Mathematics
http://www.aimspress.com/journal/Math

Research article

Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation

Velusamy Kavitha ${ }^{1, *}$, Dumitru Baleanu ${ }^{2}$ and Jeyakumar Grayna ${ }^{1}$
${ }^{1}$ Department of Mathematics, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641114, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, Cankaya University, Ankara, Turkey and Institute of Space Sciences, Magurele-Bucharest, Romania
* Correspondence: Email: kavi_velubagyam@yahoo.co.in.

Abstract

We discuss the concept of pseudo almost automorphic solution to fractional neutral differential equation with impulses using measure theory. Our principal results are obtained via semigroup theory and the fixed point theorem due to Krasnoselskii and their combination with the properties of measure theory. An example is provided to outline the thought developed on this work.

Keywords: measure theory; measure-pseudo almost automorphic functions; fractional differential equation; impulsive conditions
Mathematics Subject Classification: 12H20, 34A08, 47G20, 34A37, 43A60

1. Introduction

The idea about almost periodic functions prompted to varied fundamental generalization within the year 1924-25 by H.Bohr [7]. The notion of almost automorphic (in short $\mathcal{A A}$) function is one of its crucial generalization by S. Bochner [6]. The concept of weighted pseudo almost automorphic (in short $\mathscr{W} \mathcal{P} \mathcal{A}$) functions is one of the further important generalization of $\mathcal{A} \mathcal{A}$ introduced by Blot et.al. [4]. These functions are a lot of typical and complex than weighted pseudo almost periodic functions. In 2012, Blot, Cieutat and Ezzinbi [5] applied the abstract measure theory to define an ergodic function and established fundamental properties of measure pseudo almost automorphic functions (in short $\mu_{1}-$ $\mathcal{P} \mathcal{A} \mathcal{A})$, and thus the classical theories of pseudo almost automorphic functions and weighted pseudo almost automorphic functions become particular cases of this approach. After that, the $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ function has been developed in different ways, see for instance $[10,21,26]$ and references therein.

The Dirac delta functions and "leaps" are two main directions in mathematical theory of impulsive differential equations. For describing the impulsive effects, the Dirac delta functions are a
fundamental mathematical tool. In 1960, second direction of research "leaps" processes with some results for the solutions of stability was given by V. D. Milman and A. D. Myshkis [24]. In reality, many processes and phenomena are affected by short-term external factors. While comparing to total duration of phenomena and processes, this duration is negligible and therefore they form the impulses. Ecology, population dynamics, epidemiology, pharmacokinetics, economics, mechanics, control theory and other fields of science are all concerned in the dynamical states developed by such "leaps and bounds", see the monographs [3,18] and the articles [12, 13, 17].

Fractional calculus deals with integro-differential equations can be considered as a branch of mathematical physics which has been effectively developed and plays a very important role in distinct fields such as biophysics, mechanics, electro chemistry, notable control theory and visco elasticity and so on. The fractional calculus is a generalization of the traditional calculus, but with a much wider applicability. The fractional methodology is suitable for a lot of applications in image processing, complex system dynamics and nonlinear dynamics. Thus it leads to the sustained interest in studying the theory of fractional differential equations [2,8,14-16,20].

The authors Wang and Agarwal [25] investigated the existence of piecewise weighted pseudo almost automorphic mild solutions to impulsive ∇-dynamic equations. Chang and Feng [11] study the existence and uniqueness of measure pseudo almost automorphic solutions of the fractional differential equations. Our main results can be described as generalization of work in [11, 25]. Motivated by the works [5,11,21,25,26] the main purpose of this article is to establish the piecewise $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ properties for the following impulsive fractional neutral differential equation

$$
\left\{\begin{array}{l}
D_{t}^{\alpha}\left[z(t)-g_{1}(t, z(t))\right]=A\left[z(t)-g_{1}(t, z(t))\right]+D_{t}^{\alpha-1} G_{1}(t, z(t)), t \in \mathcal{R}, t \neq t_{j}, j \in \mathbb{Z} \tag{1.1}\\
\left.\Delta z\left(t_{j}\right)\right|_{t=t_{j}}=I_{j}\left(z\left(t_{j}\right)\right), t=t_{j}
\end{array}\right.
$$

where $1<\alpha<2$ and $A: D(A) \subset Y \rightarrow Y$ is a linear densely defined operator of sectorial type on a complex Banach Space $(Y,\|\cdot\|)$. The functions $I_{j}: Y \rightarrow Y, G_{1}: \mathcal{R} \times Y \rightarrow Y, g_{1}: \mathcal{R} \times Y \rightarrow Y$ is a $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ function in t for each $z \in Y$ satisfying suitable conditions. $\left.\Delta z(t)\right|_{t=t_{j}}=z\left(t_{j}^{+}\right)-z\left(t_{j}^{-}\right),(j=$ $1,2, \ldots), 0=t_{0}<t_{1}<\ldots<t_{n}<\ldots$. Here $z\left(t_{j}^{+}\right)$and $z\left(t_{j}^{-}\right)$represent right and left limits of $z(t)$ at $t=t_{j}$ respectively. The fractional derivative D_{t}^{α} is considered as Caputo's sense.

The rest of this work is organized as follows. In Section 2, we define some definitions, terminologies, previous results, basic properties of $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ functions and assumptions. In Section 3, we investigate the important results which are needed to prove the main results. In Section 4, we establish the existence of $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ mild solutions to the model (1.1). In Section 5, we provide an example to illustrate our results.

2. Preliminaries

In this section, we review few notations, definitions and Lemmas which will be utilized throughout this paper.

2.1. Terminology and definitions

In this segment, we define basic definitions.
Let $\left(Y,\|\cdot\| \|_{Y}\right)$ be a Banach space, T be a subset of Y. The symbol $C(\mathcal{R}, Y)(\operatorname{resp} C(\mathcal{R} \times T, Y))$ stands for
the set of all continuous function from \mathcal{R} to $Y($ resp from $\mathcal{R} \times T$ to $Y)$ and $P C(\mathcal{R}, Y)($ resp $P C(\mathcal{R} \times T, Y))$ stands for set of all piecewise continuous function from \mathcal{R} to $Y($ resp from $\mathcal{R} \times T$ to \mathcal{R}).

