∑
j=1

C jXT D j = F

when Ai ∈ R
40×60, Bi ∈ R

20×30, C j ∈ R
40×20, D j ∈ R

60×30 and F ∈ R40×30 are tridiagonal matrices given
by

A1 = tridiag(−2, 2, 2), A2 = tridiag(3, 3,−4), A3 = tridiag(3,−1, 2),
B1 = tridiag(2, 3, 5), B2 = tridiag(−2,−3, 1), B3 = tridiag(−1, 0, 3),
C1 = tridiag(−3, 4,−2), C2 = tridiag(2, 2,−3),
D1 = tridiag(5, 3,−1), D2 = tridiag(1, 2, 3).

Then the unique solution is X = tridiag(1, 2,−1) ∈ R60×20. We take the initial matrix

X(0) = 10−6 × tridiag(−1,−1,−1) ∈ R60×20.

The numerical results in Figure 4 show that the direct method consumes around 11 seconds, while GIO
algorithm spends 0.047 seconds (50 iterations) with satisfactory error. Figure 4 and Table 4 show that
the computational time of GIO algorithm is slightly more than that of GI algorithm, as the relative
error of GIO is significantly less than that of GI algorithm. Figure 4 and Table 4 also show that GIO
algorithm is outperform than LS algorithm in both computational time and relative error.

Figure 4. Relative error for Example 5.4.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8492

Table 4. Numerical results for Example 5.4.

Algorithm IT CT relative error
Direct - 10.8753 -
GIO 50 0.0470 0.1163
GI with τ = 0.00005 50 0.0411 0.2952
GI with τ = 0.00003 50 0.0367 0.4376
LS 50 0.2664 1.0000

Example 5.5. Consider the matrix equation
2∑

i=1

AiXBi +

3∑
j=1

C jXT D j = F

where all coefficients are 10 × 10 tridiagonal matrices given by

A1 = tridiag(−1, 2, 1), A2 = tridiag(2,−4,−3), B1 = tridiag(1, 3, 2), B2 = tridiag(−2,−3,−1),
C1 = tridiag(2, 3, 1), C2 = tridiag(1,−3,−1), C3 = tridiag(5, 3, 4),
D1 = tridiag(−1, 2,−1), D2 = tridiag(4, 2, 1), D3 = tridiag(2, 3, 1).

In fact, the unique solution is given by X = tridiag(1, 1, 1). Let us apply Algorithm 1 to compute the
sequence {X(k)} of approximated solutions using an initial point

X(0) = 10−6 × tridiag(−1,−1,−1).

Table 5 shows that for small size matrices, the difference between the computational times for the direct
method and GIO algorithm (50 iterations) is not much as that for the moderate sizes in Example 5.4.
Figure 5 and Table 5 illustrate that the computational time of GIO algorithm is less than that for
GI algorithm with preferable relative error. Figure 5 and Table 5 also show that GIO algorithm is
outperform than LS algorithm.

Figure 5. Relative error for Example 5.4.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8493

Table 5. Numerical results for Example 5.5.

Algorithm IT CT relative error
Direct - 0.0266 -
GIO 50 0.0112 0.0370
GI with τ = 0.00005 50 0.0146 0.2813
GI with τ = 0.00008 50 0.0134 0.1526
LS 50 0.0621 0.9942

Example 5.6. The Sylvester-transpose equation AX + XT B = F, where A, B, F, X ∈ R10×10 are given
by

A = tridiag(1,−3, 1), B = tridiag(2, 2, 4), X = tridiag(4, 1, 4)

is considered by using the initial matrix X(0) = tridiag(10−6, 10−6, 10−6). The objective is to compare
the capability of GIO algorithm to GI [25], LS [25], and AGBI [20] algorithms. We fix the iteration
number to be 50 and investigate the relative error ‖E(k)‖F/‖F‖F . Figure 6 and Table 6 indicate that
Algorithm 2 is more efficient than the traditional method and another iterative algorithms in spite of a
little more computational time.

