Research article

Numerous graph energies of regular subdivision graph and complete graph

Imrana Kousar ${ }^{1}$, Saima Nazeer ${ }^{1}$, Abid Mahboob ${ }^{2}$, Sana Shahid ${ }^{1}$ and Yu-Pei Ly ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Lahore College for Women University, Lahore-Pakistan
${ }^{2}$ Department of Mathematics, Division of Science and Technology, University of Education, Lahore-Pakistan
${ }^{3}$ Department of Mathematics, Huzhou University, Huzhou 313000, China

* Correspondence: Email: peipei@zjhu.edu.cn.

Abstract

The graph energy $E(G)$ of a simple graph G is sum of its absolute eigenvalues where eigenvalues of adjacency matrix $A(G)$ are referred as eigenvalues of graph G. Depends upon eigenvalues of different graph matrices, several graph energies has been observed recently such as maximum degree energy, Randić energy, sum-connectivity energy etc. Depending on the definition of a graph matrix, the graph energy can be easily determined. This article contains upper bounds of several graph energies of s-regular subdivision graph $S(G)$. Also various graph energies of complete graph are mentioned in this article.

Keywords: graph; graph energy; Zagreb index; Randić index; graph matrices
Mathematics Subject Classification: 14H50, 14H20, 32S15

1. Introduction

Consider a simple connected graph $G=(V(G), E(G))$ having $|V(G)|=p$ vertices and $E(G)=q$ edges. Number of edges in the neighborhood of a vertex x in a graph G is named as degree of that vertex and is denoted by d_{x} or $d(x)$. If the number of edges in the neighborhood of each vertex in a graph are same say s then graph is said to be a s-regular graph.

Adjacency matrix is a $p \times p$ matrix having entries $a_{x y}$ such that

$$
a_{x y}= \begin{cases}1, & \text { if } u_{x} u_{y} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

The eigenvalues of a graph are actually eigenvalues of its $A(G)$. The set which is constructed from eigenvalues of G with their multiplicities is known as spectrum of G.

In Mathematics, the graph energy was firstly introduced by Ivan Gutman in 1978. Graph energy is built upon eigenvalues of $A(G)$. It is sum of absolute values of elements of spectrum of G. For a p-vertex graph G with eigenvalues β_{k} in non-increasing order for $k=1,2,3, \ldots, p$,

$$
\begin{equation*}
E(G)=\sum_{k=1}^{p}\left|\beta_{k}\right| . \tag{1.1}
\end{equation*}
$$

The impression which is stated in Eq (1.1) is associated with computational chemistry. If, in a conjugated hydrocarbon system, the eigenvalues of a molecular graph are $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{p}$ and are in non-increasing order. Then Hückel molecular orbital approximation calculated the total Π-electron energy E_{Π} as

$$
E_{\Pi}=p \gamma+\delta\left[2 \sum_{k=1}^{\frac{p}{2}} \alpha_{k}\right]
$$

for p is even and

$$
E_{\Pi}=p \gamma+\delta\left[\alpha_{\frac{k+1}{2}}+2 \sum_{k=1}^{\frac{p-1}{2}} \alpha_{k}\right]
$$

for p is odd with γ and δ are constants.
A large number of research papers have been published on graph energy. The thesis of Siraj [1] contains some elementary determinations of graph energy.

This paper include upper bounds of different graph energies of subdivision graph $S(G)$ of s-regular graph G containing p vertices and q edges. Also various graph energies of complete graph are explored in this paper.

Based on eigenvalues of different graph matrices, several energies of a graph have been such as maximum degree energy, seidel energy, sum-connectivity energy etc. These energies depends upon eigenvalues of their corresponding energy matrices, see [2-4].

2. Energies of s-regular subdivision graph

First we define subdivision graph.
Definition 2.1 (Subdivision graph). The subdivision graph $S(G)$ of a graph G is acquire by dividing each edge of G into two edges with the help of a vertex of degree 2 on every edge. Thus $|V(S(G))|=$ $|V(G)|+|E(G)|$ and $|E(S(G))|=2|E(G)|$. The graph of subdivision of cycle C_{4} is shown in Figure 1.

Figure 1. Subdivision of cycle C_{4}.