The fractional integral of order $q>0$ in the Riemann-Liouville sense is defined as

$$
I^{q} f(t)=\frac{1}{\Gamma(q)} \int_{0}^{t}(t-s)^{q-1} f(s) d s
$$

also, the fractional derivative of function f of order $q>0$ in the Caputo sense is defined as

$$
D_{t}^{q}=\frac{1}{\Gamma(n-q)} \int_{0}^{t}(t-s)^{n-q-1} \frac{d^{n} f(s)}{d s^{n}} d s
$$

where $\Gamma(q)$ is a gamma function.
Moreover, the Riemann-Liouville definition entails physically unacceptable initial conditions (fractional order initial conditions); conversely of the Liouville-Caputo representation where the initial conditions are expressed in terms of integer-order derivatives having direct physical significance. The Caputo definition of fractional derivatives not only provides initial conditions with clear physical interpretation but it is also bounded, meaning that the derivative of a constant is equal to 0 . Further, Caputo fractional derivative has lots of applications in real world problems, such as Groundwater flowing within an unconfined aquifer, measles epidemiological autonomous dynamical system etc.,

Definition 2.1. [1] A sequence $t_{1}: \mathbb{Z}^{+} \rightarrow Y$ is said to be $\mathcal{A A}$ sequence, if t_{1} is bounded and for every sequence of integer numbers $\left\{j_{n}^{\prime}\right\}$, there exist a sub-sequence $\left\{j_{n}\right\} \subseteq\left\{j_{n}^{\prime}\right\}$ such that

$$
\lim _{n \rightarrow \infty} t_{1}\left(j+j_{n}\right)=f(j), \quad \text { for all } \quad n \in \mathbb{Z}
$$

is well defined and

$$
\lim _{n \rightarrow \infty} f\left(j-j_{n}\right)=t_{1}(j)
$$

for each $j \in \mathbb{Z}^{+}$. Denote this collection of sequences by $A A_{S}^{o}(\mathbb{Z}, Y)$.
Definition 2.2. [1] A piecewise continuous bounded function $G_{1} \in P C(\mathcal{R}, Y)$ is said to be $\mathcal{A} \mathcal{A}$ if

- sequence of impulsive moments $\left\{t_{j}\right\}$ is an $\mathcal{A} \mathcal{A}$ sequence
- for each sequence of real numbers $\left\{u_{n}\right\}$, there exist a sub-sequence $\left\{u_{n_{k}}\right\} \subseteq\left\{u_{n}\right\}$ such that

$$
F_{1}(t)=\lim _{n \rightarrow \infty} G_{1}\left(t+u_{n_{k}}\right), \quad \text { for all } \quad t \in \mathcal{R}
$$

is well defined and

$$
\lim _{n \rightarrow \infty} F_{1}\left(t-u_{n_{k}}\right)=G_{1}(t), \quad \text { for all } \quad t \in \mathcal{R} .
$$

Denote this collection of functions by $A A_{\Omega}^{o}(\mathcal{R}, Y)$.
Definition 2.3. [1] A piecewise continuous bounded function $G_{1} \in P C(\mathcal{R} \times T, Y)$ is said to be $\mathcal{A} \mathcal{A}$ in compact subsets of Y in t uniformly for t_{1} if

- sequence of impulsive moments $\left\{t_{j}\right\}$ is an $\mathcal{A A}$ sequence
- for each compact set $Q \subseteq Y$ and every sequence of real numbers $\left\{u_{n}\right\}$, there exist a sub-sequence $\left\{u_{n_{k}}\right\} \subseteq\left\{u_{n}\right\}$ such that

$$
F_{1}\left(t, t_{1}\right)=\lim _{n \rightarrow \infty} G_{1}\left(t+u_{n_{k}}, t_{1}\right), \quad \text { for all } \quad t \in \mathcal{R}, t_{1} \in Q
$$

is well defined and

$$
\lim _{n \rightarrow \infty} F_{1}\left(t-u_{n_{k}}, t_{1}\right)=G_{1}\left(t, t_{1}\right), \quad \text { for all } \quad t \in \mathcal{R}, t_{1} \in Q .
$$

Denote this collection of functions by $A A_{\Omega}^{o}(\mathcal{R} \times T, Y)$.
We denote \mathcal{M}_{1} by the set of all positive measures μ_{1} on \mathcal{B}_{1}, where \mathcal{B}_{1} is the Lebesgue σ-field of \mathcal{R} satisfying, $\mu_{1}([a, b])<\infty$, and $\mu_{1}(\mathcal{R})=+\infty$ for all $b, a \in \mathcal{R}(b \geq a)$.

Definition 2.4. $\phi: \mathcal{R} \rightarrow Y$, a bounded continuous function, is said to be μ_{1}-ergodic if

$$
\lim _{l_{1} \rightarrow \infty} \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\|\phi(t)\| d \mu_{1}(t)=0,
$$

where $\mu_{1} \in \mathcal{M}_{1}$. Denote this collection of functions by $\kappa\left(\mathcal{R}, Y, \mu_{1}\right)$.
Definition 2.5. Let $\mu_{1} \in \mathcal{M}_{1}$. A piecewise continuous bounded function $G_{1}: \mathcal{R} \rightarrow Y$ is said to be $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ if G_{1} is written in the form, $G_{1}=H_{1}+H_{2}$, where $H_{1} \in \mathcal{A} \mathcal{A}_{\Omega}^{o}(\mathcal{R}, Y)$ and $H_{2} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$. Denote collection of such functions as $\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.

Remark 2.1. Define the positive measure μ_{1} by

$$
\begin{equation*}
\mu_{1}(C)=\int_{C} \rho(t) d t \quad \text { for } \quad C \in \mathcal{B}_{1} \tag{2.1}
\end{equation*}
$$

where ρ is a nonnegative \mathcal{B}_{1}-measurable function and dt denotes the Lebesgue measure on \mathcal{R}. With respect to the Lebesgue measure on \mathcal{R}, the function ρ in (2.1) is called the Radon-Nikodym derivative of μ_{1}. In this case, ρ is locally Lebesgue-integrable on \mathcal{R} and $\int_{-\infty}^{+\infty} \rho(t) d t=+\infty$ if and only if its positive measure $\mu_{1} \in \mathcal{M}_{1}$.

A bounded sequence $h_{1}: \mathbb{Z} \rightarrow Y$ is said to be in $\kappa_{S}\left(\mathbb{Z}, Y, \mu_{1}\right)$ for $\mu_{1} \in \mathcal{M}_{1}$ if $-l_{1}=t_{1}<t_{2}<\ldots<t_{n}=$ l_{1} be a sequence of real numbers then

$$
\lim _{l_{1} \rightarrow \infty} \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \sum_{t_{j} \in\left[-l_{1}, l_{1}\right]}\left\|h_{1}\left(t_{j}\right)\right\|=0
$$

Definition 2.6. A bounded sequence $x: \mathbb{Z} \rightarrow Y$ is said to be $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ sequence if it can be decomposed as $x=x_{1}+x_{2}$ where $x_{1} \in A A_{S}^{o}(\mathbb{Z}, Y)$ and $x_{2} \in \kappa_{S}\left(\mathbb{Z}, Y, \mu_{1}\right)$. Denote collection of such functions as $\mathcal{P} \mathcal{A} \mathcal{A}_{S}^{o}\left(\mathbb{Z}, Y, \mu_{1}\right)$.

2.2. Previous results

In this section, we present some preliminary results which are needed in the sequel.
Proposition 2.1. [5] Let $\mu_{1} \in \mathcal{M}_{1}$. Then $\left(\kappa\left(\mathcal{R}, Y, \mu_{1}\right),\|.\| \|_{\infty}\right)$ is a Banach space.
Proposition 2.2. [5] For $\varsigma \in \mathcal{R}$ and $\mu_{1} \in \mathcal{M}_{1}$, we denote $\mu_{1 \varsigma}$ be the positive measure on $\left(\mathcal{R}, \mathcal{B}_{1}\right)$ defined by

$$
\mu_{1 \varsigma}(C)=\mu_{1}(\{a+\varsigma: a \in C\}), \quad \text { for } \quad C \in \mathcal{B}_{1} .
$$

We give the following assumption from $\mu_{1} \in \mathcal{M}_{1}$:
(H) For all $\varsigma \in \mathcal{R}$ and a bounded interval I_{1}, there exist $\beta>0$ such that

$$
\beta \mu_{1}(C) \geq \mu_{1 \varsigma}(C), \text { when } \quad C \in \mathcal{B}_{1} \quad \text { satisfies } \quad C \cap I_{1}=\emptyset .
$$

Theorem 2.1. [5] Let I_{1} be a bounded interval (eventually $I_{1}=\emptyset$) and $\mu_{1} \in \mathcal{M}_{1}$. Assume that $G_{1} \in P C(\mathcal{R}, Y)$. Then the following statements are equivalent.

