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Abstract: Let G be a molecular graph, the eccentricity e(w) of the vertex w in G is the maximum
distance of w from any other vertex of G. The non-self-centrality number (NSC) of a graph G is defined
by N(G) = },... le(w) — e(z)|, where summation goes over all the unordered pairs of vertices of G. We
determine non-self-centrality number of 7UC,Cs and V-phenylenic nanotubes in this paper.
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1. Introduction

Let G be a connected graph with vertex set V(9) and edge set £(9). Two adjacent vertices w, z € V(9)
are denoted by wz (or zw). The order (resp. size) of G is [V(9)| (resp. |E(9)|). The distance between
w and z in G is the length of a shortest path connecting w and z and is denoted by dg(w, z). For a
vertex w € V(9), its eccentricity is defined as eq(w) = max{dg(w,z) | z € V(9)}. For convenience,
we can denote the eccentricity of w € G by e(w) if no ambiguity occurs. Furthermore, the minimum
eccentricity over all the vertices of a graph G is called its radius of § denoted by r(§). Similarly, the
maximum eccentricity over all the vertices of a graph G is called diameter of G denoted by d(G). A
vertex w € V(9) is said to be diametrical (resp. central) vertex of G if e(w) = d(9) (resp. e(w) = r(9)).
Moreover, the periphery P(G) of a graph G is defined as

P(G) = {w e V(9) | e(w) = d(9)}.

Whereas, center of a graph G is the subgraph induced by the central vertices of §. The neighborhood
Ng(w) of a vertex w € V(9) is defined as Ng(w) = {z € V(9) | wz € £(9)}. The degree deg(w) of a
vertex w in G is the number |[Ng(w)|. A connected graph is called self-centered if the eccentricities of
all the vertices are equal; otherwise, G is called a non-self-centered graph, shown in Figure 1.
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Figure 1. Graphs labeled with vertex eccentricities.

A molecular graph G represents a chemical compound. A topological index is a numerical parameter
of a molecular graph G which characterizes the properties of §. Topological indices can be divided into
many classes; some of them are degree-based, eccentricity-based, and distance-degree-based indices.

Recently, Xu et al. [7] introduced a new graphic invariant for indicating the non-self centrality of
the graph more efficiently. This invariant was named as non-self centrality number (henceforth, NSC)
of a graph G, which is given by

NG = D lew) - e, (1.1)
W#Z
where sum is over all vertex pair of vertices of a graph G. For non-self-centered graph G, the
formula (1.1) was further simplified using the eccentricity sequence of the graph. If the eccentricity e;
appears /; > 1 times in G we write, eﬁ" in short. Let us assume that ¢; > ¢, > --- > ¢; be the distinct
eccentricities of G with [,, I, ..., [; be their respective multiplicities. Then the eccentricity sequence is
L9 = {ell1 , elzz, e eﬁf}. Therefore, the NSC number of G can be written as

N©) = ) llei—e). (1.2)
1<i<j<k
We refer [4] to the readers for some more results on NSC number. By graph structure, we can easily
calculate the eccentricities of its vertices. When the eccentricities of vertices of a graph are known,
the eccentricity sequence can easily be obtained. Therefore, we will write directly the eccentricity
sequences of graphs in this paper.

Ashrafi et al. [3] computed the eccentric-connectivity index of 7UC4Cs nanotubes and nanotori.
Also Kwun et al. [5] computed M-polynomials and topological indices like Zagreb indices of V-
phenylenic nanotubes and nanotori. For further details, we refer [1, 2, 6]. Heretofore, NSC number is
considered for finite family of graphs [7, 4]. It motivates us to consider NSC number of infinite family
of graphs. In this paper, we calculate NSC number of 7TUC4Cg and V-phenylenic nanotubes.

2. V-phenylenic nanotubes

Here we compute the non-self centrality number of V-phenylenic nanotubes. An infinite structure
of V-phenylenic nanotubes and nanotori is made by alternating C,, Cg and Cg cycles. The arrangement
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of C4, C¢ and Cg cycles in V-phenylenic structure is such that C4 ring is attached to two Cg rings and
also each Cy is attached to two Cg rings. We will denote the V-phenylenic nanotubes by G|[#, f], where
f and h are the number of columns and rows, respectively, as shown in the Figures 2 and 3. Consider

X = {z € V(G[h, f]) | deg(z) = 2},

and
Y = {z € V(G[h, f]) | deg(z) = 3}.

Figure 3. G5, 6].

Then |X| = 2h and |Y| = 6hf — 2h. From the structure of G[A, f], we notice that there are two types
of edges given by
&1 ={wz € V(Glh, f]) | deg(w), deg(z) = (2,3)}
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and
&y = {wz € V(Glh, f]) | (deg(w),deg(2)) = (3,3)}.

It is easy to see that |€| = 4h and |E;,| = A(9f — 5). Hence, |E] = |E]| + |E2] = A(9f — 1) is the number
of total edges in G[h, f].