2.1. Degree energies

In this section, we present bounds of maximum degree energy, minimum degree energy, Randić energy, sum-connectivity energy and first and second Zagreb energies. Firstly, we define these energies.

Definition 2.2 (Maximum degree energy). [5] The maximum degree energy E_{M} of a simple graph G is define as the sum of the absolute eigenvalues of its maximum degree matrix $M(G)$ where $M(G)$ has (i, j) th entry $\max \left(d_{j}, d_{j}\right)$ if $v_{i} v_{j} \in E(G)$ and 0 elsewhere.

Definition 2.3 (Minimum degree energy). [6] The minimum degree energy E_{m} of a simple connected graph G is define as the sum of the absolute eigenvalues of minimum degree matrix $m(G)$ of a graph G where (i, j) th entry of $m(G)$ is $\min \left(d_{i}, d_{j}\right)$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise.

Definition 2.4 (Randić energy). [7] The randić energy E_{R} of a simple connected graph G is the sum of the absolute eigenvalues of the randić matrix $R(G)$ where if $v_{i} v_{j} \in E(G)$ then (i, j) th entry of $R(G)$ is $\frac{1}{\sqrt{d_{i_{i} d_{j}}}}$ and 0 elsewhere.
Definition 2.5 (Sum-connectivity energy). [8] The sum-connectivity energy $E_{S C}$ of a simple connected graph G is define as the sum of the absolute eigenvalues of the sum-connectivity matrix $\operatorname{SC}(G)$ where (i, j) th entry of $S C(G)$ is $\frac{1}{\sqrt{d_{i}+d_{j}}}$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise.

Definition 2.6 (First Zagreb energy). [9] The first Zagreb energy $Z E_{1}$ of a simple connected graph G is define as the sum of the absolute eigenvalues of first Zagreb matrix $Z^{(1)}(G)$ of G where $Z^{(1)}(G)$ has (i, j) th entry $d_{i}+d_{j}$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise.

Definition 2.7 (Second Zagreb energy). [9] The second Zagreb energy $Z E_{2}$ of a simple connected graph G is define as the sum of the absolute eigenvalues of second Zagreb matrix $Z^{(2)}(G)$ of G where $Z^{(2)}(G)$ has (i, j) th entry $d_{i} \cdot d_{j}$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise.

In the following theorem, we give bounds of all above defined degree energies;
Theorem 2.8. Let p and q be vertices and edges of a regular graph G. Then

1. for maximum degree energy, we have $E_{M}(S(G)) \leq 2 s \sqrt{2 p q}$;
2. for minimum degree energy, we have $E_{m}(S(G)) \leq 4 \sqrt{2 p q}$,
3. for Randić energy, we have $E_{R}(S(G)) \leq \sqrt{\frac{4 p q}{s}}$,
4. for sum-connectivity energy, we have $E_{S C}(S(G)) \leq 2 \sqrt{\frac{2 p q}{2+s}}$,
5. for first Zagreb energy, we have $Z E_{1}(S(G)) \leq 2(s+2) \sqrt{2 p q}$,
6. for second Zagreb energy, we have $Z E_{2}(S(G)) \leq 4 s \sqrt{2 p q}$.

Proof. Let the incidence matrix of G is $C(G)$. Note that the degree matrix of the subdivision graph $S(G)$ can be stated as:

$$
M(S(G))=\left[\begin{array}{cc}
0 I_{p} & t C(G) \tag{2.1}\\
t C^{T}(G) & 0 I_{q}
\end{array}\right] .
$$

1. By taking $t=s$ in Eq (2.1), we have following computations for the maximum degree energy of the subdivision graph $S(G)$;

$$
\begin{aligned}
E_{M}(S(G)) & =\sum_{j=1}^{p+q}\left|\alpha_{i}\left[\begin{array}{cc}
0 I_{p} & s C(G) \\
s C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \\
& =s\left(\sum_{j=1}^{p+q} \alpha_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right) .
\end{aligned}
$$

