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Abstract: Let G be a molecular graph, the eccentricity e(w) of the vertex w in G is the maximum
distance of w from any other vertex of G. The non-self-centrality number (NSC) of a graph G is defined
by N(G) =

∑
w,z |e(w) − e(z)|, where summation goes over all the unordered pairs of vertices of G. We

determine non-self-centrality number of TUC4C8 and V-phenylenic nanotubes in this paper.
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1. Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). Two adjacent vertices w, z ∈ V(G)
are denoted by wz (or zw). The order (resp. size) of G is |V(G)| (resp. |E(G)|). The distance between
w and z in G is the length of a shortest path connecting w and z and is denoted by dG(w, z). For a
vertex w ∈ V(G), its eccentricity is defined as eG(w) = max{dG(w, z) | z ∈ V(G)}. For convenience,
we can denote the eccentricity of w ∈ G by e(w) if no ambiguity occurs. Furthermore, the minimum
eccentricity over all the vertices of a graph G is called its radius of G denoted by r(G). Similarly, the
maximum eccentricity over all the vertices of a graph G is called diameter of G denoted by d(G). A
vertex w ∈ V(G) is said to be diametrical (resp. central) vertex of G if e(w) = d(G) (resp. e(w) = r(G)).
Moreover, the periphery P(G) of a graph G is defined as

P(G) = {w ∈ V(G) | e(w) = d(G)}.

Whereas, center of a graph G is the subgraph induced by the central vertices of G. The neighborhood
NG(w) of a vertex w ∈ V(G) is defined as NG(w) = {z ∈ V(G) | wz ∈ E(G)}. The degree deg(w) of a
vertex w in G is the number |NG(w)|. A connected graph is called self-centered if the eccentricities of
all the vertices are equal; otherwise, G is called a non-self-centered graph, shown in Figure 1.
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Figure 1. Graphs labeled with vertex eccentricities.

A molecular graph G represents a chemical compound. A topological index is a numerical parameter
of a molecular graph G which characterizes the properties of G. Topological indices can be divided into
many classes; some of them are degree-based, eccentricity-based, and distance-degree-based indices.

Recently, Xu et al. [7] introduced a new graphic invariant for indicating the non-self centrality of
the graph more efficiently. This invariant was named as non-self centrality number (henceforth, NSC)
of a graph G, which is given by

N(G) =
∑
w,z

|e(w) − e(z)|, (1.1)

where sum is over all vertex pair of vertices of a graph G. For non-self-centered graph G, the
formula (1.1) was further simplified using the eccentricity sequence of the graph. If the eccentricity ei

appears li ≥ 1 times in G we write, eli
i in short. Let us assume that e1 > e2 > · · · > ek be the distinct

eccentricities of G with l1, l2, ..., lk be their respective multiplicities. Then the eccentricity sequence is
ζ(G) = {el1

1 , e
l2
2 , . . . , e

lk
k }. Therefore, the NSC number of G can be written as

N(G) =
∑

1≤i< j≤k

lil j(ei − e j). (1.2)

We refer [4] to the readers for some more results on NSC number. By graph structure, we can easily
calculate the eccentricities of its vertices. When the eccentricities of vertices of a graph are known,
the eccentricity sequence can easily be obtained. Therefore, we will write directly the eccentricity
sequences of graphs in this paper.

Ashrafi et al. [3] computed the eccentric-connectivity index of TUC4C8 nanotubes and nanotori.
Also Kwun et al. [5] computed M-polynomials and topological indices like Zagreb indices of V-
phenylenic nanotubes and nanotori. For further details, we refer [1, 2, 6]. Heretofore, NSC number is
considered for finite family of graphs [7, 4]. It motivates us to consider NSC number of infinite family
of graphs. In this paper, we calculate NSC number of TUC4C8 and V-phenylenic nanotubes.