- $G_{1} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$.
- $\lim _{l_{1} \rightarrow+\infty} \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right] \backslash I_{1}\right)} \int_{\left[-l_{1}, l_{1} \backslash \backslash I_{1}\right.}\left\|G_{1}(t)\right\| d \mu_{1}(t)=0$
- For any $\varepsilon>0, \lim _{l_{1} \rightarrow+\infty} \frac{\mu_{1}\left(\left\{t \in\left[-l_{1}, l_{1}\right] \backslash I_{1}:\left\|G_{1}(t)\right\|>\varepsilon\right\}\right)}{\mu_{1}\left(\left[-l_{1}, l_{1}\right] \backslash I_{1}\right)}=0$.

Remark 2.2. The fact that $\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)=\mu_{1}\left(\left[-l_{1}, l_{1}\right] \backslash I_{1}\right)+\mu_{1}\left(I_{1}\right)$ for l_{1} sufficiently large and from $\mu_{1} \in \mathcal{M}_{1}$, we deduce that $\lim _{l_{1} \rightarrow+\infty} \mu_{1}\left(\left[-l_{1}, l_{1}\right] \backslash I_{1}\right)=+\infty$.

Definition 2.7. [5] Let μ_{2} and $\mu_{3} \in \mathcal{M}_{1}$. μ_{2} is said to be equivalent to $\mu_{3}\left(\mu_{2} \sim \mu_{3}\right)$ if there exists constants $\beta, \alpha>0$ and a bounded interval I_{1} (eventually $I_{1}=\emptyset$) such that $\beta \mu_{2}(C) \geq \mu_{3}(C) \geq \alpha \mu_{2}(C)$, for $C \in \mathcal{B}_{1}$ satisfying $C \cap I_{1}=\emptyset$.
Theorem 2.2. Let $\mu_{2}, \mu_{3} \in \mathcal{M}_{1}$. If μ_{2} and μ_{3} are equivalent, then $\kappa\left(\mathcal{R}, Y, \mu_{2}\right)=\kappa\left(\mathcal{R}, Y, \mu_{3}\right)$ and $\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{2}\right)=\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{3}\right)$.

Lemma 2.1. [5] Let $\mu_{1} \in \mathcal{M}_{1}$. The measures $\mu_{2} \sim \mu_{3}$ are equivalent for all $\varsigma \in \mathcal{R}$ if and only if μ_{1} satisfies (H).

Theorem 2.3. [5] Assume $\mu_{1} \in \mathcal{M}_{1}$ and (H) holds. If $\kappa\left(\mathcal{R}, Y, \mu_{1}\right)$ is translation invariant, then $\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ is also translation invariant.

Theorem 2.4. [5] Let $\mu_{1} \in \mathcal{M}_{1}$ and $G_{1}=H_{1}+H_{2} \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$, where $H_{1} \in A A_{\Omega}^{o}(\mathcal{R}, Y)$ and $H_{2} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$. If $\mathcal{P A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ is translation invariant, then

$$
\begin{equation*}
\overline{\left\{G_{1}(t): t \in \mathcal{R}\right\}} \supset\left\{H_{1}: t \in \mathcal{R}\right\} \tag{2.2}
\end{equation*}
$$

Theorem 2.5. [5] Assume that $\mu_{1} \in \mathcal{M}_{1}$ and $\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ is translation invariant. Then $\left(\mathcal{P A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right),\|.\|_{\infty}\right)$ is a Banach space.
Theorem 2.6. [9] Let $G_{1}=H_{1}+H_{2} \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$, where $\mu_{1} \in \mathcal{M}_{1}$. Assume that $G_{1}(t, z)$ and $H_{1}(t, z)$ are uniformly continuous on any bounded subset $K_{*} \subset T$ uniformly in $t \in \mathcal{R}$. If $\Phi_{*} \in$ $\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ then $G_{1}\left(\cdot, \Phi_{*}(\cdot)\right) \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.

Theorem 2.7. (Krasnoselskii, [22]) Let \mathbb{X} be a convex closed nonempty subset of a Banach space $(Y,\|\cdot\|)$. Suppose that A_{2} and B_{2} map \mathbb{X} into Y such that

- $A_{2} x+B_{2} y \in \mathbb{X} \quad(\forall x, y \in \mathbb{X})$
- A_{2} is continuous and $A_{2} \mathbb{X}$ is contained in a compact set
- B_{2} is a contraction mapping.

Then there is a $y \in \mathbb{X}$ with $A_{2} y+B_{2} y=y$.

2.3. Assumptions

To prove the main results, we consider the following assumptions:
(H1) $G_{1}: \mathcal{R} \times Y \rightarrow Y$. Let $L_{G_{1}}>0$ be such that $\left\|G_{1}\left(t, z_{1}\right)-G_{1}\left(t, z_{2}\right)\right\| \leq L_{G_{1}}\left\|z_{1}-z_{2}\right\|, t \in \mathcal{R}, z_{1}, z_{2} \in Y$.
(H2) The sequence I_{j} is $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ and there exists $L_{1}>0$ such that $\left\|I_{j}(z)-I_{j}\left(t_{1}\right)\right\| \leq L_{1}\left\|z-t_{1}\right\|, j \in \mathbb{Z}$ and $z, t_{1} \in Y$.
(H3) $g_{1}: \mathcal{R} \times Y \rightarrow Y$. Let $L_{g}>0$ be such that $\left\|g_{1}(t, z)-g_{1}\left(t, t_{1}\right)\right\| \leq L_{g}\left\|z-t_{1}\right\|, t \in \mathcal{R}$ and $z, t_{1} \in Y$.