As in [12] $C C^{T}=L^{+}(G)$, we have

$$
\sum_{j=1}^{p+q} v_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]=2 \sum_{j=1}^{p} \sqrt{v_{j}^{+}(G)}
$$

where $L^{+}(G)$ is signless Laplacian matrix and v_{j}^{+}are eigenvalues of $L^{+}(G)$. Thus by Cauchy Schawaz inequality

$$
\sum_{j=1}^{p} \sqrt{v_{j}^{+}(G)} \leq \sqrt{p \sum_{j=1}^{p} v_{j}^{+}(G)}=\sqrt{2 p q}
$$

Hence,

$$
E_{M}(S(G)) \leq 2 s \sqrt{2 p q}
$$

2. By taking $t=2$ in Eq (2.1), we have following computations for the minimum degree energy of the subdivision graph $S(G)$;

$$
E_{m}(S(G))=\sum_{j=1}^{p+q}\left|v_{j}\left[\begin{array}{cc}
0 I_{p} & 2 C(G) \\
2 C^{T}(G) & 0 I_{q}
\end{array}\right]\right|
$$

Since,

$$
\sum_{j=1}^{p+q}\left|v_{j}\left[\begin{array}{cc}
0 I_{p} & 2 C(G) \\
2 C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \leq 4 \sqrt{2 p q}
$$

Therefore,

$$
E_{m}(S(G)) \leq 4 \sqrt{2 p q}
$$

3. By taking $t=\frac{1}{\sqrt{2 s}}$ in Eq (2.1), we have following computations for the Randić energy of the subdivision graph $S(G)$;

$$
\begin{aligned}
E_{R}(S(G)) & =\sum_{j=1}^{p+q}\left|\rho_{j}\left(\begin{array}{cc}
0 I_{p} & \frac{1}{\sqrt{2 s}}[C(G)] \\
\frac{1}{\sqrt{2 s}}\left[C^{T}(G)\right] & 0 I_{q}
\end{array}\right)\right| \\
& =\frac{1}{\sqrt{2 s}} \sum_{j=1}^{p+q}\left|\rho_{j}\left(\begin{array}{cc}
0 I_{p} & {[C(G)]} \\
{\left[C^{T}(G)\right]} & 0 I_{q}
\end{array}\right)\right|
\end{aligned}
$$

As

$$
\sum_{j=1}^{p+q}\left|\rho_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
{\left[C^{T}(G)\right]} & 0 I_{q}
\end{array}\right]\right| \leq 2 \sqrt{2 p q}
$$

Therefore,

$$
E_{R}(S(G)) \leq \frac{1}{\sqrt{2 s}} \cdot 2 \sqrt{2 p q}=\sqrt{\frac{4 p q}{s}}
$$

4. By taking $t=\frac{1}{\sqrt{2+s}}$ in Eq (2.1), we have following computations for the sum-connectivity energy of the subdivision graph $S(G)$;

$$
E_{S C}(S(G))=\frac{1}{\sqrt{2+s}} \sum_{j=1}^{p+q}\left|\eta_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right|
$$

As

$$
\sum_{j=1}^{p+q}\left|\eta_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \leq 2 \sqrt{2 p q} .
$$

Hence,

$$
E_{S C}(S(G)) \leq \frac{1}{\sqrt{2+s}} 2 \sqrt{2 p q}=2 \sqrt{\frac{2 p q}{2+s}}
$$

5. By taking $t=s+2$ in Eq (2.1), we have following computations for the first Zagreb energy of the subdivision graph $S(G)$;

$$
Z E_{1}(S(G))=(s+2) \sum_{j=1}^{p+q}\left|v_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \leq(s+2) .2 \sqrt{2 p q} .
$$

as

$$
\sum_{j=1}^{p+q}\left|v_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \leq 2 \sqrt{2 p q}
$$

Hence,

$$
Z E_{1}(S(G)) \leq 2(s+2) \sqrt{2 p q}
$$

6. By taking $t=2 s$ in Eq (2.1), we have following computations for the second Zagreb energy energy of the subdivision graph $S(G)$;

$$
Z E_{2}(S(G))=2 s \sum_{j=1}^{p+q}\left|z_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \leq 2 s[2 \sqrt{2 p q}] .
$$

where

$$
\sum_{j=1}^{p+q}\left|z_{j}\left[\begin{array}{cc}
0 I_{p} & C(G) \\
C^{T}(G) & 0 I_{q}
\end{array}\right]\right| \leq[2 \sqrt{2 p q}]
$$