Table 6. Numerical results for Example 5.6.

Algorithm IT CT relative error
Direct - 0.0303 -
GIO 50 0.0056 0.8621
GI 50 0.0070 0.8770
LS 50 0.0121 0.9884
AGBI 50 0.0105 0.8838

Figure 6. Relative error for Example 5.6.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8494

6. Conclusions

The proposed algorithm, a gradient iterative algorithm with an optimal convergence factor, is
applicable for a generalized Sylvester-transpose matrix equation (1.3) under the assumption that the
matrix equation has a unique solution. The analysis tells us that a necessary and sufficient condition
for which Algorithms 1 and 2 are applicable for any initial matrix X(0) is the convergence factor is
chosen appropriately belong to an open interval. The convergence rate and several estimations (e.g.,
error, prior, posterior) depend on the spectral radius of the associated iteration matrix. Moreover, we
can determine the fastest asymptotic convergence rate. The numerical experiments illustrate that the
algorithm can be applied for any matrix problems with conformable coefficient matrices of
small/moderate/large sizes and square/non-square sizes. Moreover, the algorithm has more efficient
than the traditional method and another recent gradient-based iterative algorithms.

Acknowledgements

The first author would like to thank Ministry of Education, Thailand for a financial support during
her PhD study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. G. Dullerud, F. Paganini, A course in robust control theory – a convex approach, New York:
Springer-Verlag, 1994.

2. C. C. Tsui, On robust observer compensator design, Automatica, 24 (1988), 687–692.

3. P. V. Dooren, Reduce order observer: A new algorithm and proof, Syst. Control Lett., 4 (1984),
243–251.

4. H. K. Wimmer, Consistency of a pair of generalized Sylvester equations, IEEE T. Automat. Contr.,
39 (1994), 1014–1016.

5. A. Wu, G. Duan, Y. Xue, Kronecker maps and Sylvester-polynomial matrix equations, IEEE T.
Automat. Contr., 52 (2007), 905–910.

6. A. Wu, G. Duan, B. Zhou, Solution to generalized Sylvester matrix equations, IEEE T. Automat.
Contr., 53 (2008), 811–815.

7. R. Bartels, G. Stewart, Solution of the matrix equation AX + XB = C, Commun. ACM, 15 (1972),
820–826.

8. P. Benner, S. Quintana, Solving stable generalized Lyapunov matrix equations with the matrix sign
function, Numer. Algorithms, 20 (1999), 75–100.

9. I. Jonsson, B. Kagstrom, Recursive blocked algorithms for solving triangular systems-Part I: One-
sided and couple Sylvester-type matrix equations, ACM T. Math. Software, 28 (2002), 392–415.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8495

10. I. Jonsson, B. Kagstrom, Recursive blocked algorithms for solving triangular systems-Part II:
Two-sided and generalized Sylvester and Lyapunov matrix equations, ACM T. Math. Software,
28 (2002), 416–435.

11. X. Wang, Y. Li, L. Dai, On the Hermitian and skew-Hermitian splitting iteration methods for the
linear matrix equation AXB = C, Comput. Math. Appl., 65 (2013), 657–664.

12. H. M. Zhang, F. Ding, A property of the eigenvalues of the symmetric positive definite matrix and
the iterative algorithm for couple Sylvester matrix equations, J. Franklin I., 351 (2014), 340–357.

13. Z. Z. Bai, On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester
equation, J. Comput. Math., 29 (2011), 185–198.

14. F. Ding, T. Chen, Gradient based iterative algorithms for solving a class of matrix equations, IEEE
T. Automat. Contr., 50 (2005), 1216–1221.

15. F. Ding, T. Chen, Iterative least squares solutions of coupled Sylvester matrix equations, Syst.
Control Lett., 54 (2005), 95–107.

16. Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equation,
Asian J. Control, 13 (2011), 461–464.

17. W. Fan, C. Gu, Z. Tian, Jacobi-gradient iterative algorithms for Sylvester matrix equations, In:
Linear Algebra Society Topics, Shanghai University, Shanghai, China, 2007, 16–20.

18. S. K. Li, T. Z. Huang, A shift-splitting Jacobi-gradient algorithm for Lyapunov matrix equation
arising form control theory, J. Comput. Anal. Appl., 13 (2011), 1246–1257.

19. Y. J. Xie, C. F. Ma, The accelerated gradient based iterative algorithm for solving a class of
generalized Sylvester-transpose matrix equation, Appl. Math. Comput., 273 (2016), 1257–1269.

20. X. Wang, L. Dai, D. Liao, A modified gradient based algorithm for solving Sylvester equations,
Appl. Math. Comput., 218 (2012), 5620–5628.

21. F. Ding, P. X. Liu, T. Chen, Iterative solutions of the generalized Sylvester matrix equations by
using the hierarchical identification principle, Appl. Math. Comput., 197 (2008), 41–50.

22. A. Kittisopaporn, P. Chansangiam, Gradient-descent iterative algorithm for solving a class of linear
matrix equations with applications to heat and Poisson equations, Adv. Differ. Equ., 2020 (2020),
324.

23. A. Kittisopaporn, P. Chansangiam, W. Lewkeeratiyukul, Convergence analysis of gradient-
based iterative algorithms for a class of rectangular Sylvester matrix equation based on Banach
contraction principle, Adv. Differ. Equ., 2021 (2021), 17.

24. N. Sasaki, P. Chansangiam, Modified Jacobi-gradient iterative method for generalized Sylvester
matrix equation, Symmetry, 12 (2020), 1831.

25. Y. J. Xie, C. F. Ma, Gradient based and least square based iterative algorithms for matrix equation
AXB + CXT B = F, Appl. Math. Comput., 217 (2010), 2191–2199.

26. R. A. Horn, C. R. Johnson, Topics in matrix analysis, New York: Cambridge University Press,
1991.

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

8496

27. E. Kreyszig, Introductory functional analysis with applications, New York: John Wiley & Sons,
1978.

28. L. Teck, Nonexpansive matrices with applications to solutions of linear systems by fixed point
iterations, Fixed Point Theory Appl., 2010 (2009), 821928.

Appendix

This appendix contains MATLAB-code of Example 5.1
tic;
τ = 0.1379;
Xt = X;
XtT = transpose(Xt);
Et = F - (A1*Xt*B1 + A2*Xt*B2 + A3*Xt*B3 + C1*XtT*D1 + C2*XtT*D2 + C3*XT*D3);
EtT = transpose(Et);
et(1) = e(1)/norm(F,’fro’);
let(1) = le(1);
kt = 2;
while (kt < 50)
Et = F - (A1*Xt*B1 + A2*Xt*B2 + A3*Xt*B3 + C1*XtT*D1 + C2*XtT*D2 + C3*XT*D3);
EtT = transpose(Et); Xt = Xt + τ*(A1T*Et*B1T+ A2T*Et*B2T + A3T*Et*B3T + D1*EtT*C1 +

D2*EtT*C2 + D3*EtT*C3);
et(kt) = norm(Et,’fro’)/norm(F,’fro’);
let(kt) = log(norm(Et,’fro’));
kt = kt+1;
end
tt = toc;

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 8, 8477–8496.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Introducing a gradient iterative algorithm
	A traditional method for the generalize Sylvester-transpose matrix equation
	Gradient iterative algorithm for the matrix equation

	Convergence analysis of GIO algorithm
	Convergence criteria
	Performance of the algorithm
	Optimal convergence factor

	The proposed algorithm for Sylvester-transpose matrix equation
	Numerical simulations with discussion
	Conclusions

