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1. Introduction

The idea about almost periodic functions prompted to varied fundamental generalization within the
year 1924-25 by H.Bohr [7]. The notion of almost automorphic (in short AA) function is one of its
crucial generalization by S. Bochner [6]. The concept of weighted pseudo almost automorphic (in short
WPAA) functions is one of the further important generalization ofAA introduced by Blot et.al. [4].
These functions are a lot of typical and complex than weighted pseudo almost periodic functions. In
2012, Blot, Cieutat and Ezzinbi [5] applied the abstract measure theory to define an ergodic function
and established fundamental properties of measure pseudo almost automorphic functions (in short µ1−

PAA), and thus the classical theories of pseudo almost automorphic functions and weighted pseudo
almost automorphic functions become particular cases of this approach. After that, the µ1 − PAA

function has been developed in different ways, see for instance [10, 21, 26] and references therein.
The Dirac delta functions and “leaps” are two main directions in mathematical theory of impulsive

differential equations. For describing the impulsive effects, the Dirac delta functions are a
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fundamental mathematical tool. In 1960, second direction of research “leaps” processes with some
results for the solutions of stability was given by V. D. Milman and A. D. Myshkis [24]. In reality,
many processes and phenomena are affected by short-term external factors. While comparing to total
duration of phenomena and processes, this duration is negligible and therefore they form the
impulses. Ecology, population dynamics, epidemiology, pharmacokinetics, economics, mechanics,
control theory and other fields of science are all concerned in the dynamical states developed by such
“leaps and bounds”, see the monographs [3, 18] and the articles [12, 13, 17].

Fractional calculus deals with integro-differential equations can be considered as a branch of
mathematical physics which has been effectively developed and plays a very important role in distinct
fields such as biophysics, mechanics, electro chemistry, notable control theory and visco elasticity and
so on. The fractional calculus is a generalization of the traditional calculus, but with a much wider
applicability. The fractional methodology is suitable for a lot of applications in image processing,
complex system dynamics and nonlinear dynamics. Thus it leads to the sustained interest in studying
the theory of fractional differential equations [2, 8, 14–16, 20].

The authors Wang and Agarwal [25] investigated the existence of piecewise weighted pseudo
almost automorphic mild solutions to impulsive ∇-dynamic equations. Chang and Feng [11] study the
existence and uniqueness of measure pseudo almost automorphic solutions of the fractional
differential equations. Our main results can be described as generalization of work in [11, 25].
Motivated by the works [5, 11, 21, 25, 26] the main purpose of this article is to establish the piecewise
µ1 − PAA properties for the following impulsive fractional neutral differential equationDα

t [z(t) − g1(t, z(t))] = A[z(t) − g1(t, z(t))] + Dα−1
t G1(t, z(t)), t ∈ R, t , t j, j ∈ Z

4z(t j)|t=t j = I j(z(t j)), t = t j
(1.1)

where 1 < α < 2 and A : D(A) ⊂ Y → Y is a linear densely defined operator of sectorial type on a
complex Banach Space (Y, ‖ · ‖). The functions I j : Y → Y,G1 : R × Y → Y, g1 : R × Y → Y is a
µ1 − PAA function in t for each z ∈ Y satisfying suitable conditions. ∆z(t)|t=t j = z(t+

j ) − z(t−j ), ( j =

1, 2, ...), 0 = t0 < t1 < ... < tn < .... Here z(t+
j ) and z(t−j ) represent right and left limits of z(t) at t = t j

respectively. The fractional derivative Dα
t is considered as Caputo’s sense.

The rest of this work is organized as follows. In Section 2, we define some definitions,
terminologies, previous results, basic properties of µ1 − PAA functions and assumptions. In Section
3, we investigate the important results which are needed to prove the main results. In Section 4, we
establish the existence of µ1 − PAA mild solutions to the model (1.1). In Section 5, we provide an
example to illustrate our results.

2. Preliminaries

In this section, we review few notations, definitions and Lemmas which will be utilized throughout
this paper.

2.1. Terminology and definitions

In this segment, we define basic definitions.
Let (Y, ‖·‖Y) be a Banach space, T be a subset of Y . The symbol C(R,Y)(resp C(R×T,Y)) stands for
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the set of all continuous function from R to Y(resp from R × T to Y) and PC(R,Y)(resp PC(R × T,Y))
stands for set of all piecewise continuous function from R to Y(resp from R × T to R).