Hence,

$$
Z E_{2}(S(G)) \leq 4 s \sqrt{2 p q}
$$

2.2. Seidel energy

Definition 2.9 (Seidel energy). [10] The Seidel energy $E_{S E}$ of a simple connected graph G as the sum of the absolute eigenvalues of the seidel matrix $S E(G)$ of G. Here $S E(G)=\left[s_{i j}\right]$ where

$$
s_{i j}= \begin{cases}-1, & \text { if } v_{i} \text { and } v_{j} \text { are adjacent and } i \neq j \\ 1, & \text { if } v_{i} \text { and } v_{j} \text { are non adjacent and } i \neq j \\ 0, & \text { if } \mathrm{i}=\mathrm{j}\end{cases}
$$

Theorem 2.10. For an s-regular (p, q) graph G,

$$
E_{S E}(S(G)) \leq 2(p+q)+2 s \sqrt{p q}-4
$$

Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{p}$ be vertices of an s-regular graph G and let u_{j}^{\prime} for $1 \leq j \leq q$ be vertices that are added at all edges of G to gain $S(G)$. Note that $S E(S(G))$ is given as:

$$
S E(S(G))=\left[\begin{array}{cc}
J_{p}-I_{p} & E_{p \times q} \\
E_{q \times p} & J_{q}-I_{q}
\end{array}\right] .
$$

where $E_{p \times q}=\left[e_{p q}\right]$ such that

$$
e_{p q}= \begin{cases}-1, & \text { if } v_{p} \text { and } v_{q} \text { are adjacent } \\ 1, & \text { Otherwise }\end{cases}
$$

Therefore

$$
E_{S E}(S(G)) \leq \sum_{j=1}^{p}\left|v_{j}\left[J_{p}-I_{q}\right]\right|+\sum_{j=1}^{p+q}\left|v_{j}\left[\begin{array}{cc}
0 I_{p} & E_{p \times q} \\
E_{q \times p} & 0 I_{q}
\end{array}\right]\right|+\sum_{j=1}^{q}\left|v_{j}\left[J_{q}-I_{q}\right]\right| .
$$

As

$$
\sum_{j=1}^{p}\left|v_{j}\left[J_{p}-I_{p}\right]\right| \leq 2(p-1),
$$

$$
\sum_{j=1}^{q}\left|v_{j}\left[J_{q}-I_{q}\right]\right| \leq 2(q-1)
$$

and

$$
\sum_{j=1}^{p+q}\left|v_{j}\left[\begin{array}{cc}
0 I_{p} & E_{p \times q} \\
E_{q \times p} & 0 I_{q}
\end{array}\right]\right| \leq 2 s \sqrt{p q} .
$$

Hence,

$$
\begin{aligned}
E_{S E}(S(G)) & \leq 2(p-1)+2 s \sqrt{p q}+2(q-1), \\
& =2(p+q)+2 s \sqrt{p q}-4 .
\end{aligned}
$$

2.3. Degree sum energy

Definition 2.11 (Degree sum energy). [11] The degree sum energy $E_{D S}$ of a simple connected graph G is define as the sum of the absolute eigenvalues of the degree sum matrix $D S(G)$ of G where $D S(G)$ has (i, j) th entry $d_{i}+d_{j}$ if $i \neq j$ and 0 otherwise.
Theorem 2.12. For a s-regular graph G having p and q as order and size respectively,

$$
E_{D S}(S(G)) \leq 4 s(p-1)+2(s+2) \sqrt{p q}+8(q-1)
$$

Proof. Let G has vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{p}$ and w_{j}^{\prime} for $1 \leq j \leq q$ be the vertices that are added at every edge of G to acquire $S(G)$. Then

Or

$$
\operatorname{DS}(S(G))=\left[\begin{array}{cc}
2 s\left[J_{p}-I_{p}\right] & (s+2)\left[J_{p \times q}\right] \\
(s+2)\left[J_{q \times p}\right] & 4\left[J_{q}-I_{q}\right]
\end{array}\right] .
$$

