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Abstract: The properties of solutions of the following differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = F(z)

are studied, where A j(z) and F(z) are analytic in the unit disc D = {z : |z| < 1}, j = 0, 1, . . . , k− 1. First,
the growth of solutions of the equation is estimated. Second, some coefficient’s conditions such that
the solution of the equation belong to Hardy type spaces are showed. Finally, some related question
are studied in this paper.
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1. Introduction

In 1982, Pommerenke studied the properties of solutions of second order differential equation

f ′′ + A(z) f = 0, (1.1)

where A(z) is an analytic function in D = {z : |z| < 1}, some conditions of A(z) such that every solution
of (1.1) belong to the Hardy space H2 have been obtained in [15]. The concepts concerning Hardy
space and other related spaces will be given below. Later on, Heittokangas investigated the properties
of solutions of higher order differential equation

f (k) + A(z) f = 0, (1.2)

where A(z) is analytic function in D, some conditions of the coefficient A(z) such that all solutions
of (1.2) belong to some analytic spaces, for example, weighted Hardy space, Bloch space and so on,
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see [7] for more details. At the same time, the following equation

f (k) + Ak−1(z) f (k−1) + · · · + A0(z) f = F(z) (1.3)

was also studied, where A j(z) and F(z) are analytic in D, j = 0, 1, . . . , k−1, k ≥ 2. It was shown that all
solutions of (1.3) are analytic in D, for more details refers to [7, Theorem 7.1, p. 42]. From that time,
it has been very interesting to investigate function space’s properties of solutions of linear differential
equations in D, and more and more results have been obtained by many different researchers, for
example, see [5, 8, 9, 12, 14, 16] and references therein. Here the properties of solutions of (1.3)
are studied again, in which the growth of solutions and function space’s properties of solutions are
considered. According to the function space’s properties, usually, we consider two kind questions, one
is called direct problem, in which we ask the properties of solution by using condition of coefficients.
Another aspect is called the inverse problem, in which we ask the properties of coefficients by using
the conditions of solutions.

In order to state our results, some concepts will be recalled. Let H(D) denotes a set of all
holomorphic functions in D. Let 0 < p < ∞, the Hardy space Hp is defined as

Hp =

 f (z) ∈ H(D) : || f ||Hp = sup
0≤r<1

(
1

2π

∫ 2π

0
| f (reiϕ)|pdϕ

) 1
p

< ∞

 ,
see [4] for more details. For the case of p = ∞, f (z) ∈ H(D) is said to belong to H∞ if and only if

sup
z∈D
| f (z)| < ∞.

Obviously, H∞ denotes the set of bounded analytic functions in D. For 0 ≤ q < ∞, the weighted Hardy
space H∞q is defined as

H∞q =

{
f (z) ∈ H(D) : || f ||H∞q = sup

z∈D
| f (z)|(1 − |z|2)q < ∞

}
.

Obviously, H∞0 = H∞. Moreover, f (z) is said to belong to Gp if

p = inf{q > 0 : f (z) ∈ H∞q },

more details of Gp can be found in [2].
The Bloch space is defined as

B = { f (z) ∈ H(D) : || f ||B = sup
z∈D

(1 − |z|2)| f ′(z)| < ∞}.

For α > 0, the α-Bloch space is also defined by

Bα = { f (z) ∈ H(D) : || f ||Bα = sup
z∈D

(1 − |z|2)α| f ′(z)| < ∞},

which can be found in [17].
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Now, we introduce the εβ space and the order of growth of f (z) ∈ H(D). Let β ∈ (0,∞) be a
constant. Then f (z) ∈ H(D) is said to belong to εβ space if and only if

| f (z)| ≤ exp
(

α

(1 − r)β

)
for some constant α ∈ (0,∞), which can be found in [7, p. 12]. Let f (z) ∈ H(D). Then the order σM( f )
of f (z) can be defined by

σM( f ) = lim sup
r→1−

log+ log+ M(r, f )
log 1

1−r

,

where M(r, f ) = max
|z|=r
| f (z)|. For a real number x ≥ 0, the positive logarithm is defined as follows,

log+ x = max(log x, 0) =

 log x, x ≥ 1,
0, 0 ≤ x < 1,

which can be found in [6, p. 3].
We say that A and B is comparable if there is a positive constant C such that B

C ≤ A ≤ CB. The
paper is organized as follows, the growth of solutions of differential equations is estimated in Section 2.
The direct problem and inverse problem of differential equations are studied in Section 3 and Section 4
respectively. Finally, the higher order derivative of solutions of differential equations is characterized
in Section 5.

2. Growth of solutions

Auxiliary results. In order to prove Theorems 2.3 below. The following Lemma 2.1 plays an important
role in dealing with the coefficients A j of (1.3).

Lemma 2.1. [17] Let A(z) be an analytic function in D, 1 < α < ∞ and n ∈ N. Then the following
quantities are comparable:

(i) ||A||H∞
α−1

,
(ii) ||A||Bα + |A(0)|,

(iii) sup
z∈D
|A(n)(z)|(1 − |z|2)n−1+α +

n−1∑
j=0
|A( j)(0)|.

In 2003, Chyzhykov-Gundersen-Heittokangas investigated the growth of solutions of (1.2) when
the coefficient A(z) ∈ Gp, and obtained that every solution f (z) of (1.3) satisfies σM( f ) ≤ p

k − 1 for
p ≥ k, see [2, Theorem 2.2, p. 738] for more details. In 2010, Chyzhykov-Heittokangas-Rättyä studied
the growth of solutions of (1.3) for F(z) = 0, and obtained more sharp results as Theorem 2.2 below.