The fractional integral of order q > 0 in the Riemann–Liouville sense is defined as

Iq f (t) =
1

Γ(q)

∫ t

0
(t − s)q−1 f (s)ds

also, the fractional derivative of function f of order q > 0 in the Caputo sense is defined as

Dq
t =

1
Γ(n − q)

∫ t

0
(t − s)n−q−1 dn f (s)

dsn ds,

where Γ(q) is a gamma function.
Moreover, the Riemann-Liouville definition entails physically unacceptable initial conditions

(fractional order initial conditions); conversely of the Liouville-Caputo representation where the
initial conditions are expressed in terms of integer-order derivatives having direct physical
significance. The Caputo definition of fractional derivatives not only provides initial conditions with
clear physical interpretation but it is also bounded, meaning that the derivative of a constant is equal
to 0. Further, Caputo fractional derivative has lots of applications in real world problems, such as
Groundwater flowing within an unconfined aquifer, measles epidemiological autonomous dynamical
system etc.,

Definition 2.1. [1] A sequence t1 : Z+ → Y is said to beAA sequence, if t1 is bounded and for every
sequence of integer numbers { j′n}, there exist a sub-sequence { jn} ⊆ { j′n} such that

lim
n→∞

t1( j + jn) = f ( j), for all n ∈ Z

is well defined and
lim
n→∞

f ( j − jn) = t1( j)

for each j ∈ Z+. Denote this collection of sequences by AAo
S (Z,Y).

Definition 2.2. [1] A piecewise continuous bounded function G1 ∈ PC(R,Y) is said to beAA if

• sequence of impulsive moments {t j} is anAA sequence
• for each sequence of real numbers {un}, there exist a sub-sequence {unk} ⊆ {un} such that

F1(t) = lim
n→∞

G1(t + unk), for all t ∈ R

is well defined and
lim
n→∞

F1(t − unk) = G1(t), for all t ∈ R.

Denote this collection of functions by AAo
Ω

(R,Y).

Definition 2.3. [1] A piecewise continuous bounded function G1 ∈ PC(R × T,Y) is said to beAA in
compact subsets of Y in t uniformly for t1 if

• sequence of impulsive moments {t j} is anAA sequence
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• for each compact set Q ⊆ Y and every sequence of real numbers {un}, there exist a sub-sequence
{unk} ⊆ {un} such that

F1(t, t1) = lim
n→∞

G1(t + unk , t1), for all t ∈ R, t1 ∈ Q

is well defined and

lim
n→∞

F1(t − unk , t1) = G1(t, t1), for all t ∈ R, t1 ∈ Q.

Denote this collection of functions by AAo
Ω

(R × T,Y).

We denoteM1 by the set of all positive measures µ1 on B1, where B1 is the Lebesgue σ-field of R
satisfying, µ1([a, b]) < ∞, and µ1(R) = +∞ for all b, a ∈ R (b ≥ a).

Definition 2.4. φ : R → Y, a bounded continuous function, is said to be µ1-ergodic if

lim
l1→∞

1
µ1([−l1, l1])

∫
[−l1,l1]

‖φ(t)‖dµ1(t) = 0,

where µ1 ∈ M1. Denote this collection of functions by κ(R,Y, µ1).

Definition 2.5. Let µ1 ∈ M1. A piecewise continuous bounded function G1 : R → Y is said to be
µ1-PAA if G1 is written in the form, G1 = H1 + H2, where H1 ∈ AA

o
Ω(R,Y) and H2 ∈ κ(R,Y, µ1).

Denote collection of such functions as PAAo
Ω(R,Y, µ1) .

Remark 2.1. Define the positive measure µ1 by

µ1(C) =

∫
C
ρ(t)dt f or C ∈ B1, (2.1)

where ρ is a nonnegative B1-measurable function and dt denotes the Lebesgue measure on R. With
respect to the Lebesgue measure on R, the function ρ in (2.1) is called the Radon-Nikodym derivative of

µ1. In this case, ρ is locally Lebesgue-integrable on R and
∫ +∞

−∞

ρ(t)dt = +∞ if and only if its positive

measure µ1 ∈ M1.

A bounded sequence h1 : Z→ Y is said to be in κS (Z,Y, µ1) for µ1 ∈ M1 if −l1 = t1 < t2 < ... < tn =

l1 be a sequence of real numbers then

lim
l1→∞

1
µ1([−l1, l1])

∑
t j∈[−l1,l1]

‖h1(t j)‖ = 0.

Definition 2.6. A bounded sequence x : Z→ Y is said to be µ1-PAA sequence if it can be decomposed
as x = x1 + x2 where x1 ∈ AAo

S (Z,Y) and x2 ∈ κS (Z,Y, µ1). Denote collection of such functions as
PAA

o
S (Z,Y, µ1).
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2.2. Previous results

In this section, we present some preliminary results which are needed in the sequel.

Proposition 2.1. [5] Let µ1 ∈ M1. Then (κ(R,Y, µ1), ‖.‖∞) is a Banach space.

Proposition 2.2. [5] For ς ∈ R and µ1 ∈ M1, we denote µ1ς be the positive measure on (R,B1) defined
by

µ1ς(C) = µ1({a + ς : a ∈ C}), f or C ∈ B1.

We give the following assumption from µ1 ∈ M1:

(H) For all ς ∈ R and a bounded interval I1, there exist β > 0 such that

βµ1(C) ≥ µ1ς(C),when C ∈ B1 satis f ies C ∩ I1 = ∅.

Theorem 2.1. [5] Let I1 be a bounded interval (eventually I1 = ∅) and µ1 ∈ M1. Assume that
G1 ∈ PC(R,Y). Then the following statements are equivalent.

• G1 ∈ κ(R,Y, µ1).