Therefore

$$
\begin{aligned}
& E_{D S}(S(G)) \leq \sum_{j=1}^{p}\left|\mu_{j}\left[\begin{array}{cc}
2 s\left[J_{p}-I_{p}\right] & 0 J_{p \times q} \\
0 J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right|+\sum_{j=1}^{p+q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & (s+2) J_{p \times q} \\
(s+2) J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right| \\
& +\sum_{j=1}^{q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & 0 J_{p \times q} \\
0 J_{q \times p} & 4\left[J_{q}-I_{q}\right]
\end{array}\right]\right|
\end{aligned}
$$

$$
\begin{array}{r}
E_{D S}(S(G)) \leq 2 s \sum_{j=1}^{p}\left|\mu_{j}\left[\begin{array}{cc}
{\left[J_{p}-I_{p}\right]} & 0 J_{p \times q} \\
0 J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right|+(s+2) \sum_{j=1}^{p+q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & J_{p \times q} \\
J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right| \\
+4 \sum_{j=1}^{q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & 0 J_{p \times q} \\
0 J_{q \times p} & {\left[J_{q}-I_{q}\right]}
\end{array}\right]\right|
\end{array}
$$

Hence,

$$
\begin{aligned}
E_{D S}(S(G)) & \leq 2 s[2(n-1)]+(s+2)[2 \sqrt{p q}]+4[2(q-1)], \\
& =4 s(p-1)+2(s+2) \sqrt{p q}+8(q-1) .
\end{aligned}
$$

2.4. Degree square sum energy

Definition 2.13 (Degree square sum energy). [12] The degree square sum energy $E_{D S S}$ of a simple connected graph G is define as the sum of the absolute eigenvalues of the degree square sum matrix $\operatorname{DSS}(G)$ of G where $\operatorname{DSS}(G)$ has (i, j) th entry $d_{i}^{2}+d_{j}^{2}$ if $i \neq j$ and 0 otherwise.
Theorem 2.14. For an s-regular graph G

$$
E_{D S S}(S(G)) \leq 4 s^{2}(p-1)+2\left(s^{2}+4\right) \sqrt{p q}+16(q-1) .
$$

Proof. Let for $1 \leq j \leq p, u_{j}$ be vertices of G and u_{k}^{\prime} for $1 \leq k \leq q$ be the vertices that are added in G to get $S(G)$. Note that the degree square sum matrix of $S(G)$ is denoted by $D S S(S(G))$ and is given as:

Or

$$
\operatorname{DSS}(S(G))=\left[\begin{array}{cc}
2 s^{2}\left[J_{p}-I_{p}\right] & \left(s^{2}+4\right)\left[J_{p \times q}\right] \\
\left(s^{2}+4\right)\left[J_{q \times p}\right] & 8\left[J_{q}-I_{q}\right]
\end{array}\right] .
$$

Therefore

$$
\begin{aligned}
& E_{D S S}(S(G)) \leq \sum_{j=1}^{p}\left|\mu_{j}\left[\begin{array}{cc}
2 s^{2}\left[J_{p}-I_{p}\right] & 0 J_{p \times q} \\
0 J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right|+\sum_{j=1}^{p+q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & \left(s^{2}+4\right) J_{p \times q} \\
\left(s^{2}+4\right) J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right| \\
& +\sum_{j=1}^{q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & 0 J_{p \times q} \\
0 J_{q \times p} & 8\left[J_{q}-I_{q}\right]
\end{array}\right]\right|
\end{aligned}
$$

Or

$$
\begin{array}{r}
E_{D S S}(S(G)) \leq 2 s^{2} \sum_{j=1}^{p}\left|\mu_{j}\left[\begin{array}{cc}
{\left[J_{p}-I_{p}\right]} & 0 J_{p \times q} \\
0 J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right|+\left(s^{2}+4\right) \sum_{j=1}^{p+q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & J_{p \times q} \\
J_{q \times p} & 0\left[J_{q}-I_{q}\right]
\end{array}\right]\right| \\
+8 \sum_{j=1}^{q}\left|\mu_{j}\left[\begin{array}{cc}
0 I_{p} & 0 J_{p \times q} \\
0 J_{q \times p} & {\left[J_{q}-I_{q}\right]}
\end{array}\right]\right|
\end{array}
$$

Hence,

$$
\begin{aligned}
E_{D S S}(S(G)) & \leq 2 s^{2}[2(p-1)]+\left(s^{2}+4\right)[2 \sqrt{p q}]+8[2(q-1)], \\
& =4 s^{2}(p-1)+2\left(s^{2}+4\right) \sqrt{p q}+16(q-1) .
\end{aligned}
$$

3. Energies of complete graph

A complete graph denoted by K_{p} is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. K_{5} is shown in Figure 2.