Theorem 2.2. [3, Theorem 1.4, p. 147-148] Let A j(z) ∈ Gp j , j = 0, 1, . . . , k − 1, F(z) = 0 and
1 ≤ α < ∞, pk = 0. If f (z) is a solution of (1.3), then the following statements hold.

(i) σM( f ) ≤
{

0, max
0≤ j≤k−1

{ p j

k− j − 1
}}

and

max{σM( f ), 1} ≥ min
1≤ j≤k

{
p0 − p j

j
− 1

}
;

AIMS Mathematics Volume 6, Issue 8, 8256–8275.



8259

(ii) Suppose that min
1≤ j≤k

{ p0−p j

j

}
≥ 2, then σM( f ) ≤ α if and only if max

0≤ j≤k−1

{ p j

k− j − 1
}
≤ α;

(iii) Suppose that min
1≤ j≤k

{ p0−p j

j

}
≥ 2 holds. If n ∈ {0, 1, . . . , k − 1} is the smallest index for which

pn
k−n = max

0≤ j≤k−1

{ p j

k− j − 1
}
, then in every solution basis of (1.3) there are at least k − n linearly

independent solutions f (z) such that σM( f ) = max
0≤ j≤k−1

{ p j

k− j − 1
}
.

Main result. Here we estimate the growth of solutions of (1.3) for the case of F(z) , 0, and prove the
following result.

Theorem 2.3. Let A j(z) and F(z) be analytic in D, j = 0, 1, . . . , k − 1. Then the following statements
hold.

(i) If A j(z) ∈ H∞q and F(z) ∈ H∞q , where q ≥ 1, then every solution f (z) of (1.3) satisfies σM( f ) ≤
q − 1;

(ii) If A j(z) ∈ H∞q and F(z) ∈ εβ, where q ≥ 1 and β > 0, then every solution f (z) of (1.3) satisfies
σM( f ) ≤ max{q − 1, β}.

Proof. (i) Since A j(z) ∈ H∞q and F(z) ∈ H∞q , then by Lemma 2.1, there exist constant C1 > 0 and
C2 > 0 such that for any natural numbers n and j = 0, 1, . . . , k − 1,

|A(n)
j (z)| ≤

C1

(1 − |z|2)q+n , |F(z)| ≤
C2

(1 − |z|2)q . (2.1)

It follows from [10, Theorem 1 (a)] that there exist constant C3 > 0 and C4 > 0 such that for all
z = reiθ ∈ D,

| f (reiθ)| ≤
(
C3 +

1
(k − 1)!

∫ r

0
|F(teiθ)|(1 − t)k−1dt

)
· exp

C4

k−1∑
j=0

j∑
n=0

∫ r

0
|A(n)

j (teiθ)|(1 − t)k− j+n−1dt

 . (2.2)

Combining (2.1) and (2.2), there exist constant C5 > 0 and constant C6 > 0 such that

| f (reiθ)| ≤



C5

(q − k)(1 − r)q−k · exp
(

C6

(q − 1)(1 − r)q−1

)
, q > k,

C5 log
1

1 − r
· exp

(
C6

(q − 1)(1 − r)q−1

)
, q = k,

C5

k − q
· exp

(
C6

(q − 1)(1 − r)q−1

)
, 1 < q < k,

C5

(k − q)(1 − r)C6
, q = 1,

which implies that
σM( f ) ≤ q − 1.
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(ii) Since F(z) ∈ εβ, then there exists a constant α > 0 such that for all z = reiθ ∈ D,

|F(z)| ≤ exp
(

α

(1 − |z|)β

)
. (2.3)

Combining (2.1), (2.2) and (2.3), there exists a constant C7 > 0 such that

| f (reiθ)| ≤


exp

(
C7

(1 − r)β
+

C6

(q − 1)(1 − r)q−1

)
, q > 1,

exp
(

C7

(1 − r)β

)
·

1
(1 − r)C6

, q = 1,

which implies that
σM( f ) ≤ max{q − 1, β}.

�

The following example shows that Theorem 2.3 is sharpness.
Examples. We consider the differential equation

f ′′′ + A2(z) f ′′ + A1(z) f ′ + A0(z) f = F(z). (2.4)

(1) Let A0(z) = 0, A1(z) = 6
(1−z)2 , A2(z) = −2

(1−z)3 + −6
1−z , F(z) = 12

(1−z)2 + 54. Obviously, f (z) =

e
1

(1−z)2 + (z−1)3 is a solution of (2.4). It is easy to see that A0(z), A1(z), A2(z), F(z) ∈ H∞3 and σM( f ) = 2.

(2) Let A0(z) = 54
(1−z)3 , A1(z) = 6

(1−z)2 , A2(z) = −2
(1−z)3 + −6

1−z and F(z) = 54
(1−z)3 e

1
(1−z)2 + 12

(1−z)2 . It is easy

to see that A0(z), A1(z), A2(z) ∈ H∞3 , F(z) ∈ ε2 and f (z) = e
1

(1−z)2 + (z − 1)3 is a solution of (2.4) with
σM( f ) = 2.

3. Direct problem

Auxiliary results. Here we study the properties of function space of solution of (1.3) by limiting the
condition of coefficients. In order to deal with the term F(z) of (1.3), the Lemma 3.1 below is needed.