3. Useful results

In this section, we present the important results which are needed to prove the main results.
Lemma 3.2. If a bounded sequence $\{\varphi(n)\}_{n \in \mathbb{Z}} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, then there exists a uniformly continuous function $g \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$ such that $g\left(t_{n}\right)=\{\varphi(n)\}_{n \in \mathbb{Z}}, \quad t_{n} \in \mathcal{R}$.
Proof. We define a function $g(t)=\varphi(n)+\int_{n}^{t} H_{2}(t, \varphi(t)) d y$ for $t \in[n, n+1)$. If $\{\varphi(n)\}_{n \in \mathbb{Z}} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, then it follows from the boundedness of H_{2} that $g(t)$ is bounded on \mathcal{R}. From Theorem 2.6, we have $H_{2}(., \varphi().) \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$. Let the set $B_{j}=\left\{t \in\left[-l_{1}, l_{1}\right]: u_{1}(t) \in O_{j}\right\}$ is open in $\left[-l_{1}, l_{1}\right]$ and $\left[-l_{1}, l_{1}\right]=$ $U_{j=1}^{m} B_{j}$. Let $E_{1}=B_{1}, E_{j}=B_{j} \backslash \cup_{j=1}^{k-1} B_{j} \quad(2 \leq k \leq m)$. Then $E_{i} \cap E_{j}=\phi$ when $i \neq j, 1 \leq i, j \leq m$. Now we have,

$$
\begin{aligned}
\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} & \int_{\left[-l_{1}, l_{1}\right]}\|g(t)\| d \mu_{1}(t) \\
& \leq \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)}\left[\sum_{j=1}^{m} \int_{E_{j}}\|\varphi(j)\| d \mu_{1}+\int_{\left[-l_{1}, l_{1}\right]}\left\|\int_{n}^{t} H_{2}(t, \varphi(t)) d y\right\| d \mu_{1}\right] \\
& \leq \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)}\left[\sum_{j=1}^{m} \int_{E_{j}}\|\varphi(j)\| d \mu_{1}+\int_{\left[-l_{1}, l_{1}\right]}\left\|H_{2}(t, \varphi(t))\right\|(n+1-n) d y\right] \\
& \leq \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)}\left[\sum_{j=1}^{m} \int_{E_{j}}\|\varphi(j)\| d \mu_{1}+\sum_{j=1}^{m} \int_{E_{j}}\left\|H_{2}(t, \varphi(t))\right\| d y\right]
\end{aligned}
$$

as $l_{1} \rightarrow \infty$, we deduce that $\lim _{l_{1} \rightarrow \infty} \frac{1}{\mu_{1}\left[-l_{1}, l_{1}\right]} \int_{\left[-l_{1}, l_{1}\right]}\|g(t)\| d \mu_{1}=0$. That is $\quad g \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$.
Theorem 3.1. Let $I_{j}: Y \rightarrow Y$ be a $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ sequence and satisfying (H2). If $\phi \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ then $I_{j}\left(\phi\left(t_{j}\right)\right)$ is a $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ sequence.

Proof. Since $\phi=p_{1}+p_{2}$, where $p_{1} \in \mathcal{A} \mathcal{A}_{\Omega}^{o}(\mathcal{R}, Y), p_{2} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, it follows that $I_{j}\left(\phi\left(t_{j}\right)\right)=I_{j}\left(p_{1}\left(t_{j}\right)\right)+$ $I_{j}\left(p_{2}\left(t_{j}\right)\right)$. By [23, Lemma 3.2], $I_{j}\left(p_{1}\left(t_{j}\right)\right)$ is an $\mathcal{A} \mathcal{A}$ sequence. Now it remains to show that $I_{j}\left(p_{2}\left(t_{j}\right)\right) \in$ $\kappa\left(\mathcal{R}, Y, \mu_{1}\right)$. Since $p_{2} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, we have $\lim _{l_{1} \rightarrow \infty} \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|p_{2}(t)\right\| d \mu_{1}(t)=0$.

Let $-l_{1}=t_{1}<t_{2}<\ldots .<t_{n}=l_{1}$ be a sequence of real numbers, we have

$$
\int_{\left[-l_{1}, l_{1}\right]}\left\|p_{2}(t)\right\| d \mu_{1}=\sum_{t_{j} \in\left[-l_{1}, l_{1}\right]}\left\|p_{2}\left(t_{j}\right)\right\| .
$$

Thus we obtain

$$
\begin{equation*}
\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|p_{2}(t)\right\| d \mu_{1}=\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \sum_{t_{j} \in\left[-l_{1}, l_{1}\right]}\left\|p_{2}\left(t_{j}\right)\right\| . \tag{3.1}
\end{equation*}
$$

Taking the limit when $l_{1} \rightarrow \infty$, from Eq 3.1, we obtain $p_{2}\left(t_{j}\right) \in \kappa\left(\mathbb{Z}, Y, \mu_{1}\right)$.
Now from (H2),

$$
\left\|I_{j} p_{2}\left(t_{j}\right)\right\| \leq\left\|I_{j}\left(p_{2}\left(t_{j}\right)\right)-I_{j}(0)\right\|+\left\|I_{j}(0)\right\| \leq L_{1}\left\|p_{2}\left(t_{j}\right)\right\|+\left\|I_{j}(0)\right\| .
$$

We see that the sequence $I_{j}\left(\phi\left(t_{j}\right)\right)$ is a $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ sequence.
Remark 3.3. In order to prove the main results, we need to present an important estimate from [19] as follows:

$$
\begin{equation*}
\left\|E_{\alpha}(t)\right\|_{\mathcal{L}(Y)} \leq \frac{C(\theta, \alpha) M}{1+|\omega| t^{\alpha}}, \quad t \geq 0 \tag{3.2}
\end{equation*}
$$

Lemma 3.3. Let $E_{\alpha}(t)$ be strongly continuous family of bounded linear operators satisfying (3.2). If $z \in A A_{\Omega}^{0}(\mathcal{R}, Y)$ and $u_{0}: \mathcal{R} \rightarrow Y$ is defined by

$$
u_{0}(t)=\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right)
$$

then $u_{0}(\cdot) \in A A_{\Omega}^{0}(\mathcal{R}, Y)$.
Proof. Since z is $\mathcal{A} \mathcal{A}$, there exists a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that $h_{1}(t)=\lim _{n \rightarrow \infty} z\left(t+u_{n_{k}}\right)$ is well defined for every $t \in \mathcal{R}$. We consider

$$
u_{0}\left(t+u_{n_{k}}\right)=\sum_{t+u_{n_{k}}>t_{j}} E_{\alpha}\left(t+u_{n_{k}}-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right)=\sum_{i>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}+u_{n_{k}}\right)\right) .
$$

And

$$
\begin{aligned}
\left\|u_{0}\left(t+u_{n_{k}}\right)\right\| & =\left\|\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}+u_{n_{k}}\right)\right)\right\| \leq \sum_{t>t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left\|I I_{j}\left(z\left(t_{j}+u_{n_{k}}\right)\right)\right\| \\
& \leq C M I \sum_{t>t_{j}} \frac{1}{1+|\omega|\left(t-t_{j}\right)^{\alpha^{2}}} .
\end{aligned}
$$

Since $z \in A A_{\Omega}^{0}(\mathcal{R}, Y), \lim _{n \rightarrow \infty} z\left(t+u_{n_{k}}\right)=h_{1}\left(t_{j}\right)$ for every $j \in \mathbb{Z}$. Therefore, for any $t>t_{j}, j \in \mathbb{Z}$, by Lebesgue's dominated convergence theorem, we obtain

$$
\lim _{n \rightarrow \infty} u_{0}\left(t+u_{n_{k}}\right)=\sum_{i>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(h_{1}\left(t_{j}\right)\right) .
$$

Therefore, $u_{0}(\cdot) \in A A_{\Omega}^{0}(\mathcal{R}, Y)$.
Lemma 3.4. Let $f=g_{2}+h \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ with $g_{2} \in \mathcal{A} \mathcal{A}_{\Omega}^{o}(\mathcal{R}, Y)$ and $h \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$. Then

$$
u_{0}(.)=\int_{-\infty}^{t} E_{\alpha}(t-s) g_{2}(z(s)) d s \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)
$$