2. V-phenylenic nanotubes

Here we compute the non-self centrality number of V-phenylenic nanotubes. An infinite structure
of V-phenylenic nanotubes and nanotori is made by alternating C4, C6 and C8 cycles. The arrangement
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of C4, C6 and C8 cycles in V-phenylenic structure is such that C4 ring is attached to two C6 rings and
also each C4 is attached to two C8 rings. We will denote the V-phenylenic nanotubes by G[h, f ], where
f and h are the number of columns and rows, respectively, as shown in the Figures 2 and 3. Consider

X = {z ∈ V(G[h, f ]) | deg(z) = 2},

and
Y = {z ∈ V(G[h, f ]) | deg(z) = 3}.

w 1 w 2
w 3 w 4 w 5 w 6 w 7

w 8

z1 z2 z3 z4 z5 z6 z7 z8

Figure 2. G[8, 4].

u

v

Figure 3. G[5, 6].

Then |X| = 2h and |Y | = 6h f − 2h. From the structure of G[h, f ], we notice that there are two types
of edges given by

E1 = {wz ∈ V(G[h, f ]) | deg(w), deg(z) = (2, 3)}

AIMS Mathematics Volume 6, Issue 8, 8342–8351.
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and

E2 = {wz ∈ V(G[h, f ]) | (deg(w), deg(z)) = (3, 3)}.

It is easy to see that |E1| = 4h and |E2| = h(9 f − 5). Hence, |E| = |E1| + |E2| = h(9 f − 1) is the number
of total edges in G[h, f ].

Before moving to the main results, it is important to know that structure of V-phenylenic nanotube
is symmetric and hence it can be divided into two halves as shown in Figure 2. Whereas, we can also
divide the structure into two different classes depending on h and f . When h < 2 f we get a vertical
structure shown in Figure 3, while we obtain a horizontal structure for h > 2 f . Now let us begin with
the following result:

Lemma 1. For f ≥ 2 the diameter of G[h, f ] is

d(G[h, f ]) =



h
2 + 4 f − 1 h ≤ 2 f and h is even
h−3

2 + 4 f if h ≤ 2 f and h is odd
3h
2 + 2 f − 1 if h > 2 f and h is even

3(h−1)
2 + 2 f if h > 2 f and h is odd.

(2.1)

Proof. Let wi and z j, 1 ≤ i, j ≤ h, be the peripheral vertices in G[h, f ], as shown in Figure 2. We can
partition E(G[h, f ]) into three classes; horizontal, oblique and vertical edges. Now if h ≤ 2 f and h is
an even integer then, to find the diameter we have to find the path’s length that connects two vertices of
X. Let wi be the vertex with an eccentric vertex z j in G[h, f ], shown in Figure 2. For j <

(h
2 + i

)
, length

of a shortest wi, z j-path contains 2 f oblique, (2 f − 1) vertical and j − 1 horizontal edges. Therefore,

dG[h, f ](wi, z j) = 4 f + j − 2.

Similarly, for j =
(h

2 + i
)
, the length of a shortest wi, z j-path contains exactly 2 f −1 vertical, 2 f oblique

and h
2 horizontal edges. Therefore,

dG[h, f ](wi, z j) =
h
2

+ 4 f − 1.

Now for j >
(h

2 + i
)
, the length of the shortest wi, z j-path contains 2 f oblique, (2 f −1) vertical and h− j

horizontal edges. Therefore,

dG[h, f ](wi, z j) = 4 f + h − j.

From the above discussion and Figure 2, it is observed that dG[h, f ](wi, z j) = h
2 + 4 f − 1 is the maximum

distance. Therefore, d(G[h, f ]) = h
2 + 4 f − 1.

Similarly, in case of odd h, we choose wi and z j, where z j ∈ X ∪ Y , such that dG[h, f ](wi, z j) is
maximum. We need 2 f oblique edges, 2 f −1 vertical edges and h−1

2 horizontal edges to connect wi and
z j. Hence, the diameter is given by d(G[h, f ]) = h−3

2 + 4 f . In similar manner, we can find the diameter
of G[h, f ] when h < 2 f .
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Theorem 2. For f ≥ 2, we have

N(G[h, f ]) =



2h2 f [3 f 2 + 1] if h > 2 f − 1
and h is even

6 f h2( f + 1)( f − 1) if h > 2 f − 1
and h is odd

h2[6 f 3 + 122 f − 216] if h = 2 f − 2
or h = 2 f − 1

4h2
[
2 f 3 + s

2 (2 f 2 − 5)
]

if h < 2 f − 2

and f is even

4h2[3 f 3 − f
]

if h < 2 f − 2
and f is odd.