• liml1→+∞

1
µ1([−l1, l1]\I1)

∫
[−l1,l1]\I1

‖G1(t)‖dµ1(t) = 0

• For any ε > 0, liml1→+∞

µ1({t ∈ [−l1, l1]\I1 : ‖G1(t)‖ > ε})
µ1([−l1, l1]\I1)

= 0.

Remark 2.2. The fact that µ1([−l1, l1]) = µ1([−l1, l1]\I1) + µ1(I1) for l1 sufficiently large and from
µ1 ∈ M1, we deduce that liml1→+∞ µ1([−l1, l1]\I1) = +∞.

Definition 2.7. [5] Let µ2 and µ3 ∈ M1. µ2 is said to be equivalent to µ3(µ2 ∼ µ3) if there exists
constants β, α > 0 and a bounded interval I1 (eventually I1 = ∅) such that βµ2(C) ≥ µ3(C) ≥ αµ2(C),
for C ∈ B1 satisfying C ∩ I1 = ∅.

Theorem 2.2. Let µ2, µ3 ∈ M1. If µ2 and µ3 are equivalent, then κ(R,Y, µ2) = κ(R,Y, µ3) and
PAA

o
Ω(R,Y, µ2) = PAAo

Ω(R,Y, µ3).

Lemma 2.1. [5] Let µ1 ∈ M1. The measures µ2 ∼ µ3 are equivalent for all ς ∈ R if and only if µ1

satisfies (H).

Theorem 2.3. [5] Assume µ1 ∈ M1 and (H) holds. If κ(R,Y, µ1) is translation invariant, then
PAA

o
Ω(R,Y, µ1) is also translation invariant.

Theorem 2.4. [5] Let µ1 ∈ M1 and G1 = H1 + H2 ∈ PAA
o
Ω(R,Y, µ1), where H1 ∈ AAo

Ω
(R,Y) and

H2 ∈ κ(R,Y, µ1). If PAAo
Ω(R,Y, µ1) is translation invariant, then

{G1(t) : t ∈ R} ⊃ {H1 : t ∈ R} (2.2)

Theorem 2.5. [5] Assume that µ1 ∈ M1 and PAAo
Ω(R,Y, µ1) is translation invariant. Then

(PAAo
Ω(R,Y, µ1), ‖.‖∞) is a Banach space.

Theorem 2.6. [9] Let G1 = H1 + H2 ∈ PAA
o
Ω(R,Y, µ1), where µ1 ∈ M1. Assume that G1(t, z)

and H1(t, z) are uniformly continuous on any bounded subset K∗ ⊂ T uniformly in t ∈ R. If Φ∗ ∈

PAA
o
Ω(R,Y, µ1) then G1(·,Φ∗(·)) ∈ PAAo

Ω(R,Y, µ1).
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Theorem 2.7. (Krasnoselskii, [22]) Let X be a convex closed nonempty subset of a Banach space
(Y, ‖ · ‖). Suppose that A2 and B2 map X into Y such that

• A2x + B2y ∈ X (∀ x, y ∈ X)
• A2 is continuous and A2X is contained in a compact set
• B2 is a contraction mapping.

Then there is a y ∈ X with A2y + B2y = y.

2.3. Assumptions

To prove the main results, we consider the following assumptions:

(H1) G1 : R × Y → Y . Let LG1 > 0 be such that ‖G1(t, z1) −G1(t, z2)‖ ≤ LG1‖z1 − z2‖ , t ∈ R, z1, z2 ∈ Y.
(H2) The sequence I j is µ1 − PAA and there exists L1 > 0 such that ‖I j(z) − I j(t1)‖ ≤ L1‖z − t1‖, j ∈ Z

and z, t1 ∈ Y.
(H3) g1 : R × Y → Y . Let Lg > 0 be such that ‖g1(t, z) − g1(t, t1)‖ ≤ Lg‖z − t1‖, t ∈ R and z, t1 ∈ Y .

3. Useful results

In this section, we present the important results which are needed to prove the main results.

Lemma 3.2. If a bounded sequence {ϕ(n)}n∈Z ∈ κ(R,Y, µ1), then there exists a uniformly continuous
function g ∈ κ(R,Y, µ1) such that g(tn) = {ϕ(n)}n∈Z, tn ∈ R.

Proof. We define a function g(t) = ϕ(n) +

∫ t

n
H2(t, ϕ(t))dy for t ∈ [n, n + 1). If {ϕ(n)}n∈Z ∈ κ(R,Y, µ1),

then it follows from the boundedness of H2 that g(t) is bounded on R. From Theorem 2.6, we have
H2(., ϕ(.)) ∈ κ(R,Y, µ1). Let the set B j = {t ∈ [−l1, l1] : u1(t) ∈ O j} is open in [−l1, l1] and [−l1, l1] =

Um
j=1B j. Let E1 = B1, E j = B j \ ∪

k−1
j=1B j (2 ≤ k ≤ m). Then Ei ∩ E j = φ when i , j, 1 ≤ i, j ≤ m. Now

we have,

1
µ1([−l1, l1])