Proof. Now, let $u_{0}(t)=\int_{-\infty}^{t} E_{\alpha}(t-s) \gamma_{1}(s) d s+\int_{-\infty}^{t} E_{\alpha}(t-s) \gamma_{2}(s) d s=u_{1}(t)+v_{1}(t)$,
where $u_{1}(t)=\int_{-\infty}^{t} E_{\alpha}(t-s) \gamma_{1}(s) d s$ and $v_{1}(t)=\int_{-\infty}^{t} E_{\alpha}(t-s) \gamma_{2}(s) d s$
Let $\left(\tau_{n}^{\prime}\right)$ be an arbitrary sequence on \mathcal{R}. Since $\gamma_{1} \in A A_{\Omega}^{o}(\mathcal{R}, Y)$, there exists a subsequence $\left(\tau_{n}\right)$ of $\left(\tau_{n}^{\prime}\right)$ such that

$$
\bar{\gamma}_{1}(t)=\lim _{n \rightarrow \infty} \gamma_{1}\left(t+\tau_{n}\right) \text { is well defined }
$$

and

$$
\lim _{n \rightarrow \infty} \bar{\gamma}_{1}\left(t-\tau_{n}\right)=\gamma_{1}(t), \text { for each } t \in \mathcal{R}
$$

Define $\overline{u_{1}}(t)=\int_{-\infty}^{t} E_{\alpha}(t-s) \bar{\gamma}_{1}(s) d s$.
Consider,

$$
\begin{aligned}
u_{1}\left(t+\tau_{n}\right) & =\int_{-\infty}^{t+\tau_{n}} E_{\alpha}\left(t+\tau_{n}-s\right) \gamma_{1}(s) d s \\
& =\int_{-\infty}^{t} E_{\alpha}(t-u) \gamma_{1_{n}}(u) d u
\end{aligned}
$$

where $\gamma_{1_{n}}(u)=\gamma_{1}\left(u+\tau_{n}\right), n=1,2, \ldots$

$$
u_{1}\left(t+\tau_{n}\right)=\int_{0}^{\infty} E_{\alpha}(u) \gamma_{1_{n}}(t-u) d u
$$

Now, we have

$$
\begin{align*}
\left\|u_{1}\left(t+\tau_{n}\right)\right\| & \leq \int_{0}^{\infty} \frac{C(\theta, \alpha) M}{1+|\omega| t^{\alpha}}\left\|\gamma_{1_{n}}(t-u)\right\| d u \\
& \leq C(\theta, \alpha) M \frac{|\omega|^{-1 / \alpha} \pi}{\alpha \sin (\pi / \alpha)}\left\|\gamma_{1}\right\|_{\infty} \tag{3.3}
\end{align*}
$$

and since $E_{\alpha}(\cdot) z$ is continuous, we get $E_{\alpha}(t-u) \gamma_{1_{n}}(u) \rightarrow E_{\alpha}(t-u) \overline{\gamma_{1}}(u)$ as $n \rightarrow \infty$ for any $t \geq u$ and for all fixed $u \in \mathcal{R}$. Then by using the Lebesgue's dominated convergence theorem,

$$
u_{1}\left(t+\tau_{n}\right) \rightarrow \overline{u_{1}}(t) \quad \text { as } \quad n \rightarrow \infty \quad \forall t \in R .
$$

By this way we can show that,

$$
\overline{u_{1}}\left(t-\tau_{n}\right) \rightarrow u(t) \quad \text { as } \quad n \rightarrow \infty \quad \forall t \in R .
$$

Therefore $u_{1}(t) \in A A_{\Omega}^{0}(\mathcal{R}, Y)$.
Next we show $v_{1} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$.

$$
\begin{aligned}
\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|v_{1}(t)\right\| d \mu_{1}(t) & =\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|\int_{-\infty}^{t} E_{\alpha}(t-s) \gamma_{2}(s) d s\right\| d \mu_{1}(t) . \\
& =\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]} \int_{-\infty}^{t} \frac{C(\theta, \alpha) M}{1+|\omega|(t-s)^{\alpha}}\left\|\gamma_{2}(s)\right\| d s d \mu_{1}(t) . \\
& =\frac{C M}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]} \int_{0}^{\infty} \frac{\left\|\gamma_{2}(t-s)\right\|}{1+|\omega| s^{\alpha}} d s d \mu_{1}(t) \\
& =\int_{0}^{\infty} \frac{C M}{1+|\omega| s^{\alpha}}\left[\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|\gamma_{2}(t-s)\right\| d \mu_{1}(t)\right] d s .
\end{aligned}
$$

Since $\gamma_{2} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, we find $\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|\gamma_{2}(t-s)\right\| d \mu_{1}(t)=0$ for all $t \in \mathcal{R}$. Therefore $v_{1}(t) \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, by Lebesgue's dominated convergence theorem.

Theorem 3.2. If $G_{1}=H_{1}+H_{2} \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ with $H_{1} \in \mathcal{A} \mathcal{A}_{\Omega}^{o}(\mathcal{R}, Y), H_{2} \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$.
Then $Q_{1}(t)=\int_{-\infty}^{t} E_{\alpha}(t-s) G_{1}(t) d s+\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right)$ is a $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ function.
Proof. From Lemma 3.4, it follows that $\int_{-\infty}^{t} E_{\alpha}(t-s) G_{1}(t) d s \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.
Next we show that $\sum_{i>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$. By Theorem 3.1, $I_{j}\left(z\left(t_{j}\right)\right) \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$. Let $I_{j}\left(z\left(t_{j}\right)\right)=\beta_{j}+\gamma_{j}$, where $\beta_{j} \in \mathcal{A} \mathcal{A}_{S}^{o}(\mathbb{Z}, Y)$ and $\gamma_{j} \in \kappa\left(\mathbb{Z}, Y, \mu_{1}\right)$, then

$$
\begin{aligned}
\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) & =\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) \beta_{j}+\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) \gamma_{j} \\
& =R_{2}(t)+V_{2}(t) .
\end{aligned}
$$

By Lemma 3.3, $R_{2}(t) \in \mathcal{A} \mathcal{A}_{\Omega}^{o}(\mathcal{R}, Y)$. Next to show that $V_{2}(t) \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.
Since $\gamma_{j} \in \kappa\left(\mathbb{Z}, Y, \mu_{1}\right)$, by Lemma 3.2, there exists $g(t)=\gamma_{j}, \quad t \in[j, j+1)$ such that $g \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$ and $g(j)=\gamma_{j}, j \in \mathbb{Z}$. Then,

$$
\begin{aligned}
\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|V_{2}(t)\right\| d \mu_{1} & =\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]}\left\|\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) \gamma_{j}\right\| d \mu_{1} \\
& \leq \frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]} \sum_{t>t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left\|\gamma_{j}\right\| d \mu_{1} \\
& =\frac{1}{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)} \int_{\left[-l_{1}, l_{1}\right]} \frac{C M}{1+|\omega|\left(t-t_{j}\right)^{\alpha}}\|g(t)\| d \mu_{1}
\end{aligned}
$$

$$
=C M\left[\frac{1}{1+|\omega| m_{1}^{\alpha}}+\sum_{n=2}^{\infty} \frac{1}{1+|\omega| n^{\alpha}}\right] \frac{1}{\mu_{1}\left[-l_{1}, l_{1}\right]} \int_{\mu_{1}\left(\left[-l_{1}, l_{1}\right]\right)}\|g(t)\| d \mu_{1}
$$

where $m_{1}=\left\{\min \left(t-t_{j}\right): 0<t-t_{j} \leq 1\right\}$. Since $g(t) \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$, we have $V_{2}(t) \in \kappa\left(\mathcal{R}, Y, \mu_{1}\right)$. Thus $\sum_{i>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.