Lemma 3.1. [13, Lemma 2.5] Let A(z) be analytic in D. If A(k)(z) ∈ Hp(1
k ≤ p ≤ ∞, k ≥ 2), then

A(z) ∈ H∞.

The following Lemma 3.2 can be proved by using the similar reason as in the proof of [11, Lemma
5.10 (Gronwall), p. 86], here we omit the details.

Lemma 3.2. Let u and v be nonnegative integrable functions in [0, 1), and let c > 0 be a constant. If

u(t) ≤ c +

∫ t

0
u(s)v(s)ds, t ∈ [0, 1),

then

u(t) ≤ c exp
(∫ t

0
v(s)ds

)
, t ∈ [0, 1).
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Lemma 3.3. Let g(ξ) be annalytic in D. For any z, z0 ∈ D and |ξ| ≤ |z|, set h(z) =
∫ z

z0
(z − ξ)kg(ξ)dξ,

where k ∈ N+. Then

h(n)(z) =
k!

(k − n)!

∫ z

z0

(z − ξ)k−ng(ξ)dξ

holds for any n ∈ N and 0 ≤ n ≤ k.

Proof. If k = 1, then

h′(z) =

(∫ z

z0

(z − ξ)g(ξ)dξ
)′

=

∫ z

z0

g(ξ)dξ +

1∑
n=0

Cn
1zn(−z)1−ng(z)

=

∫ z

z0

g(ξ)dξ.

Obviously, the conclusion holds.
If k = 2, then

h′(z) =

(∫ z

z0

(z − ξ)2g(ξ)dξ
)′

=

(∫ z

z0

(z2 + 2z(−ξ) + ξ2)g(ξ)dξ
)′

= 2
∫ z

z0

(z − ξ)g(ξ)dξ +

2∑
n=0

Cn
1zn(−z)2−ng(z)

= 2
∫ z

z0

(z − ξ)g(ξ)dξ.

And by the case k = 1, we get

h′′(z) =

(
2
∫ z

z0

(z − ξ)g(ξ)dξ
)′

= 2
∫ z

z0

g(ξ)dξ.

Obviously, the conclusion holds.
If k > 2, then

h(z) =

∫ z

z0

(z − ξ)kg(ξ)dξ

=

∫ z

z0

k∑
n=0

Cn
kzn(−ξ)k−ng(ξ)dξ

=

k∑
n=0

Cn
kzn

∫ z

z0

(−ξ)k−ng(ξ)dξ.
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Therefore,

h′(z) = k
k∑

n=1

Cn
k
n
k

zn−1
∫ z

z0

(−ξ)k−ng(ξ)dξ +

k∑
n=0

Cn
kzn(−z)k−ng(z)

= k
k∑

n=1

Cn−1
k−1zn−1

∫ z

z0

(−ξ)k−ng(ξ)dξ +

k∑
n=0

Cn
kzn(−z)k−ng(z)

= k
∫ z

z0

(z − ξ)k−1g(ξ)dξ +

k∑
n=0

Cn
kzn(−z)k−ng(z)

= k
∫ z

z0

(z − ξ)k−1g(ξ)dξ.

Then we summarize that

h′′(z) = k(k − 1)
∫ z

z0

(z − ξ)k−2g(ξ)dξ,

· · ·

h(n)(z) = k(k − 1) · · · (k − n + 1)
∫ z

z0

(z − ξ)k−ng(ξ)dξ.

By these equalities above, this proof is completed. �

In 2014, the higher order non-homogenous linear differential equation

f (k) + A(z) f = F(z) (3.1)

is studied by Li-Xiao in [13], where A(z) and F(z) ∈ H(D), which is improvement of previous results
from [7, Theorem 4.3, p. 21].

Theorem 3.4. [13, Theorem 1.10] Let A(z) and F(z) be analytic in D satisfying

|A(z)| ≤
α

(1 − |z|)β
, F(z) ∈ Hp,

where α > 0 and β ≥ 0 are finite constants, and 1
k ≤ p ≤ +∞. If f (z) is a solution of (3.1), then the

following statements hold.

(i) If 0 ≤ β < k, then f (z) ∈ H∞;
(ii) If β = k, then f (z) ∈ H∞α

(k−1)
;

(iii) If k < β < ∞, then f (z) ∈ εβ−k.

Main results. Here we investigate the properties of solutions of (1.3) similarly to Theorem 3.4.

Theorem 3.5. Let A j(z) and F(z) be analytic in D satisfying

|A j(z)| ≤
α

(1 − |z|)β− j , F(z) ∈ Hp,

where α > 0 and β ≥ 0 are finite constants, and 1
k ≤ p ≤ +∞, j = 0, 1, . . . , k − 1. If f (z) is a solution

of (1.3), then the following statements hold.
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(i) If 0 ≤ β < k, then f (z) ∈ H∞;
(ii) If β = k, then f (z) ∈ H∞q , where q only depending on k, α and β;

(iii) If β > k, then f (z) ∈ εβ−k.

Proof. Set g(z) = 1
(k−1)!

∫ z

0
(z − ξ)k−1F(ξ)dξ, z ∈ D. By Lemma 3.3, we get

g(k)(z) = F(z).

Combining Lemma 3.1 and F(z) ∈ Hp, we have

g(z) =
1

(k − 1)!

∫ z

0
(z − ξ)k−1F(ξ)dξ ∈ H∞.

Hence, there exists a constant C1 > 0, such that

|g(z)| =
∣∣∣∣∣ 1
(k − 1)!