(2.2)

Proof. We discuss five possible cases:
Case 1: h > 2 f − 1 and h is even.
Here we have

ζ(G[h, f ]) = {e2h
1 , e

6h
2 , . . . , e

6h
f , e

4h
f +1}.

Using formula (1.2), the NSC number of G[h, f ] is given by

N(G[h, f ]) =
[
(2h)(4h) + (2h)(4h)(2) + · · ·+

(2h)(6h)( f )
]
+

[
(4h)(4h) + . . .

+ (4h)(6h)( f − 1)
]
+ · · · +

[
(4h)(6h)

]
.

After simplification, we get

N(G[h, f ]) = 18h2 f 2 − 10h2 f + 6h2 f ( f − 1)( f − 2)
= 2h2 f [3 f 2 + 1].

Case 2: h > 2 f − 1 and h is odd.
In this case, we have

ζ(G[h, f ]) = {e6h
1 , e

6h
2 , . . . , e

6h
f }.

Using (1.2), the NSC number of T [h, f ] is given by

N(G[h, f ]) = 18h2 f 2[(1)(2) + · · · + ( f − 2)( f − 1)
+ f ( f − 1)]
= 6h2 f ( f + 1)( f − 1).

Case 3: h ∈ {2 f − 2, 2 f − 1}.
The eccentricity sequence of G[h, f ] in this case is given by

ζ(G[h, f ]) ={e2h
1 , e

4h
2 , e

4h
3 , e

2h
4 , e

2h
5 , e

6h
6 , . . . , e

6h
f +2, e

4h
f +3}. (2.3)
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Using formula (1.2), the NSC number of G[h, f ] is given by

N(G[h, f ]) =2h
[
4h + 4h{2} + 2h{3} + 2h{4}

+ 6h{5} + 6h{6} + · · · + 6h{ f + 1}
+ 4h{ f + 2}

]
+ 4h

[
4h + 2h{2}

+ 2h{3} + 6h{4} + 6h{5} + · · · + 6h{ f }

+ 4h{ f + 1}
]
+ 4h

[
2h + 2h{2}

+ 6h{3} + 6h{4} + · · · + 6h{ f − 1}
+ 4h{ f }

]
+ 2h

[
2h + 6h{2} + 6h{3}

+ · · · + 6h{ f − 2} + 4h{ f − 1}
]

+ 2h
[
6h + 6h{2} + 6h{3} + . . .

+ 6h{ f − 3} + 4h{ f − 2}
]

+ 6h
[
6h + 6h{2} + 6h{3} + . . .

+ 6h{ f − 4} + 4h{ f − 3}
]

+ 6h
[
6h + 6h{2} + 6h{3} + . . .

+ 6h{ f − 5} + 4h{ f − 4}
]
+ . . .

+ 6h
[
6h + 4h{2}

]
+ 6h

[
4h

]
.

After simplification, we obtain:

N(G[h, f ]) = h2[6 f 3 + 122 f − 216]. (2.4)

Case 4: h < 2 f − 2 and f is even.
In this case, for G[h, f ] we have

ζ(G[h, f ]) = {e2h
1 , e

4h
2 , e

4h
3 , e

2h
4 , e

2h
5 , . . . , e

4h
2 f−2, e

4h
2 f−1, e

2h
2 f }.