∫
[−l1,l1]

‖g(t)‖dµ1(t)

≤
1

µ1([−l1, l1])

 m∑
j=1

∫
E j

‖ϕ( j)‖ dµ1 +

∫
[−l1,l1]

∥∥∥∥∥∥
∫ t

n
H2(t, ϕ(t))dy

∥∥∥∥∥∥ dµ1


≤

1
µ1([−l1, l1])

 m∑
j=1

∫
E j

‖ϕ( j)‖ dµ1 +

∫
[−l1,l1]

‖H2(t, ϕ(t))‖ (n + 1 − n)dy


≤

1
µ1([−l1, l1])

 m∑
j=1

∫
E j

‖ϕ( j)‖ dµ1 +

m∑
j=1

∫
E j

‖H2(t, ϕ(t))‖ dy


as l1 → ∞, we deduce that liml1→∞

1
µ1[−l1, l1]

∫
[−l1,l1]

‖g(t)‖dµ1 = 0. That is g ∈ κ(R,Y, µ1). �

Theorem 3.1. Let I j : Y → Y be a µ1 − PAA sequence and satisfying (H2). If φ ∈PAAo
Ω(R,Y, µ1)

then I j(φ(t j)) is a µ1-PAA sequence.
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Proof. Since φ = p1+p2, where p1 ∈ AA
o
Ω(R,Y), p2 ∈ κ(R,Y, µ1), it follows that I j(φ(t j)) = I j(p1(t j))+

I j(p2(t j)). By [23, Lemma 3.2], I j(p1(t j)) is anAA sequence. Now it remains to show that I j(p2(t j)) ∈

κ(R,Y, µ1). Since p2 ∈ κ(R,Y, µ1), we have liml1→∞
1

µ1([−l1, l1])

∫
[−l1,l1]

‖p2(t)‖dµ1(t) = 0.

Let −l1 = t1 < t2 < .... < tn = l1 be a sequence of real numbers, we have∫
[−l1,l1]

‖p2(t)‖dµ1 =
∑

t j∈[−l1,l1]

‖p2(t j)‖.

Thus we obtain

1
µ1([−l1, l1])

∫
[−l1,l1]

‖p2(t)‖dµ1 =
1

µ1([−l1, l1])

∑
t j∈[−l1,l1]

‖p2(t j)‖. (3.1)

Taking the limit when l1 → ∞, from Eq 3.1, we obtain p2(t j) ∈ κ(Z,Y, µ1).
Now from (H2),

‖I j p2(t j)‖ ≤ ‖I j(p2(t j)) − I j(0)‖ + ‖I j(0)‖ ≤ L1‖p2(t j)‖ + ‖I j(0)‖.

We see that the sequence I j(φ(t j)) is a µ1-PAA sequence. �

Remark 3.3. In order to prove the main results, we need to present an important estimate from [19]
as follows:

‖Eα(t)‖L(Y) ≤
C(θ, α)M
1 + |ω|tα

, t ≥ 0. (3.2)

Lemma 3.3. Let Eα(t) be strongly continuous family of bounded linear operators satisfying (3.2). If
z ∈ AA0

Ω
(R,Y) and u0 : R → Y is defined by

u0(t) =
∑
t>t j

Eα(t − t j)I j(z(t j))

then u0(·) ∈ AA0
Ω

(R,Y).

Proof. Since z is AA, there exists a subsequence {unk} of {un} such that h1(t) = lim
n→∞

z(t + unk) is well
defined for every t ∈ R. We consider

u0(t + unk) =
∑

t+unk>t j

Eα(t + unk − t j)I j(z(t j)) =
∑
t>t j

Eα(t − t j)I j(z(t j + unk)).

And

‖u0(t + unk)‖ =
∥∥∥∥∑

t>t j

Eα(t − t j)I j(z(t j + unk))
∥∥∥∥ ≤∑

t>t j

‖Eα(t − t j)‖‖I j(z(t j + unk))‖

≤ CMI
∑
t>t j

1
1 + |ω|(t − t j)α

.
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Since z ∈ AA0
Ω

(R,Y), lim
n→∞

z(t + unk) = h1(t j) for every j ∈ Z. Therefore, for any t > t j, j ∈ Z, by
Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

u0(t + unk) =
∑
t>t j

Eα(t − t j)I j(h1(t j)).

Therefore, u0(·) ∈ AA0
Ω

(R,Y). �

Lemma 3.4. Let f = g2 + h ∈ PAAo
Ω(R,Y, µ1) with g2 ∈ AA

o
Ω(R,Y) and h ∈ κ(R,Y, µ1). Then

u0(.) =

∫ t

−∞

Eα(t − s)g2(z(s))ds ∈ PAAo
Ω(R,Y, µ1).