∫ z

0
(z − ξ)k−1F(ξ)dξ

∣∣∣∣∣ ≤ C1. (3.2)

It follows from [10, Theorem 9, p. 152-153] that

f (z) =

k−1∑
n=0

cn(z − z0)n +
1

(k − 1)!

∫ z

z0

F(ξ)(z − ξ)k−1dξ

+

k−1∑
j=0

j∑
n=0

d j,n

∫ z

z0

A(n)
j (ξ) f (ξ)(z − ξ)k− j+n−1dξ,

where the constants cn ∈ C depend on the initial values of f (z), f ′(z),. . ., f (k−1)(z), the constants
d j,n ∈ Q+, and the path of integration is a piecewise smooth curve in D joining z0 and z. Let z0 = 0,
z = reiθ and ξ = teiθ. Combining this and (3.2), we obtain

| f (z)| ≤ C2 + C3

k−1∑
j=0

j∑
n=0

∫ r

0

∣∣∣∣A(n)
j (teiθ)

∣∣∣∣ · ∣∣∣ f (teiθ)
∣∣∣ (1 − t)k− j+n−1dξ,

where C2 and C3 are positive constants. It follows from this and Lemma 3.2 that

| f (z)| ≤ C2 exp

C3

k−1∑
j=0

j∑
n=0

∫ r

0

∣∣∣∣A(n)
j (teiθ)

∣∣∣∣ (1 − t)k− j+n−1dt

 . (3.3)

Next, we divide into three cases to estimate the derivative of the coefficients A j.
Case 1: If β = 0, it is easy to see that

A j(z) ∈ H∞ ⊂ H∞q0
, j1 = 0, 1, . . . , k − 1

holds for any q0 ∈ (0, 1). Then, there exists a constant C′4 > 0 such that for n ∈ N, and any q0 ∈ (0, 1),

|A(n)
j (z)| ≤

C′4
(1 − |z|2)q0+n , j = 0, 1, . . . , k − 1. (3.4)
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Combining (3.3) and (3.4), we get

| f (z)| < +∞ (3.5)

for β = 0. Therefore, f (z) ∈ H∞ for 0 = β < k.
Case 2: If max{ j : A j , 0} ≥ β > 0, then there exist a constant s ∈ { j : A j , 0} satisfying s−1 < β ≤ s.
By using the similar reason as in the proof of case 1, we get

A j1(z) ∈ H∞β− j1 , j1 = 0, 1, . . . , s − 1, j1 < β

and for any q0 ∈ (0, 1)

A j2(z) ∈ H∞q0
, j2 = s, s + 1, . . . , k − 1, j2 ≥ β.

By Lemma 2.1, there exists a constant C′′4 > 0 such that for every n ∈ N,

|A(n)
j1

(z)| ≤
C′′4

(1 − |z|2)β+n− j1
(3.6)

and for any q0 ∈ (0, 1),

|A(n)
j2

(z)| ≤
C′′4

(1 − |z|2)q0+n . (3.7)

Combining (3.3), (3.6) and (3.7), we get

| f (z)| < +∞ (3.8)

for max{ j : A j , 0} ≥ β > 0. Therefore, f (z) ∈ H∞ for 0 < β ≤ max{ j : A j , 0} < k.
Case 3: If max{ j : A j , 0} < β, then it follows from |A j(z)| ≤ α

(1−|z|)β− j that

A j(z) ∈ H∞β− j, j = 0, 1, . . . , k − 1.

Then, by Lemma 2.1, there exists a constant C′′′4 > 0 such that for every n ∈ N and j = 0, 1, . . . , k − 1,

|A(n)
j (z)| ≤

C′′′4

(1 − |z|2)β+n− j . (3.9)

It follows from (3.3) and (3.9) that there exists a constant C5 > 0 such that for all z = reiθ ∈ D,

| f (z)| ≤ C2 exp
(∫ r

0

C5

(1 − t)β−k+1 dt
)
,

and then

| f (z)| ≤



C2 exp
(
C5 log

1
1 − r

)
, β = k,

C2 exp
(

1
β − k

·
C5

(1 − r)β−k

)
, β > k,

C2 exp
(

C5

k − β

)
, max{ j : A j , 0} < β < k,

(3.10)
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which implies that

| f (z)| < +∞ (3.11)

for max{ j : A j , 0} < β < k. Therefore, f (z) ∈ H∞ for max{ j : A j , 0} < β < k.
Therefore, by (3.5), (3.8) and (3.11), we get the conclusions (i) holds when 0 ≤ β < k. It follows

from (3.10) that the conclusions (ii) holds when β = k; the conclusions (iii) holds when β > k. This
proof is completed. �

The following examples show Theorem 3.5 is sharpness.
Examples. (1) Let

A0(z) =
1

(1 − z)
3
2

, A1(z) =
8

(1 − z)
3
2

, A2(z) =
18

(1 − z)
1
2

and
F(z) =

1

(1 − z)
3
2

+ 1.

It follows from [7, Lemma 1.1.2, p. 8] that F(z) ∈ Hp for any p ∈ [ 1
2 ,

2
3 ), thus A j(z) and F(z) satisfy the

conditions of Theorem 3.5(i) with β = 5
2 , where j = 0, 1, 2. Obviously, f (z) = (1− z)

3
2 + 5

8 is a solution
of (2.4) and f (z) ∈ H∞.

(2) Let

A0(z) =
6

(1 − z)3 , A1(z) =
−6

(1 − z)2 , A2(z) =
−3

1 − z
, F(z) = −84(z − 1)2.