4. Main results

Here we give the mild solution of our model (1.1).
Definition 4.8. A function $z: \mathcal{R} \rightarrow Y$ is said to be a mild solution of (1.1) if

$$
\begin{equation*}
z(t)=g_{1}(t, z(t))+\int_{-\infty}^{t} E_{\alpha}(t-s) G_{1}(s, z(s)) d s+\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right), \quad \text { for each } t \in \mathcal{R} \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Suppose (H1) - (H3) are satisfied then the model (1.1) has a $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ solution zon \mathcal{R} provided $\left(L_{g}+\frac{C M \pi L_{G_{1}}|\omega|^{1 / \alpha}}{\alpha \sin (\pi / \alpha)}\right)<1$.
Proof. Let $B_{q_{0}}$ be the closed convex and bounded subset of $\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$, where $B_{q_{0}}=\left\{z \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right):\|z\| \leq q_{0}\right\}$.
Now introduce the operator $\Gamma_{1}: B_{q_{0}} \rightarrow \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$ as follows:

$$
\Gamma_{1} z(t)=g_{1}(t, z(t))+\int_{-\infty}^{t} E_{\alpha}(t-s) G_{1}(s, z(s)) d s+\sum_{t>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) .
$$

We decompose $\Gamma_{1}=\Gamma_{1}^{*}+\Gamma_{2}^{*}$ as

$$
\begin{aligned}
& \Gamma_{1}^{*} z(t)=g_{1}(t, z(t))+\int_{-\infty}^{t} E_{\alpha}(t-s) G_{1}(s, z(s)) d s \\
& \Gamma_{2}^{*} z(t)=\sum_{i>t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) .
\end{aligned}
$$

Step 1: For $z \in B_{q_{0}}$ implies $\Gamma_{1}^{*} z, \Gamma_{2}^{*} z \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.
By Lemma 3.4 and Theorem 3.2 we have $\Gamma_{1}^{*} z, \Gamma_{2}^{*} z \in \mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right)$.
Step 2: For $z_{1}, z_{2} \in B_{q_{0}}$ implies $\Gamma_{1}^{*} z_{1}+\Gamma_{2}^{*} z_{2} \in B_{q_{0}}$.

$$
\begin{aligned}
& \left\|\Gamma_{1}^{*} z_{1}(t)+\Gamma_{2}^{*} z_{2}(t)\right\| \\
& =\left\|g_{1}\left(t, z_{1}(t)\right)+\int_{-\infty}^{t} E_{\alpha}(t-s) G_{1}\left(s, z_{1}(s)\right) d s+\sum_{\gg t_{j}} E_{\alpha}\left(t-t_{j}\right) I_{j}\left(z_{2}\left(t_{j}\right)\right)\right\| \\
& \leq\left\|g_{1}\left(t, z_{1}(t)\right)\right\|+\int_{-\infty}^{t}\left\|E_{\alpha}(t-s)\right\|\left\|G_{1}\left(s, z_{1}(s)\right)\right\| d s+\sum_{\gg t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left\|I_{j}\left(z_{2}\left(t_{j}\right)\right)\right\| \\
& \leq\left\|g_{1}\left(t, z_{1}(t)\right)-g_{1}(0,0)\right\|+\left\|g_{1}(0,0)\right\|+\int_{-\infty}^{t} \frac{C M}{1+|\omega|(t-s)^{\alpha}}\left[\left\|G_{1}\left(s, z_{1}(s)\right)-G_{1}(s, 0)\right\|+\left\|G_{1}(s, 0)\right\|\right] d s
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i>t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left[\| I_{j}\left(z_{2}\left(t_{j}\right)-I_{j}(0)\|+\| I_{j}(0) \|\right]\right. \\
\leq & L_{g}\left\|z_{1}\right\|+\left\|g_{1}(0,0)\right\|+\int_{0}^{\infty} \frac{C M}{1+|\omega| s^{\alpha}}\left(L_{G_{1}}\left\|z_{1}\right\|+\left\|G_{1}(s, 0)\right\|\right) d s \\
& +\sum_{i>t_{j}} \frac{C M}{1+|\omega|\left(t-t_{j}\right)^{\alpha}}\left(L_{1}\left\|z_{2}\right\|+\left\|I_{j}(0)\right\|\right) \\
\leq & L_{g} q_{0}+\frac{\pi C M|\omega|^{-\frac{1}{\alpha}}\left(q_{0} L_{G_{1}}+\left\|G_{1}(s, 0)\right\|\right)}{\alpha \sin \left(\frac{\pi}{\alpha}\right)} \\
& +\sum_{i>t_{j}} \frac{C M}{1+|\omega|\left(t-t_{j}\right)^{\alpha}}\left(q_{0} L_{1}+\left\|I_{j}(0)\right\|\right)+\left\|g_{1}(0,0)\right\| \leq q_{0} .
\end{aligned}
$$

Step 3: Γ_{1}^{*} is contraction on $B_{q_{0}}$.
For each $t \in \mathcal{R}$, let $z_{1}, z_{2} \in B_{q_{0}}$ then by (H1), (H3) and (3.2), we have

$$
\begin{aligned}
\left\|\Gamma_{1}^{*} z_{1}(t)-\Gamma_{1}^{*} z_{2}(t)\right\| & \leq\left\|g_{1}\left(t, z_{1}(t)\right)-g_{1}\left(t, z_{2}(t)\right)\right\|+\int_{-\infty}^{t}\left\|E_{\alpha}(t-s)\right\|\left\|G_{1}\left(s, z_{1}(s)\right)-G_{1}\left(s, z_{2}(s)\right)\right\| d s \\
& \leq L_{g}\left\|z_{1}(t)-z_{2}(t)\right\|+\int_{0}^{\infty} \frac{C M}{1+|\omega| s^{\alpha}}\left\|z_{1}(s)-z_{2}(s)\right\| d s \\
& \leq\left[L_{g}+\frac{\pi C M L_{G_{1}}|\omega|^{-\frac{1}{\alpha}}}{\alpha \sin \left(\frac{\pi}{\alpha}\right)}\right]\left\|z_{1}-z_{2}\right\| .
\end{aligned}
$$