Proof. Now, let u0(t) =

∫ t

−∞

Eα(t − s)γ1(s)ds +

∫ t

−∞

Eα(t − s)γ2(s)ds = u1(t) + v1(t),

where u1(t) =

∫ t

−∞

Eα(t − s)γ1(s)ds and v1(t) =

∫ t

−∞

Eα(t − s)γ2(s)ds

Let (τ
′

n) be an arbitrary sequence on R. Since γ1 ∈ AAo
Ω

(R,Y), there exists a subsequence (τn) of
(τ
′

n) such that

γ̄1(t) = lim
n→∞

γ1(t + τn) is well defined

and

lim
n→∞

γ̄1(t − τn) = γ1(t), for each t ∈ R.

Define ū1(t) =

∫ t

−∞

Eα(t − s)γ̄1(s)ds.

Consider,

u1(t + τn) =

∫ t+τn

−∞

Eα(t + τn − s)γ1(s)ds

=

∫ t

−∞

Eα(t − u)γ1n(u)du

where γ1n(u) = γ1(u + τn), n = 1, 2, ...

u1(t + τn) =

∫ ∞

0
Eα(u)γ1n(t − u)du

Now, we have

‖u1(t + τn)‖ ≤
∫ ∞

0

C(θ, α)M
1 + |ω|tα

∥∥∥γ1n(t − u)
∥∥∥ du

≤ C(θ, α)M
|ω|−1/απ

αsin(π/α)
‖γ1‖∞ (3.3)

and since Eα(·)z is continuous, we get Eα(t− u)γ1n(u)→ Eα(t− u)γ1(u) as n→ ∞ for any t ≥ u and for
all fixed u ∈ R. Then by using the Lebesgue’s dominated convergence theorem,

u1(t + τn)→ u1(t) as n→ ∞ ∀ t ∈ R.
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By this way we can show that,

u1(t − τn)→ u(t) as n→ ∞ ∀ t ∈ R.

Therefore u1(t) ∈ AA0
Ω

(R,Y).
Next we show v1 ∈ κ(R,Y, µ1).

1
µ1([−l1, l1])

∫
[−l1,l1]

‖v1(t)‖dµ1(t) =
1

µ1([−l1, l1])

∫
[−l1,l1]

∥∥∥∥∥∥
∫ t

−∞

Eα(t − s)γ2(s)ds

∥∥∥∥∥∥ dµ1(t).

=
1

µ1([−l1, l1])

∫
[−l1,l1]

∫ t

−∞

C(θ, α)M
1 + |ω|(t − s)α

‖γ2(s)‖ dsdµ1(t).

=
CM

µ1([−l1, l1])

∫
[−l1,l1]

∫ ∞

0

‖γ2(t − s)‖
1 + |ω|sα

dsdµ1(t)

=

∫ ∞

0

CM
1 + |ω|sα

[
1

µ1([−l1, l1])

∫
[−l1,l1]

‖γ2(t − s)‖ dµ1(t)
]
ds.

Since γ2 ∈ κ(R,Y, µ1), we find
1

µ1([−l1, l1])

∫
[−l1,l1]

‖γ2(t − s)‖ dµ1(t) = 0 for all t ∈ R. Therefore

v1(t) ∈ κ(R,Y, µ1), by Lebesgue’s dominated convergence theorem. �

Theorem 3.2. If G1 = H1 + H2 ∈ PAA
o
Ω(R,Y, µ1) with H1 ∈ AA

o
Ω(R,Y),H2 ∈ κ(R,Y, µ1).

Then Q1(t) =

∫ t

−∞

Eα(t − s)G1(t)ds +
∑
t>t j

Eα(t − t j)I j(z(t j)) is a µ1-PAA function.

Proof. From Lemma 3.4, it follows that
∫ t

−∞

Eα(t − s)G1(t)ds ∈ PAAo
Ω(R,Y, µ1).

Next we show that
∑
t>t j

Eα(t − t j)I j(z(t j)) ∈ PAA
o
Ω(R,Y, µ1). By Theorem 3.1,

I j(z(t j)) ∈ PAAo
Ω(R,Y, µ1). Let I j(z(t j)) = β j + γ j, where β j ∈ AA

o
S (Z,Y) and γ j ∈ κ(Z,Y, µ1), then∑

t>t j

Eα(t − t j)I j(z(t j)) =
∑
t>t j

Eα(t − t j)β j +
∑
t>t j

Eα(t − t j)γ j

= R2(t) + V2(t).

By Lemma 3.3, R2(t) ∈ AAo
Ω(R,Y). Next to show that V2(t) ∈ PAAo

Ω(R,Y, µ1).
Since γ j ∈ κ(Z,Y, µ1), by Lemma 3.2, there exists g(t) = γ j, t ∈ [ j, j + 1) such that g ∈ κ(R,Y, µ1) and
g( j) = γ j, j ∈ Z. Then,

1
µ1([−l1, l1])

∫
[−l1,l1]

‖V2(t)‖dµ1 =
1

µ1([−l1, l1])

∫
[−l1,l1]

‖
∑
t>t j

Eα(t − t j)γ j‖dµ1

≤
1

µ1([−l1, l1])

∫
[−l1,l1]

∑
t>t j

‖Eα(t − t j)‖‖γ j‖dµ1

=
1

µ1([−l1, l1])

∫
[−l1,l1]

CM
1 + |ω|(t − t j)α

‖g(t)‖dµ1
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= CM
[ 1
1 + |ω|mα

1
+

∞∑
n=2

1
1 + |ω|nα

] 1
µ1[−l1, l1]

∫
µ1([−l1,l1])

‖g(t)‖dµ1

where m1 = {min(t − t j) : 0 < t − t j ≤ 1}. Since g(t) ∈ κ(R,Y, µ1), we have V2(t) ∈ κ(R,Y, µ1). Thus∑
t>t j

Eα(t − t j)I j(z(t j)) ∈ PAAo
Ω(R,Y, µ1). �

4. Main results

Here we give the mild solution of our model (1.1).