Here A j(z) and F(z) satisfy the conditions of Theorem 3.5(ii) for any p ∈ [1
2 ,+∞) and β = 3, j = 0, 1, 2.

Obviously, f (z) = 1
(1−z)2 + 1

1−z + (1 − z)5 is a solution of (2.4) and f (z) ∈ H∞2 .
(3) Let

A0(z) =
−6

(1 − z)4 , A1(z) =
−4

(1 − z)3 , A2(z) =
−1

(1 − z)2 , F(z) =
1

1 − z
+

1
4
.

It is easy to see that A0(z), A1(z), A2(z) and F(z) satisfy the conditions of Theorem 3.5(iii) with β = 4
and 1

2 ≤ p < 1 ( [4, exercise 1, p. 13] shows that 1
1−z ∈ Hp for any p < 1). And f (z) = e

1
1−z + 1

24 (z − 1)3

solves the equation (2.4) with f (z) ∈ ε1.
It is well known that f (z) =

∑
anzn ∈ H2 if and only if

∑
|an|

2 < +∞ [4, p. 93]. Therefore, we
obtained the following Corollary 3.6 by the Theorem 3.5.

Corollary 3.6. Let A j(z) and F(z) =
∑

anzn be analytic in D satisfying

|A j(z)| ≤
α

(1 − |z|)β− j ,
∑
|an|

2 < ∞,

where α > 0 and β ≥ 0 are finite constants, and j = 0, 1, . . . , k − 1. If f (z) is solution of (1.3), then the
following statements hold.

(i) If 0 ≤ β < k, then f (z) ∈ H∞;
(ii) If β = k, then f (z) ∈ H∞q , where q only depending on k, α and β;

(iii) If β > k, then f (z) ∈ εβ−k.

Next, we get the following result by changing the condition of F(z).
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Theorem 3.7. Let A j(z) and F(z) be analytic in D satisfying

|A j(z)| ≤
α1

(1 − |z|)β1− j , |F(z)| ≤
α2

(1 − |z|)β2
,

where α1 > 0, α1 > 0, β2 ≥ 0, β1 ≥ 0 are finite constants, j = 0, 1, . . . , k − 1. If f (z) is solution of
(1.3), then the following statements hold.

(i) If 0 ≤ β1 < k and 0 ≤ β2 < k, then f (z) ∈ H∞;
(ii) If 0 ≤ β1 < k and β2 = k, then f (z) ∈ H∞q for any q > 0;

(iii) If 0 ≤ β1 < k and β2 > k, then f (z) ∈ H∞β2−k;
(iv) If β1 = k, then for all finite number β2, there exist a constant q > 0 such that f (z) ∈ H∞q ;
(v) If β1 > k, then for any finite number β2, f (z) ∈ εβ1−k.

Proof. By the conditions of Theorem 3.7 and using the similar way as in the proof of the case 3
of Theorem 3.5, then there exists a constant C6 > 0 such that for all non-negative integers n and
j = 0, 1, . . . , k − 1,

|A(n)
j (z)| ≤

C6

(1 − |z|2)β1+n− j (3.12)

holds for the case max{ j : A j , 0} < β1.
Combining (3.12), [10, Theorem 1 (a)] and the conditions of Theorem 3.7, there exist constant

C7 > 0 and C8 > 0 such that

| f (z)| ≤
(∫ r

0

C7

(1 − t)β2−k+1 dt
)
· exp

(∫ r

0

C8

(1 − t)β1−k+1 dt
)
.

Let h(z) = exp
(∫ r

0
C8

(1−t)β1−k+1 dt
)
. By using the similar reason as in the proof of Theorem 3.5, we get

|h(z)| ≤



exp
(

C8

(β1 − k)(1 − r)β1−k

)
, β1 > k,

exp
(
C8 log

1
1 − r

)
, β1 = k,

exp
(

C8

k − β1

)
, max{ j : A j , 0} < β1 < k.

(3.13)

Let g(z) =
∫ r

0
C7

(1−t)β2−k+1 dt and by the condition of F(z), we get

|g(z)| ≤



C7

(β2 − k)(1 − r)β2−k , β2 > k,

C7 log
1

1 − r
, β2 = k,

C7

k − β2
, 0 ≤ β2 < k.

(3.14)

Therefore, by (3.13) and (3.14), we get

| f (reiθ)| ≤ O
(

1
(1 − r)C8+max{1,β2−k,}

)
AIMS Mathematics Volume 6, Issue 8, 8256–8275.



8267

for β1 = k and any finite β2, and

| f (reiθ)| ≤ O
(
exp

(
1

(1 − r)β1−k

))
for β1 > k and any finite β2. Therefore, these conclusions (iv)-(v) hold.

By the inequality (3.13), we get

|h(z)| < ∞ (3.15)

for max{ j : A j , 0} < β1 < k. Now, we claim that if | f (z)| ≤ log 1
1−r for all z = reiθ ∈ D, then f (z) ∈ H∞q

for any q > 0. In fact,

lim
r→1−

(1 − r)q log
1

1 − r
= lim

r→1−

log 1
1−r

1
(1−r)q

= lim
r→1−

1
1−r

q
(1−r)1−q

= lim
r→1−

(1 − r)q

q
= 0.

Combining with (3.14) and (3.15), these conclusions (i)-(iii) can be deduced when max{ j : A j , 0} <
β1 < k.