Step 4: Γ_{2}^{*} is continuous on $B_{q_{0}}$.
Let $\left\{z^{n}(t)\right\}_{0}^{\infty} \subseteq B_{q_{0}}$ with $z^{n} \rightarrow z$ in $B_{q_{0}}$ then by (H2) and (3.2), we have

$$
\begin{aligned}
\left\|\Gamma_{2}^{*} z^{n}(t)-\Gamma_{2}^{*} z(t)\right\| & \leq \sum_{t>t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left\|I_{j}\left(z^{n}\left(t_{j}\right)\right)-I_{j}\left(z\left(t_{j}\right)\right)\right\| \\
& \leq\left(\sum_{t>t_{j}} \frac{L_{1} C M}{1+|\omega|\left(t-t_{j}\right)^{\alpha}}\right)\left\|z^{n}-z\right\| .
\end{aligned}
$$

As $n \rightarrow \infty, \Gamma_{2}^{*} z^{n} \rightarrow \Gamma_{2}^{*} z$.
Step 5: Γ_{2}^{*} maps bounded sets into bounded sets.
It is enough to prove that for $t>0$, there exist positive constant γ such that, for each $z \in B_{q_{0}}=\{z \in$ $\left.\mathcal{P} \mathcal{A} \mathcal{A}_{\Omega}^{o}\left(\mathcal{R}, Y, \mu_{1}\right):\|z\| \leq q_{0}\right\}$ and we have $\left\|\Gamma_{2}^{*} z\right\| \leq \gamma$. Now for $t \in \mathcal{R}$,

$$
\begin{aligned}
\left\|\Gamma_{2}^{*} z(t)\right\| & \leq \sum_{t>t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left\|I_{j}\left(z\left(t_{j}\right)\right)\right\| \\
& \leq \sum_{t>t_{j}}\left\|E_{\alpha}\left(t-t_{j}\right)\right\|\left\|I_{j}\left(z\left(t_{j}\right)\right)-I_{j}(0)\right\|+\left\|I_{j}(0)\right\|
\end{aligned}
$$

$$
\leq \sum_{t>t_{j}} \frac{C M}{1+|\omega|\left(t-t_{j}\right)^{\alpha}}\left(q_{0} L_{1}+\left\|I_{j}(0)\right\|\right) \|=\gamma .
$$

Step 6: $\Gamma_{2}^{*} z$ maps bounded sets into equi-continuous sets.
Let $z \in B_{q_{0}}$ and for $t_{j}<\tau_{1}<\tau_{2} \leq t_{j+1}$, we receive

$$
\begin{aligned}
\left\|\Gamma_{1} z\left(\tau_{2}\right)-\Gamma_{1} z\left(\tau_{1}\right)\right\|= & \left\|\sum_{\tau_{2}>t_{j}} E_{\alpha}\left(\tau_{2}-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right)-\sum_{\tau_{1}>t_{j}} E_{\alpha}\left(\tau_{1}-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right)\right\| \\
\leq & \| \sum_{-\infty<t_{j}<\tau_{1}} E_{\alpha}\left(\tau_{2}-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right)+\sum_{\tau_{1} \leq t_{j}<\tau_{2}} E_{\alpha}\left(\tau_{2}-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) \\
& -\sum_{-\infty<t_{j}<\tau_{1}} E_{\alpha}\left(\tau_{1}-t_{j}\right) I_{j}\left(z\left(t_{j}\right)\right) \| \\
\leq & \sum_{-\infty<t_{j}<\tau_{1}}\left\|E_{\alpha}\left(\tau_{2}-t_{j}\right)-E_{\alpha}\left(\tau_{1}-t_{j}\right)\right\|\| \| I_{j}\left(z\left(t_{j}\right)\right) \| \\
& +\sum_{\tau_{1} \leq t_{j}<\tau_{2}}\left\|E_{\alpha}\left(\tau_{2}-t_{j}\right)\right\|\| \| I_{j}\left(z\left(t_{j}\right)\right) \| .
\end{aligned}
$$

The right hand side does not depend on z and $\rightarrow 0$ as $\tau_{2} \rightarrow \tau_{1}$. Hence by utilizing the general form of Arzela-Ascoli theorem for equi-continuous function (Diethelm, [20, Theorem D.10]), we find that Γ_{1} is relatively compact. Therefore the operator Γ_{1} is compact. Now, by Theorem 2.7, the model (1.1) admits at least one mild solution.

5. Example

Consider the following model:

$$
\left\{\begin{array}{l}
\partial_{t}^{\alpha}\left[r(t, z)-\varphi\left(\sin \frac{1}{2-\sin t-\sin \pi t} r(t, z)+e^{-t} \sin (r(t, z))\right)\right]=\left(\partial_{t}^{2}-\omega\right)[r(t, z) \tag{5.1}\\
\left.\quad-\varphi\left(\sin \frac{1}{2-\sin t-\sin \pi t} r(t, z)+e^{-t} \sin (r(t, z))\right)\right]+ \\
\quad \partial_{t}^{\alpha-1}\left(\beta\left(\cos \frac{1}{\sin t+\sin \sqrt{2} t} r(t, z)+\frac{\sin (r(t, z))}{1+t^{2}}\right)\right), t>0, t \neq t_{j}, \\
\Delta r\left(t_{j}, z\right)=I_{j}\left(r\left(t_{j}, z\right)\right)=\varrho\left(\sin \frac{1}{2+\sin j} r\left(t_{j}, z\right)+\frac{\cos \left(r\left(t_{j}, z\right)\right)}{1+j^{2}}\right), \quad j=1,2, \ldots,
\end{array}\right.
$$

where β, φ and ϱ are positive constant. Let the Radon-Nikodym derivative ρ of the measure μ_{1} be defined by $\rho(t)=e^{\sin t}$. Clearly μ_{1} satisfy (H). Take $Y=L^{2}([0, \pi])$ and define the operators A by $A \psi=\frac{\partial^{2} \psi}{\partial t^{2}}-\omega \psi, \psi \in D(A)$, where $D(A)=\left\{\psi \in Y: \psi^{\prime \prime} \in Y, \psi(0)=\psi(\pi)\right\} \subset Y$.
Let

$$
\begin{aligned}
& G_{1}(t, z(\varsigma))=\beta\left(\cos \frac{1}{\sin t+\sin \sqrt{2} t} z(\varsigma)+\frac{\sin (z(\varsigma))}{1+t^{2}}\right), \\
& g_{1}(t, z(\varsigma))=\varphi\left(\sin \frac{1}{2-\sin t-\sin \pi t} z(\varsigma)+e^{-t} \sin (z(\varsigma))\right), \\
& I_{j}(z(\varsigma))=\varrho\left(\sin \frac{1}{2+\cos j} z(\varsigma)+\frac{\cos (z(\varsigma))}{1+j^{2}}\right)
\end{aligned}
$$

It is not difficult to see that the function G_{1}, g_{1} and I_{j} are continuous function and $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ in t.

$$
\begin{aligned}
\| G_{1}\left(t, z_{1}\right)- & G_{1}\left(t, z_{2}\right) \|_{2}^{2} \leq \int_{0}^{\pi}|\beta|^{2}\left|\cos \frac{1}{\sin t+\sin \sqrt{2} t}\right|^{2}\left|z_{1}(v)-z_{2}(v)\right|^{2} \\
& +|\beta|^{2}\left|\frac{1}{1+t^{2}}\right|^{2}\left|\sin \left(z_{1}(v)\right)-\sin \left(z_{2}\right)(v)\right|^{2} d v \\
\leq & \left.\left.|\beta|^{2}| | \cos \frac{1}{\sin t+\sin \sqrt{2} t}\right|^{2}+\left|\frac{1}{1+t^{2}}\right|^{2}\right]\left[\mid\left\|z_{1}-z_{2}\right\|_{2}^{2}\right]
\end{aligned}
$$