Definition 4.8. A function z : R → Y is said to be a mild solution of (1.1) if

z(t) = g1(t, z(t)) +

∫ t

−∞

Eα(t − s)G1 (s, z(s)) ds +
∑
t>t j

Eα(t − t j)I j(z(t j)), for each t ∈ R. (4.1)

Theorem 4.1. Suppose (H1) − (H3) are satisfied then the model (1.1) has a µ1 − PAA solution z on

R provided
(
Lg +

CMπLG1 |ω|
1/α

αsin(π/α)

)
< 1.

Proof. Let Bq0 be the closed convex and bounded subset of PAAo
Ω(R,Y, µ1), where

Bq0 = {z ∈ PAAo
Ω(R,Y, µ1) : ‖z‖ ≤ q0}.

Now introduce the operator Γ1 : Bq0 → PAA
o
Ω(R,Y, µ1) as follows:

Γ1z(t) = g1(t, z(t)) +

∫ t

−∞

Eα(t − s)G1 (s, z(s)) ds +
∑
t>t j

Eα(t − t j)I j(z(t j)).

We decompose Γ1 = Γ∗1 + Γ∗2 as

Γ∗1z(t) = g1(t, z(t)) +

∫ t

−∞

Eα(t − s)G1 (s, z(s)) ds,

Γ∗2z(t) =
∑
t>t j

Eα(t − t j)I j(z(t j)).

Step 1: For z ∈ Bq0 implies Γ∗1z,Γ∗2z ∈ PAAo
Ω(R,Y, µ1).

By Lemma 3.4 and Theorem 3.2 we have Γ∗1z,Γ∗2z ∈ PAAo
Ω(R,Y, µ1).

Step 2: For z1, z2 ∈ Bq0 implies Γ∗1z1 + Γ∗2z2 ∈ Bq0 .

‖Γ∗1z1(t) + Γ∗2z2(t)‖

= ‖g1(t, z1(t)) +

∫ t

−∞

Eα(t − s)G1 (s, z1(s)) ds +
∑
t>t j

Eα(t − t j)I j(z2(t j))‖

≤ ‖g1(t, z1(t))‖ +

∫ t

−∞

‖Eα(t − s)‖‖G1(s, z1(s))‖ds +
∑
t>t j

‖Eα(t − t j)‖‖I j(z2(t j))‖

≤ ‖g1(t, z1(t)) − g1(0, 0)‖ + ‖g1(0, 0)‖ +

∫ t

−∞

CM
1 + |ω|(t − s)α

[
‖G1(s, z1(s)) −G1(s, 0)‖ + ‖G1(s, 0)‖

]
ds
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+
∑
t>t j

‖Eα(t − t j)‖
[
‖I j(z2(t j) − I j(0)‖ + ‖I j(0)‖

]
≤ Lg‖z1‖ + ‖g1(0, 0)‖ +

∫ ∞

0

CM
1 + |ω|sα

(
LG1‖z1‖ + ‖G1(s, 0)‖

)
ds

+
∑
t>t j

CM
1 + |ω|(t − t j)α

(
L1‖z2‖ + ‖I j(0)‖

)

≤ Lgq0 +
πCM|ω|

−
1
α
(
q0LG1 + ‖G1(s, 0)‖

)
αsin(

π

α
)

+
∑
t>t j

CM
1 + |ω|(t − t j)α

(
q0L1 + ‖I j(0)‖

)
+ ‖g1(0, 0)‖ ≤ q0.

Step 3: Γ∗1 is contraction on Bq0 .

For each t ∈ R, let z1, z2 ∈ Bq0 then by (H1), (H3) and (3.2), we have

‖Γ∗1z1(t) − Γ∗1z2(t)‖ ≤ ‖g1(t, z1(t)) − g1(t, z2(t))‖ +

∫ t

−∞

‖Eα(t − s)‖‖G1 (s, z1(s)) −G1 (s, z2(s)) ‖ds

≤ Lg‖z1(t) − z2(t)‖ +

∫ ∞

0

CM
1 + |ω|sα

‖z1(s) − z2(s)‖ds

≤

[
Lg +

πCMLG1 |ω|
−

1
α

αsin(
π

α
)

]
‖z1 − z2‖.

Step 4: Γ∗2 is continuous on Bq0 .
Let {zn(t)}∞0 ⊆ Bq0 with zn → z in Bq0 then by (H2) and (3.2), we have

‖Γ∗2zn(t) − Γ∗2z(t)‖ ≤
∑
t>t j

‖Eα(t − t j)‖‖I j(zn(t j)) − I j(z(t j))‖

≤

∑
t>t j

L1CM
1 + |ω|(t − t j)α

 ‖zn − z‖.