Figure 2. K_{5}.

We have following trivial results about energies of complete graphs.
Theorem 3.1. For the complete graph K_{p}, the maximum degree energy is

$$
E_{M}\left(K_{p}\right)=2(p-1)^{2}
$$

Theorem 3.2. For the complete graph K_{p}, the minimum degree energy is

$$
E_{m}\left(K_{p}\right)=2(p-1)^{2} .
$$

Theorem 3.3. For the complete graph K_{p}, the Randić energy is

$$
E_{R}\left(K_{p}\right)=2 .
$$

Theorem 3.4. For the complete graph K_{p}, the Seidel energy is

$$
\left.E_{S E}\left(K_{p}\right)=2(p-1)=2(p-1)\right) .
$$

Theorem 3.5. For the complete graph K_{p}, the sum-connectivity energy is

$$
E_{S C}\left(K_{p}\right)=\sqrt{2(p-1)}
$$

Theorem 3.6. For the complete graph K_{p}, the degree sum energy is

$$
E_{D S}\left(K_{p}\right)=4(p-1)^{2} .
$$

Theorem 3.7. For the complete graph K_{p}, the degree square sum energy is

$$
E_{D S S}\left(K_{p}\right)=4(p-1)^{3}
$$

Theorem 3.8. For the complete graph K_{p}, the first Zagreb energy is

$$
Z E_{1}\left(K_{p}\right)=4(p-1)^{2} .
$$

Theorem 3.9. For the complete graph K_{p}, the second Zagreb energy is

$$
Z E_{2}\left(K_{p}\right)=2(p-1)^{3} .
$$

4. Conclusions

In this paper we gave bounds of maximum degree energy, Randić energy, sum-connectivity energy etc of s-regular subdivision graph $S(G)$. Also various graph energies of complete graph are mentioned in this article. In future, we aim to study graph energies for the other families of graphs.

Conflict of interest

Authors do not have any competing interests.

References

1. M. A. Sriraj, Some studies on energy of graphs, Ph. D. Thesis, Univ. Mysore, Mysore, India, 2014.
2. M. S. Ahmad, W. Nazeer, S. M. Kang, M. Imran, W. Gao, Calculating degree-based topological indices of dominating David derived networks, Open Phys., 15 (2017), 1015-1021.
3. A. Farooq, M. Habib, A. Mahboob, W. Nazeer, S. M. Kang, Zagreb polynomials and redefined zagreb indices of dendrimers and polyomino chains, Open Chem., 17 (2019), 1374-1381.
4. Y. C. Kwun, A. Farooq, W. Nazeer, Z. Zahid, S. Noreen, S. M. Kang, Computations of the Mpolynomials and degree-based topological indices for dendrimers and polyomino chains, Int. J. Anal. Chem., 2018 (2018), 1709073.
5. C. Adiga, M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci., 4 (2009), 385-396.
6. C. Adiga, C. S. Swamy, Bounds on the largest of minimum degree eigenvalues of graphs, Int. Math. Forum, 5 (2010), 1823-1831.
7. K. C. Das, S. Sorguna, K. Xu, On randic energy of graphs, Math. Commun. Math. Comput. Chem., 72 (2014), 227-238.
8. B. Zhou, N. Trinajstic, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov., 57 (2010), 518-523.
9. N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb estrada index of graphs, Math. Commun. Math. Comput. Chem., 79 (2018), 371-386.
10. P. Nageswari, P. B. Sarasija, Seidel energy and its bounds, Int. J. Math. Anal., 8 (2014), 2869-2871.
11. S. M. Hosamani, H. S. Ramane, On degree sum energy of a graph, Eur. J. Pure Appl. Math., 9 (2016), 340-345.
12. B. Basavanagoud, E. Chitra, Degree square sum energy of graphs, Int. J. Math. Appl., 6 (2018), 193-205.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