Using formula (1.2), the NSC number of G[h, f ] is given by

N(G[h, f ]) = 4h2
([ (2 f − 1)(2 f )

2
+ (1 + 2 + 5 + 6

+ · · · + (2 f − 3) + (2 f − 2))
]

+2
[ (2 f − 2)(2 f − 1)

2
+ (1 + 4 + 5 +

· · · + (2 f − 4) + (2 f − 3))
]

+2
[ (2 f − 3)(2 f − 2)

2
+ (3 + 4 + 7 +

8 + · · · + (2 f − 5) + (2 f − 4))
]

+

[ (2 f − 4)(2 f − 3)
2

+ (2 + 3 + 6 +

AIMS Mathematics Volume 6, Issue 8, 8342–8351.
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7 + · · · + (2 f − 6) + (2 f − 5))
]

+

[ (2 f − 5)(2 f − 4)
2

+ (1 + 2 + 5 + 6

+ · · · + (2 f − 7) + (2 f − 6))
]

+ · · · +

[3(3 + 1)
2

+ (1 + 2)
]

+

2
[2(2 + 1)

2
+ (1)

]
+ 2

[1(1 + 1)
2

])
.

After simplification we get

N(G[h, f ]) = 4h2
[
2 f 3 +

f
2

(2 f 2 − 5)
]
. (2.5)

Case 5: h < 2 f − 2 and f is odd.
In this case, the eccentricity sequence of G[h, f ] is given by

ζ(G[h, f ]) = {e2h
1 , e

4h
2 , e

4h
3 , e

2h
4 , e

2h
5 , . . . , e

2h
2 f−2, e

2h
2 f−1, e

4h
2 f }.

By formula (1.2), the NSC number of G[h, f ] is given by

N(G[h, f ]) = 2h[4h + 4h{2} + 2h{3} + 2h{4}
+ 4h{5} + 4h{6} + · · · + 2h{2 f − 3}
+ 2h{2 f − 2} + 4h{2 f − 1}] + 4h

[4h + 2h{2} + 2h{3} + 4h{4} + 4h{5}
+ · · · + 2h{2 f − 4} + 2h{2 f − 3}
+ 4h{2 f − 2}] + 4h[2h + 2h{2}
+ 4h{3} + 4h{4} + · · · + 2h{2 f − 5}
+ 2h{2 f − 4} + 4h{2 f − 3}] + 2h[2h

+ 4h{2} + 4h{3} + · · · + 2h{2 f − 6}
+ 2h{2 f − 5} + 4h{2 f − 4}] + . . .

+ 2h[2h + 4h{2} + 4h{3} + 2h{4}
+ 2h{5} + 4h{6}] + 2h[4h

+ 4h{2} + 2h{3} + 2h{4} + 4h{5}] + 4h

[4h + 2h{2} + 2h{3} + 4h{4}] + 4h

[2h + 2h{2} + 4h{3}] + 2h[2h

+ 4h{2}] + 2h[4h].

Simplifying above, we obtain

N(G[h, f ]) = 4h2[3 f 3 − f
]
. (2.6)

This completes the proof. �

AIMS Mathematics Volume 6, Issue 8, 8342–8351.



8349

Remark. For V-phenylenic nanotori, the graph become self-centered. Therefore non-self-centrality
number of V-phenylenic nanotori is zero.

3. TUC4C8 nanotubes

In this section, we compute the non-self centrality number of TUC4C8 nanotubes. In the structure
of TUC4C8 nanotube, every C4 cycle is adjacent to four C8 cycles. We will denote TUC4C8 nanotube
by G[u, v], where s is the number of octagons in a fixed row and t denotes the sum of C4 and C8 cycles
in a fixed column (see Figure 4).

A. Heydari, B. Taeri / European Journal of Combinatorics 30 (2009) 1134–1141 1135

Fig. 1. A TUC4C8(S) nanotube.

about Szeged indexwe encourage the reader to consult [16–23,30]. Themain advantage of the Szeged
index is that it is a modification ofWiener index for cyclic graphs; otherwise, it coincides withWiener
index. The Szeged index is obtained as a bond additive quantity where bond contributions are given
as the product of the number of atoms closer to each of the two end points of each bond.
Carbon nanotubes form an interesting class of carbon nanomaterials. These can be imagined as