As n→ ∞, Γ∗2zn → Γ∗2z.

Step 5: Γ∗2 maps bounded sets into bounded sets.
It is enough to prove that for t > 0, there exist positive constant γ such that, for each z ∈ Bq0 = {z ∈
PAA

o
Ω(R,Y, µ1) : ‖z‖ ≤ q0} and we have ‖Γ∗2z‖ ≤ γ. Now for t ∈ R,

‖Γ∗2z(t)‖ ≤
∑
t>t j

‖Eα(t − t j)‖‖I j(z(t j))‖

≤
∑
t>t j

‖Eα(t − t j)‖‖I j(z(t j)) − I j(0)‖ + ‖I j(0)‖
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≤
∑
t>t j

CM
1 + |ω|(t − t j)α

(
q0L1 + ‖I j(0)‖

)
‖ = γ.

Step 6: Γ∗2z maps bounded sets into equi-continuous sets.
Let z ∈ Bq0 and for t j < τ1 < τ2 ≤ t j+1, we receive

‖Γ1z(τ2) − Γ1z(τ1)‖ = ‖
∑
τ2>t j

Eα(τ2 − t j)I j(z(t j)) −
∑
τ1>t j

Eα(τ1 − t j)I j(z(t j))‖

≤ ‖
∑

−∞<t j<τ1

Eα(τ2 − t j)I j(z(t j)) +
∑

τ1≤t j<τ2

Eα(τ2 − t j)I j(z(t j))

−
∑

−∞<t j<τ1

Eα(τ1 − t j)I j(z(t j))‖

≤
∑

−∞<t j<τ1

‖Eα(τ2 − t j) − Eα(τ1 − t j)‖‖I j(z(t j))‖

+
∑

τ1≤t j<τ2

‖Eα(τ2 − t j)‖‖I j(z(t j))‖.

The right hand side does not depend on z and → 0 as τ2 → τ1. Hence by utilizing the general form
of Arzela-Ascoli theorem for equi-continuous function (Diethelm, [20, Theorem D.10]), we find that
Γ1 is relatively compact. Therefore the operator Γ1 is compact. Now, by Theorem 2.7, the model (1.1)
admits at least one mild solution. �

5. Example

Consider the following model:
∂αt

[
r(t, z) − ϕ

(
sin 1

2−sin t−sin πt r(t, z) + e−t sin(r(t, z))
)]

= (∂2
t − ω)

[
r(t, z)

−ϕ
(

sin 1
2−sin t−sin πt r(t, z) + e−t sin(r(t, z))

)]
+

∂α−1
t

(
β
(

cos 1
sin t+sin

√
2t

r(t, z) +
sin(r(t,z))

1+t2

))
, t > 0, t , t j,

4r(t j, z) = I j(r(t j, z)) = %
(

sin 1
2+sin jr(t j, z) +

cos(r(t j,z))
1+ j2

)
, j = 1, 2, . . . ,

(5.1)

where β, ϕ and % are positive constant. Let the Radon-Nikodym derivative ρ of the measure µ1 be
defined by ρ(t) = esin t. Clearly µ1 satisfy (H). Take Y = L2([0, π]) and define the operators A by
Aψ =

∂2ψ

∂t2 − ωψ, ψ ∈ D(A), where D(A) = {ψ ∈ Y : ψ′′ ∈ Y, ψ(0) = ψ(π)} ⊂ Y .
Let

G1(t, z(ς)) = β
(

cos
1

sin t + sin
√

2t
z(ς) +

sin(z(ς))
1 + t2

)
,

g1(t, z(ς)) = ϕ
(

sin
1

2 − sin t − sin πt
z(ς) + e−t sin(z(ς))

)
,

I j(z(ς)) = %
(

sin
1

2 + cos j
z(ς) +

cos(z(ς))
1 + j2

)
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It is not difficult to see that the function G1, g1 and I j are continuous function and µ1 − PAA in t.

‖G1(t, z1) −G1(t, z2)‖22 ≤
∫ π

0
|β|2

∣∣∣∣ cos
1

sin t + sin
√

2t

∣∣∣∣2∣∣∣∣z1(v) − z2(v)
∣∣∣∣2

+ |β|2
∣∣∣∣ 1
1 + t2

∣∣∣∣2| sin(z1(v)) − sin(z2)(v)|2dv

≤ |β|2
[∣∣∣∣ cos

1

sin t + sin
√

2t

∣∣∣∣2 +
∣∣∣∣ 1
1 + t2

∣∣∣∣2][‖z1 − z2‖
2
2

]
Hence

‖G1(t, z1) −G1(t, z2)‖2 ≤ 2|β|
[
‖z1 − z2‖2

]
.