Before moving to the main results, it is important to know that structure of V-phenylenic nanotube
is symmetric and hence it can be divided into two halves as shown in Figure 2. Whereas, we can also
divide the structure into two different classes depending on # and f. When h < 2f we get a vertical
structure shown in Figure 3, while we obtain a horizontal structure for 2 > 2f. Now let us begin with
the following result:

Lemma 1. For f > 2 the diameter of G[h, f] is

§+4f—1 h <2f and h is even

%+4f if h <2f and h is odd

d(GIh. f]) = 2.1
(@lh. 1D & +2f-1 ifh>2fandhiseven @D

3(h=1) . '
=—+2f ifh>2fandhisodd.

Proof. Let w; and z;, 1 < i, j < h, be the peripheral vertices in G[h, f], as shown in Figure 2. We can
partition E(G[h, f]) into three classes; horizontal, oblique and vertical edges. Now if 7 < 2f and h is
an even integer then, to find the diameter we have to find the path’s length that connects two vertices of
X. Let w; be the vertex with an eccentric vertex z; in G[h, f], shown in Figure 2. For j < (g +1i), length
of a shortest w;, z;-path contains 2 f oblique, (2f — 1) vertical and j — 1 horizontal edges. Therefore,

deinp(wi,zj) =4f + j—2.

Similarly, for j = (% +1), the length of a shortest w;, z;-path contains exactly 2 — 1 vertical, 2 f oblique
and % horizontal edges. Therefore,

h
dG[h,f](WiaZj) = E + 4f— 1.

Now for j > (g +1), the length of the shortest w;, z;-path contains 2 f oblique, (2f — 1) vertical and 4 — j
horizontal edges. Therefore,

doinpf(Winzj)) =4f +h—J.

From the above discussion and Figure 2, it is observed that dg, s1(Wi, 7;) = g +4f — 1 is the maximum
distance. Therefore, d(G[h, f]) = % +4f—1.

Similarly, in case of odd A, we choose w; and z;, where z; € X U Y, such that dgp, ;1(w;, 7)) is
maximum. We need 2f oblique edges, 2f — 1 vertical edges and % horizontal edges to connect w; and
z;. Hence, the diameter is given by d(Gl[h, f]) = % + 4 f. In similar manner, we can find the diameter
of G[h, f] when h < 2f.
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Theorem 2. For f > 2, we have

2 F13f% + 1] ifh>2f-1
and A is even

6fh*(f + 1)(f-1) ifh>2f—-1
and h is odd

R6f3 +122f —216] ifh=2f-2
N(Glh, f] = orh=2f-1
4h? 2f3+§(2f2—5) ifh<2f-2

and f is even

4n*3f° - f] ifh<2f-2
and f is odd.

Proof. We discuss five possible cases:
Casel: h>2f — 1 and h is even.
Here we have

L(Glh fD) = {ef"ef,....ef". el
Using formula (1.2), the NSC number of G4, f] is given by
N(GIh, f1) =[2h)(4h) + R)(Eh)(2) + -+ +

QCh)(6R)(f)] + [(4h)(4h) + . ..
+ (@) OM(f = D] + - - + [(4h)(6h)].

After simplification, we get

N(G[h, 1) = 18K f> — 10K*f + 6K f(f — 1)(f = 2)
=20 f[3f% + 1].

Case2: h>2f —1and his odd.
In this case, we have

L(Glh. f1) = (e e, ef).
Using (1.2), the NSC number of T'[A, f] is given by
N(Glh, 1) = 18R fP[(DQ) + -+ + (f = 2)(f = 1)

+ f(f = 1]
= 6R*f(f + D(f - 1).

Case3: he {2f-2,2f —1}.
The eccentricity sequence of G[h, f] in this case is given by

Oh 4h Ah 2k 2h 6h 6h 4k
{(Glh, f]) =le", €5, €5, ey, €5, e ,...,ef+2,ef+3}.

(2.2)

(2.3)
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Using formula (1.2), the NSC number of G[A, f] is given by

N(GIh, f1) =2h[4h + 4h{2} + 2h{3} + 2h{4)
+ 6h{5} + 6h{6} + - - - + 6h{f + 1}
+4h{f +2)] +4h[4h+2h{ )
+ 2h{3} + 6h{4} + 6h{5} + - - - + 6h{f}
+4h{f + 1}] + 4h[2h + 2h{2}
+ 6h{3} + 6h{4} + --- + 6h{f — 1}
+ 4h{f}] + 2h[2h + 6h{2} + 6h{3}
4+ 6h{f — 2} + 4h{f — 1}]
+ 2h[6h + 6h{2} + 6Rh{3} +
+ 6h{f — 3} + 4h{f — 2}]
+ 6h[6h + 6h{2} + 6Rh{3} +
+ 6h{f — 4} + 4h{f — 3}]
+ 6h[6h + 6h{2} + 6h{3} +
+ Oh{f — 5} + 4h{f — 4}] +
+ 6h[6h + 4h{2}] + 6h[4h].