For the case 0 ≤ β1 ≤ max{ j : A j , 0}, by (3.14), [10, Theorem 1] and using the similar way in the
case 1 and case 2 of the proof of Theorem 3.5, there exists a constant C∗ > 0 such that

| f (z)| ≤



C∗C7

(β2 − k)(1 − r)β2−k , β2 > k,

C∗C7 log
1

1 − r
, β2 = k,

C∗C7

k − β2
, 0 ≤ β2 < k,

which implies that these conclusions (i)-(iii) hold for 0 ≤ β1 ≤ max{ j : A j , 0}. Then, these
conclusions (i)-(iii) can be deduced from these inequalities above. This proof is completed. �

Next, some examples for Theorem 3.7 are given.
Examples. We consider the following second order differential equation

f ′′ + A1(z) f ′ + A0(z) f = F(z). (3.16)

(1) Let A0(z) = 1

4(1−z)
3
2
, A1(z) = 1

4(1−z)
1
2

and F(z) = 1

4(1−z)
3
2

satisfying the conditions of Theorem 3.7

(i) with β1 = 3
2 and β2 = 3

2 . Then f (z) = αe(1−z)
1
2 +1 is a solution of (3.16) and f (z) ∈ H∞, where α , 0

is a finite constant.
(2) Let A0(z) = 1

1−z , A1(z) = log(1− z) and F(z) = 2
(1−z)2 satisfying the conditions of Theorem 3.7 (ii)

with β1 ∈ (1, 2) and β2 = 2. Then f (z) = log 1
1−z is a solution of (3.16) and f (z) ∈ H∞q for any q > 0.
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(3) Let A0(z) = 1
z−1 , A1(z) = 1

3 and F(z) = 12
(1−z)5 satisfying the conditions of Theorem 3.7 (iii) with

β1 = 1 and β2 = 5. Then f (z) = 1
(1−z)3 is a solution of (3.16) and f (z) ∈ H∞3 .

(4) Let A0(z) = −5
(1−z)2 , A1(z) = 1

2(z−1) and F(z) = −5
(1−z)2 satisfying the conditions of Theorem 3.7 (iv)

with β1 = 2 and β2 = 2. Then f (z) = 1
(1−z)2 + 1 is a solution of (3.16) and f (z) ∈ H∞2 .

(5) Let A0(z) = −6
(1−z)4 , A1(z) = −2

(1−z)3 and F(z) = −6
(1−z)4 satisfying the conditions of Theorem 3.7 (v)

with β1 = 4 and β2 = 4. Then f (z) = e
1

(1−z)2 + 1 is a solution of (3.16) and f (z) ∈ ε2.
The following Theorem 3.8 is the generalization of [8, Theorem 3.3, p. 96], which they considered

only the case of F(z) = 0 and β = 1.

Theorem 3.8. Let 0 < δ < 1. Suppose that A j(z) and F(z) are analytic functions in D satisfying

sup
|z|≥δ
|A j(z)|(1 − |z|2)β(k− j) ≤ α, j = 0, 1, . . . , k − 1,

and
|F(z)| ≤

α1

(1 − |z|)β1
,

where α1 > 0, α > 0, β1 ≥ 0 and β ≥ 0 are finite constants. If f (z) is a solution of (1.3), then the
following statements hold.

(i) If 0 < β < 1, then f (z) ∈ H∞β1
;

(ii) If β = 1, then f (z) ∈ H∞q , where q =

β1 + k2α
1
k , 0 < α < 1,

β1 + k2α, α ≥ 1,
;

(iii) If β > 1, then for any finite β1, f (z) ∈ εβ−1.

Proof. By [10, Theorem 2], there exists a constant C9 > 0 such that for all θ ∈ [0, 2π) and 0 ≤ s ≤ r <
1,

| f (reiθ)| ≤ C9

(
1 + max

0≤t≤r
|F(teiθ)|

)
· exp

(
r + k

∫ r

0
max

0≤ j≤k−1
|A j(seiθ)|

1
k− j ds

)
.

Combining the inequality above and the conditions of Theorem 3.8, we get

| f (reiθ)| ≤ e ·C9 ·

(
1 +

α1

(1 − r)β1

)
· exp

(
k
∫ δ

0
max

0≤ j≤k−1
|A j(seiθ)|

1
k− j ds + k

∫ r

δ

max
0≤ j≤k−1

|A j(seiθ)|
1

k− j ds
)

≤ C10

(
α1

(1 − r)β1

)
· exp

(
k
∫ r

δ

max
0≤ j≤k−1

|A j(seiθ)|
1

k− j ds
)
,

where C10 > 0 is a constant.
If 0 < α < 1, then

| f (reiθ)| ≤ C10

(
α1

(1 − r)β1

)
· exp

(
k2α

1
k

∫ r

δ

1
(1 − s)β

ds
)
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≤



C10

(
α1

(1 − r)β1

)
· exp

(
k2α

1
k log

1
1 − r

)
, β = 1,

C10

(
α1

(1 − r)β1

)
· exp

 k2α
1
k

(β − 1)(1 − r)β−1

 , β > 1,

C10
k2α

1
k

(1 − β)

(
α1

(1 − r)β1

)
, 0 < β < 1,

which means that f (z) ∈


H∞
β1+k2α

1
k
, β = 1,

H∞β1
, 0 < β < 1,

εβ−1, β > 1.
If α ≥ 1, then

| f (reiθ)| ≤ C10

(
1 +

α1

(1 − r)β

)
· exp

(
k2α

∫ r

δ

1
(1 − s)β

ds
)

≤



C10

(
α1

(1 − r)β1

)
· exp

(
k2α log

1
1 − r

)
, β = 1,

C10

(
α1

(1 − r)β1

)
· exp

(
k2α

(β − 1)(1 − r)β−1

)
, β > 1,

C10
k2α

(β − 1)

(
α1

(1 − r)β1

)
, 0 < β < 1,

which means that f (z) ∈


H∞
β1+k2α

, β = 1,

H∞β1
, 0 < β < 1,

εβ−1, β > 1.