Also

‖g1(t, z1) − g1(t, z2)‖22 ≤
∫ π

0
|ϕ|2| sin

1
2 − sin t − sin πt

|2|z1(ς) − z2(ς)|2

+ |ϕ|2|e−t|2| sin z1(ς) − sin z2(ς)|2dς

‖g1(t, z1) − g1(t, z2)‖2 ≤ 2|ϕ|‖z1 − z2‖2.

Furthermore

‖I j(z1) − I j(z2)‖22 ≤
∫ π

0
|%|2

∣∣∣∣ sin
1

2 + cos j

∣∣∣∣2∣∣∣∣z1(v) − z2(v)
∣∣∣∣2 +

∣∣∣∣cos r(t j, z)
1 + j2

∣∣∣∣2
| cos(z1(v)) − cos(z2)(v)|2dv

≤ |%|2
[∣∣∣∣ sin

1
2 + cos j

∣∣∣∣2 +
∣∣∣∣ 1
1 + j

∣∣∣∣2]‖z1 − z2‖
2
2.

Hence

‖I j(z1) − I j(z2)‖2 ≤ 2|%|‖z1 − z2‖2.

Thus G1, g1, I j satisfies Lipschitz conditions with LG1 = 2|υ| = 1/10, Lg = 2|ϕ| = 1/10, Ll = 2|%| =

1/10. Let ω = −1 and α = 5/4, then
(
Lg +

CMπLG1 |ω|
1/α

α sin(π/α)

)
= 0.5276 < 1. Therefore by Theorem 4.1,

the model (5.1) has µ1 − PAA mild solution.

6. Conclusions

In this paper, we investigate many important results on the new theory of measure pseudo almost
automorphic functions with impulses. Those results have an important impact on the theory of systems.
Numerous researchers are particularly involved in discussing the existence, stability and controllability
results for various systems under different hypotheses. We assure that, these existence results can
be further extended to stepanov type measure pseudo almost periodic and automorphic functions for
integer and non-integer systems.
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10. Y. K. Chang, G. M. N’Guérékata, R. Zhang, Stepanov-like weighted pseudo almost automorphic
functions via measure theory, B. Malays. Math. Sci. So., 3 (2015), 1005–1041.

11. Y. K. Chang, T. W. Feng, Properties on measure pseudo almost automorphic functions and
applications to fractional differential equations in Banach spaces, Electronic J. Differ. Eq., 2018
(2018), 1–14.

12. P. Chen, X. Zhang, Y. Li, Non-autonomous parabolic evolution equations with non-instantaneous
impulses governed by noncompact evolution families, J. Fixed Point Theory Appl., 21 (2019).
Available from: https://doi.org/10.1007/s11784-019-0719-6.

13. P. Chen, X. Zhang, Y. Li, Non-autonomous evolution equations of parabolic type with non-
instantaneous impulses, Mediterr. J. Math., 16 (2019). Available from:
https://doi.org/10.1007/s00009-019-1348-0.

14. P. Chen, X. Zhang, Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions,
J. Pseudo-Differ. Oper., 10 (2019), 955–973.

AIMS Mathematics Volume 6, Issue 8, 8352–8366.

https://doi.org/10.1007/s11784-019-0719-6.
https://doi.org/10.1007/s00009-019-1348-0.


8366

15. P. Chen, X. Zhang, Y. Li, Cauchy problem for fractional non-autonomous evolution equations,
Banach J. Math. Anal., 14 (2020), 559–584.

16. P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution
equations with nonlocal conditions via resolvent operators, Frac. Calc. Appl. Anal., 23 (2020),
268–291.

17. P. Chen, X. Zhang, Y. Li, Approximate controllability of non-autonomous evolution system with
nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 1–16.

18. A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore,
1995.

19. E. Cuesta, Asymptotic bahaviour of the solutions of fractional integrodifferential equations and
some time discretizations, Discrete Continuum Dynamics Systems(Supplement) (2007), 277–285.

20. K. Diethelm, The Analysis of Fractional Differential Equations, Springer, New York, 2010.

21. V. Kavitha, S. Abbas, R. Murugesu, (µ1, µ2)-pseudo almost automorphic solutions of fractional
order neutral integro-differential equations, Nonlinear Studies, 24 (2017), 669–685.

22. M. A. Krasnoselskii, P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin,
1984.

23. M. Lakshman, S. Abbas, PC-almost automorphic solution of impulsive fractional differential
equations, Mediterr. J. Math., 12 (2015), 771–790.

24. V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses (in Russian),
Siberian Math. J., 1 (1960), 233–237.

25. C. Wang, R. P Agarwal, Weighted piecewise pseudo almost automorphic functions with
applications to abstract impulsive ∇-dynamic equations on time scales, Advances in Difference
Equations, (2014). Available from: https://doi.org/10.1186/1687-1847-2014-153.

26. Z. Xia, D. Wang, Measure pseudo almost periodic mild solutions of stochastic functional
differential equations with Levy noise, J. Nonlinear Convex A., 18 (2017), 847–858.

© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 8, 8352–8366.

https://doi.org/10.1186/1687-1847-2014-153.
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Terminology and definitions
	Previous results
	Assumptions

	Useful results
	Main results
	Example
	Conclusions