After simplification, we obtain:
N(G[h, 1) = W*[6f° + 122f — 216]. (2.4)

Cased4: h <2f —2and f is even.
In this case, for G[A, f] we have

LGlh, f]) = fet',ed e3 ed' e, ..., e;‘ﬁi 2 e;”; 1> e%’}}
Using formula (1.2), the NSC number of G[A, f] is given by

N(G[h, f]) = 4h2([(2f_2ﬂ +(1+2+5+6

+ --+(2f—3)+(2f—2))]

R
2

c+Qf-H+Qf =)

BEEEE

et Qf =54 Cf - 4)|

NEELCEE
2

+(1+4+5+

+B+4+7+

+2+3+6+
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" ~+<2f—6>+<2f—5>>]

+[(2f_5)2(2f_4) +(1+2+5+6
bk Qf =) +Qf - 6)
+ [3(3; D +(1+ 2)] +

F57 o]+

After simplification we get
N(GIh, D) = 4|2/ + g(z -3
Case5: h <2f —2and fis odd.
In this case, the eccentricity sequence of G[A, f] is given by
L(Glh, f]) = fet',e),e3 el e, ..., e%ﬁ 2 eg}; 1> egl}}

By formula (1.2), the NSC number of G[h, f] is given by

N(GIh, f]) = 2h[4h + 4h{2} + 2h{3} + 2h{4}
+ 4h{5} + 4h{6} + - - - + 2h{2f — 3}
+2h{2f — 2} + 4h{2f — 1}] + 4h
[4h + 2h{2} + 2h{3} + 4h{4} + 4h{5)

-+ 2h{2f — 4} + 2h{2f - 3}
+4h{2f — 2)] + 4h[2h + 2h{2}

+4h{3}+4h{ b4+ 20{2f - 5)

+2h{2f — 4} + 4h{2f — 3}] + 2h[2h

+ 4h{2 }+4h{} .-+ 2h{2f — 6}

+2h{2f — S} + 4h{2f —4)] +

+ 2h[2h + 4h{2} + 4h{3} + 2h{4)}

+ 2h{5} + 4h{6}] + 2h[4h

+ 4h{2} + 2h{3} + 2h{4} + 4h{5}] + 4h

[4h + 2h{2} + 2h{3} + 4h{4}] + 4h

[2h + 2h{2} + 4h{3}] + 2h[2h

+ 4h{2}] + 2h[4h].

Simplifying above, we obtain
N(Glh, f1) = 4r°[3f° = f].

This completes the proof.

(2.5)

(2.6)

O
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Remark. For V-phenylenic nanotori, the graph become self-centered. Therefore non-self-centrality
number of V-phenylenic nanotori is zero.

3. TUC,Cs nanotubes

In this section, we compute the non-self centrality number of 7UC4Cg nanotubes. In the structure
of TUC,4Cg nanotube, every Cy4 cycle is adjacent to four Cg cycles. We will denote TUC,Cg nanotube
by G[u, v], where s is the number of octagons in a fixed row and ¢ denotes the sum of C4 and Cjs cycles
in a fixed column (see Figure 4).

Figure 4. 2-D and 3-D structure of 7TUC,Cg Nanotube.

Consider
X ={w e V(G[s,t]) | deg(w) = 2},

Y = {w e V(G[s,1]) | deg(w) = 3}.

Then |X| = 4s and |Y| = 4st. Also
|E(Gs, t])| = 25(3t + 2).

Remark. The graph G[s, t] becomes self-centered for t = 1. Therefore the non-self-centrality number
of G[s, 1] is zero.
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Theorem 3. Assume that s > 2 and 7 is an odd integer. Then the NSC number of 7'U C4Cg nanotube is
given by

2
N(Gls,t]) = %(f + 1)(t + 2). 3.1

Proof. The eccentricity sequence of G[s, f] is given by
{(G[S’ t]) = {641”, egsa e ,e?S’ e;lhil} (32)
Using formula (1.2) the NSC of G[s, t] is given by

168°[1+2+3+---+ ()] + 1657[1 +
2434+ (t—D]+ 165 [1 +2+3
ot (t=2)] 4+ 1657[1 + 2] + 1647
= 165 1-242-3+---+(t—1)2)
+(0)(1 + 1)]

2
- %t(m )t +2),

N(G[s, 1)

This completes the proof.

Remark. The graph of TUC,Cg nanotori, shown in Figure 5, is self-centered. Therefore non-self-
centrality number of nanotori is zero.
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Figure 5. TUC,Cg nanotori.

4. Conclusions

In this paper, we computed general formulas for the non-self-centrality number of V-Phenylenic
and TUC4Cg(R) nanotubes. For future study, we can calculate the non-self-centrality number of other
molecular structures such as a-Boron nanotubes, some layer structures and dendrimers.
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