The proof is completed. �

4. Inverse problem

Auxiliary result. In order to prove Theorem 4.3, we need the following Lemma 4.1, which can be
deduced from [2, Theorem 3.1].

Lemma 4.1. [2, Theorem 3.1] Let k be integer satisfying k ≥ 0, and let ε > 0 and d ∈ (0, 1). If f (z) is
meromorphic in D such that f does not vanish identically, then there exist a set E ⊂ [0, 2π), which has
linear measure zero, such that if θ ∈ [0, 2π)\E, then there is a constant r0 = r(θ) ∈ (0, 1) such that for
all arg z = θ and |z| ∈ (r0, 1),∣∣∣∣∣∣ f (k)(z)

f (z)

∣∣∣∣∣∣ ≤
( 1

1 − r

)2+ε

·max
{

log
1

1 − r
,T (s(r), f )

}k

,

where s(r) = 1 − d(1 − r).

Main result. Now, we consider the following equation

f (k) + A(z) f = F(z), (4.1)

where A(z) and F(z) are analytic functions in D, in which the inverse problem is studied.
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Theorem 4.2. Let A(z) and F(z) be analytic in D, and A(z) ∈ H∞q . If every solution f (z) of (4.1)
satisfies f (z) ∈ εβ, then F(z) ∈ εβ. Furthermore, if q ≤ k, then every solution f (z) of (4.1) satisfies
f (z) ∈ εβ if and only if F(z) ∈ εβ.

Proof. Suppose that A(z) ∈ H∞q and f (z) is any solution of (4.1) satisfies f (z) ∈ εβ. First, we prove
that f (k)(z) ∈ εβ holds for any integers k ∈ N+. If f (k)(z) < εβ, then there exist a constant β′ > β such
that | f (k)(z)| ≥ exp

(
α′

(1−|z|)β′
)
, which implies that σM( f (k)) ≥ β′. It follows from [1, Proposition 1.2] that

σM( f ) = σM( f (k)) ≥ β′. This contradicts with our hypothesis, and then f (k)(z) ∈ εβ holds for any
integers k ∈ N+.

Next, we prove that F(z) ∈ εβ. By (4.1) and the conditions of Theorem 4.2, we get

|F(z)| ≤ | f (k)(z)| + |A(z)| · | f (z)| ≤ exp
(

α0

(1 − |z|)β

)
,

where α0 > 0 is a constant depending only on q and α. This implies that F(z) ∈ εβ.
Finally, we assume that q ≤ k and F(z) ∈ εβ. By using the similar method as in the proof of

Theorem 2.3, we get every solutions f (z) of (4.1) satisfies f (z) ∈ εβ. The proof is completed. �

Theorem 4.3. Let A(z) and F(z) be analytic in D. If every non-trivial solution f (z) of (4.1) satisfies

lim sup
r→1−

| f (reiθ)|

exp
(

α
(1−r)β

) ≤ 1 and
F(z)
f (z)
∈ H∞p ,

where α > 0 and β > 0 are finite constants. Then A(z) ∈ H∞q , where q is a positive constant depending
only on k, β and p.

Proof. Let f (z) is a non-trivial solution of (4.1). By the conditions of Theorem 4.3, for any ε > 0,
there exist a constant r1 ∈ (0, 1) such that for all r ∈ (r1, 1),

T (s(r), f ) ≤ log+ M(s(r), f ) ≤ (1 + ε)
α

dβ(1 − r)β
. (4.2)

By Lemma 4.1, for d ∈ (0, 1), there exist a constant r2 ∈ [0, 1) and a set E of measure zero such that
for all r ∈ (r2, 1) and θ ∈ [0, 2π)\E,∣∣∣∣∣∣ f (k)(reiθ)

f (reiθ)

∣∣∣∣∣∣ ≤
( 1

1 − r

)2+ε

max
{

log
1

1 − r
,T (s(r), f )

}k

≤

( 1
1 − r

)2+ε (
log

1
1 − r

+ T (s(r), f )
)k

≤

(
1

1 − r

)k(2+ε) (
log

1
1 − r

+ T (s(r), f )
)k

.

Combining (4.2), for all r ∈ (max{r1, r2}, 1), we get∣∣∣∣∣∣ f (k)(reiθ)
f (reiθ)

∣∣∣∣∣∣ ≤ C
(1 − r)kβ+k(2+ε) . (4.3)
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By Eq (4.1), we have

|A(z)| ≤

∣∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣∣ +

∣∣∣∣∣F(z)
f (z)

∣∣∣∣∣ .
It follows from the inequality above, (4.3) and the conditions of Theorem 4.3 that the conclusion
holds. �

5. Higher derivative problem

For an analytic function f (z), it is easy to see that f ′(z) and f (z) do not necessarily belong to the
same space. Let f (z) = 1

1−z . Then f (z) ∈ H∞1 , and f ′(z) = 1
(1−z)2 . It is easy to get f ′(z) ∈ H∞2 and

f ′(z) < H∞1 . Therefore, a natural problem is: what conditions on coefficients guaranteeing solution of
differential equations and its derivative belong to the same space? Here we investigate this question to
the linear differential equation

f (k) + A(z) f = F(z), (5.1)

where A(z) and F(z) are analytic functions in D. Firstly, we introduce some auxiliary results.
Auxiliary results. Here, an auxiliary results is given for the proof of our results.