rolled sheets of graphite about different axes. There are three types of nanotubes: armchair, chiral and
zigzag structures. Further nanotubes can be categorized as single-walled andmulti-walled nanotubes
and it is very difficult to produce the former. In 1991 Iijima [28] discovered carbon nanotubes as
multi-walled structures. Carbon nanotubes show remarkable mechanical properties. Experimental
studies have shown that they belong to the stiffest and elastic known materials. Diudea was the
first chemist who considered the problem of computing topological indices of nanostructures (see
for example [4–10]). Recently computing topological indices of nanostructures have been the object
of many papers. In a series of papers, Diudea and coauthors [4–10] studied the topological indices
of some chemical graphs related to nanostructures. In [1–3,37,38] Ashrafi and coauthors computed
some topological indices of nanotubes. In [14,25,26] the Szeged index of some nanotubes is computed.
In this paper we continue this program and compute the Szeged index of TUC4C8(S) nanotubes (see
Fig. 1).
Let us recall some algebraic definitions that will be used in the paper. Let G be a connected graph,

the set of vertices and edges of G will be denoted by V (G) and E(G), respectively. If e is an edge of G
connecting the vertices u and v of G, then we write e = uv. The distance between a pair of vertices u
and v of G is denoted by d(u, v). The Wiener index of the graph G is the sum of distances over all its
vertex pairs (u, v)

W (G) =
∑
u,v

d(u, v).

The distance sum of a vertex u of G is defined as d(u) =
∑
x∈V (G) d(u, x). So we have

W (G) =
∑
u∈V (G)

d(u).

Let Bu(e) be the set of all vertices of G lying closer to u than to v and Bv(e) be the set of all vertices of
G lying closer to v than to u, that is

Bu(e) = {x | x ∈ V (G), dG(x, u) < dG(x, v)}

Bv(e) = {x | x ∈ V (G), dG(x, v) < dG(x, u)}.

Let nu(e) = |Bu(e)| and nv(e) = |Bv(e)|. The Szeged index of G is defined as

Sz(G) =
∑
e∈E(G)

nu(e)nv(e).

Firstly we note that TUC4C8(S) is a bipartite graph. Recall that a graph G is said to be a bipartite if
its vertices V (G) can be partitioned into two subsets M and N such that each edge of G connected a

Figure 4. 2-D and 3-D structure of TUC4C8 Nanotube.

Consider

X = {w ∈ V(G[s, t]) | deg(w) = 2},

Y = {w ∈ V(G[s, t]) | deg(w) = 3}.

Then |X| = 4s and |Y | = 4st. Also

|E(G[s, t])| = 2s(3t + 2).

Remark. The graph G[s, t] becomes self-centered for t = 1. Therefore the non-self-centrality number
of G[s, 1] is zero.

AIMS Mathematics Volume 6, Issue 8, 8342–8351.
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Theorem 3. Assume that s ≥ 2 and t is an odd integer. Then the NSC number of TUC4C8 nanotube is
given by

N(G[s, t]) =
8s2t

3
(t + 1)(t + 2). (3.1)

Proof. The eccentricity sequence of G[s, t] is given by

ζ(G[s, t]) = {e4s
1 , e

4s
2 , . . . , e

4s
t , e

4s
t+1}. (3.2)

Using formula (1.2) the NSC of G[s, t] is given by

N(G[s, t]) = 16s2[1 + 2 + 3 + · · · + (t)] + 16s2[1 +

2 + 3 + · · · + (t − 1)] + 16s2[1 + 2 + 3
+ · · · + (t − 2)] + · · · + 16s2[1 + 2] + 16u2

= 16s2[1 · 2 + 2 · 3 + · · · + (t − 1)(t)
+(t)(t + 1)]

=
8s2t

3
(t + 1)(t + 2).

This completes the proof.

Remark. The graph of TUC4C8 nanotori, shown in Figure 5, is self-centered. Therefore non-self-
centrality number of nanotori is zero.

Figure 5. TUC4C8 nanotori.

4. Conclusions

In this paper, we computed general formulas for the non-self-centrality number of V-Phenylenic
and TUC4C8(R) nanotubes. For future study, we can calculate the non-self-centrality number of other
molecular structures such as α-Boron nanotubes, some layer structures and dendrimers.
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