Hence

$$
\left\|G_{1}\left(t, z_{1}\right)-G_{1}\left(t, z_{2}\right)\right\|_{2} \leq 2|\beta|\left[\left\|z_{1}-z_{2}\right\|_{2}\right] .
$$

Also

$$
\begin{aligned}
\left\|g_{1}\left(t, z_{1}\right)-g_{1}\left(t, z_{2}\right)\right\|_{2}^{2} \leq & \int_{0}^{\pi}|\varphi|^{2}\left|\sin \frac{1}{2-\sin t-\sin \pi t}\right|^{2}\left|z_{1}(\varsigma)-z_{2}(\varsigma)\right|^{2} \\
& +|\varphi|^{2}\left|e^{-t}\right|^{2}\left|\sin z_{1}(\varsigma)-\sin z_{2}(\varsigma)\right|^{2} d \varsigma \\
\left\|g_{1}\left(t, z_{1}\right)-g_{1}\left(t, z_{2}\right)\right\|_{2} \leq & 2|\varphi|\left\|z_{1}-z_{2}\right\|_{2} .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\left\|I_{j}\left(z_{1}\right)-I_{j}\left(z_{2}\right)\right\|_{2}^{2} & \leq \int_{0}^{\pi}|\varrho|^{2}\left|\sin \frac{1}{2+\cos j}\right|^{2}\left|z_{1}(v)-z_{2}(v)\right|^{2}+\left|\frac{\cos r\left(t_{j}, z\right)}{1+j^{2}}\right|^{2} \\
& \left|\cos \left(z_{1}(v)\right)-\cos \left(z_{2}\right)(v)\right|^{2} d v \\
& \leq|\varrho|^{2}\left[\left|\sin \frac{1}{2+\cos j}\right|^{2}+\left|\frac{1}{1+j}\right|^{2}\right]\left\|z_{1}-z_{2}\right\|_{2}^{2} .
\end{aligned}
$$

Hence

$$
\left\|I_{j}\left(z_{1}\right)-I_{j}\left(z_{2}\right)\right\|_{2} \leq 2|\varrho|\left\|z_{1}-z_{2}\right\|_{2} .
$$

Thus G_{1}, g_{1}, I_{j} satisfies Lipschitz conditions with $L_{G_{1}}=2|v|=1 / 10, L_{g}=2|\varphi|=1 / 10, L_{l}=2|\varrho|=$ $1 / 10$. Let $\omega=-1$ and $\alpha=5 / 4$, then $\left(L_{g}+\frac{C M \pi L_{G_{1}}|\omega|^{1 / \alpha}}{\alpha \sin (\pi / \alpha)}\right)=0.5276<1$. Therefore by Theorem 4.1, the model (5.1) has $\mu_{1}-\mathcal{P} \mathcal{A} \mathcal{A}$ mild solution.

6. Conclusions

In this paper, we investigate many important results on the new theory of measure pseudo almost automorphic functions with impulses. Those results have an important impact on the theory of systems. Numerous researchers are particularly involved in discussing the existence, stability and controllability results for various systems under different hypotheses. We assure that, these existence results can be further extended to stepanov type measure pseudo almost periodic and automorphic functions for integer and non-integer systems.

Conflict of interest

The authors declare no conflict of interest.

References

1. S. Abbas, L. Mahto, M. Hafayed, A. M. Alimi, Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients, Neurocomputing, 142 (2014), 326334.
2. S. Abbas, V. Kavitha, R. Murugesu, Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations, P. Indian AS-Math. Sci., 125 (2015), 323351.
3. D. D. Bainov, P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific Singapore, 1995.
4. J. Blot, G. M. Mophou, G. M. N'Guérékata, D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal., 71 (2009), 903-909.
5. J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications, Nonlinear Anal,, 75 (2012), 2426-2447.
6. S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, P. Natl. A. Sci. India. B., 52 (1964), 907-910.
7. H. Bohr, Almost-Periodic Functions, Chelsea, reprint, 1947.
8. Y. K. Chang, M. M. Arjunan, G. M. N'Guérékata, V. Kavitha, On global solutions to fractional functional differential equations with infinite delay in Fréchet spaces, Comput. Math. Appl., 62 (2011), 1228-1237.
9. Y. K. Chang, X. X. Luo, Existence of μ-pseudo almost automorphic solutions to a neutral differential equation by interpolation theory, Filomat, 28 (2014), 603-614.
10. Y. K. Chang, G. M. N'Guérékata, R. Zhang, Stepanov-like weighted pseudo almost automorphic functions via measure theory, B. Malays. Math. Sci. So., 3 (2015), 1005-1041.
11. Y. K. Chang, T. W. Feng, Properties on measure pseudo almost automorphic functions and applications to fractional differential equations in Banach spaces, Electronic J. Differ. Eq., 2018 (2018), 1-14.
12. P. Chen, X. Zhang, Y. Li, Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families, J. Fixed Point Theory Appl., 21 (2019). Available from: https://doi.org/10.1007/s11784-019-0719-6.
13. P. Chen, X. Zhang, Y. Li, Non-autonomous evolution equations of parabolic type with noninstantaneous impulses, Mediterr. J. Math., 16 (2019). Available from: https://doi.org/10.1007/s00009-019-1348-0.
14. P. Chen, X. Zhang, Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ. Oper., 10 (2019), 955-973.
15. P. Chen, X. Zhang, Y. Li, Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14 (2020), 559-584.
16. P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Frac. Calc. Appl. Anal., 23 (2020), 268-291.
17. P. Chen, X. Zhang, Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 1-16.
18. A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
19. E. Cuesta, Asymptotic bahaviour of the solutions of fractional integrodifferential equations and some time discretizations, Discrete Continuum Dynamics Systems(Supplement) (2007), 277-285.
20. K. Diethelm, The Analysis of Fractional Differential Equations, Springer, New York, 2010.
21. V. Kavitha, S. Abbas, R. Murugesu, (μ_{1}, μ_{2})-pseudo almost automorphic solutions of fractional order neutral integro-differential equations, Nonlinear Studies, 24 (2017), 669-685.
22. M. A. Krasnoselskii, P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984.
23. M. Lakshman, S. Abbas, PC-almost automorphic solution of impulsive fractional differential equations, Mediterr. J. Math., 12 (2015), 771-790.
24. V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses (in Russian), Siberian Math. J., 1 (1960), 233-237.
25. C. Wang, R. P Agarwal, Weighted piecewise pseudo almost automorphic functions with applications to abstract impulsive ∇-dynamic equations on time scales, Advances in Difference Equations, (2014). Available from: https://doi.org/10.1186/1687-1847-2014-153.
26. Z. Xia, D. Wang, Measure pseudo almost periodic mild solutions of stochastic functional differential equations with Levy noise, J. Nonlinear Convex A., 18 (2017), 847-858.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