Lemma 5.1. Let f (z) be a solution of (5.1). Then

| f (m)(z)| ≤
(
C +

1
(k − m − 1)!

∫ r

0
|F(seiθ)|(1 − s)k−m−1ds

)
· exp

(
1

(k − m − 1)!

∫ r

0
|A(seiθ)|(1 − s)k−m−1ds

)
,

where C is a positive constant, and m ∈ N is a natural number satisfying 0 ≤ m ≤ k − 1.

Proof. Let f (z) be a solution of (5.1). By [10, Theorem 9], we get

f (z) =

k−1∑
n=0

f (n)(z0)
n!

(z − z0)n

+
1

(k − 1)!

∫ z

z0

F(ξ)(z − ξ)k−1dξ

−
1

(k − 1)!

∫ z

z0

f (ξ)A(ξ)(z − ξ)k−1dξ.

(5.2)

Combining Lemma 3.3, we deduce that

f (m)(z) =

k−1∑
n=m

f (n)(z0)
(n − m)!

(z − z0)n−m

+
1

(k − m − 1)!

∫ z

z0

F(ξ)(z − ξ)k−m−1dξ

−
1

(k − m − 1)!

∫ z

z0

f (ξ)A(ξ)(z − ξ)k−m−1dξ,

(5.3)
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where 0 ≤ m ≤ k − 1. And then, we choose z0 = 0 and the path of integration to be the line segment
[0, z], for all z = reiθ and zξ = seiθ (0 ≤ s ≤ r),

| f (m)(z)| ≤ C +
1

(k − m − 1)!

∫ r

0
|F(seiθ)|(1 − s)k−m−1ds

+
1

(k − m − 1)!

∫ r

0
| f (seiθ)| · |A(seiθ)|(1 − s)k−m−1ds,

where C is a positive constant only depends on f (0), f ′(0), . . . , f (k−1)(0). The assertion follows from
Lemma 3.2. �

Main results. In fact, a simple estimation shows that f (z) ∈ H∞q−1 when f ′(z) ∈ H∞q (q > 1), but
f (z) < H∞0 = H∞ when f ′(z) ∈ H∞1 , for example f (z) = log 1

1−r . So, it is very meaningful to study the
properties of function space of derivative of solutions of differential equations.

Theorem 5.2. Let A(z) and F(z) be analytic in D satisfying

A(z) ≤
α

(1 − |z|)β
and F(z) ∈ Hp,

where m is a positive integer satisfies 0 < m ≤ k − 2 and 1
k−m ≤ p ≤ +∞, and α and β are finite

constants. If f (z) is a solution of (5.1), then the following statements hold.

(i) If 0 ≤ β < k − m, then f (m)(z) ∈ H∞;
(ii) If β = k − m, then f (m)(z) ∈ H∞q , where q = α

(k−m−1)! ;
(iii) If β > k − m, then f (m)(z) ∈ εβ−k+m.

Proof. By (5.3) and using similar method as in the proof of Theorem 3.5, we get

| f (m)(z)| ≤



C1 exp
(
C2

1
(1 − r)β−k+m

)
, β > k − m,

C1

(
1

1 − r

) α1
(k−m−1)!

, β = k − m,

C1 exp (−C2) , 0 ≤ β < k − m,

where 0 < C1 < +∞ and C2 = α
(k−m−1)!(β−k+m) . It follows from the inequality above that these conclusion

(i)-(iii) hold. �

The following Corollary 5.3 is also given by Theorem 5.2.

Corollary 5.3. Let A(z) and F(z) =
∑

anzn be analytic in D satisfying

A(z) ≤
α

(1 − |z|)β
and

∑
|an|

2 < ∞,

where α and β are finite constants. If f (z) is a solution of (5.1), then for 0 ≤ m ≤ k − 2 the following
statements hold.

(i) If 0 ≤ β < k − m, then f (m)(z) ∈ H∞;
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(ii) If β = k − m, then f (m)(z) ∈ H∞ α
(k−m−1)!

;

(iii) If β > k − m, then f (m)(z) ∈ εβ−k+m.

Theorem 5.4. Let A(z) and F(z) be analytic in D satisfying

A(z) ≤
α1

(1 − |z|)β1
and |F(z)| ≤

α2

(1 − |z|)β2
,

where α1 > 0, α2 > 0, β1 ≥ 0 and β2 ≥ 0 are finite constants. If f (z) is a solution of (5.1), m is a
non-negative integer satisfies m < k, then the following statements hold.

(i) If 0 ≤ β1 < k − m and 0 ≤ β2 < k − m, then f (m)(z) ∈ H∞;
(ii) If 0 ≤ β1 < k − m and β2 = k − m, then f (m)(z) ∈ H∞q for any q > 0;

(iii) If 0 ≤ β1 < k − m and β2 > k − m, then f (m)(z) ∈ H∞β2−k+m;
(iv) If β1 = k − m and 0 ≤ β2 < k − m, then f (m)(z) ∈ H∞ α1

(k−m−1)!
;

(v) If β1 = k − m and β2 = k − m, then f (m)(z) ∈ H∞ α1
(k−m−1)! +1

;

(vi) If β1 = k − m and β2 > k − m, then f (m)(z) ∈ H∞ α1
(k−m−1)! +β2−k+m

;

(vii) If β1 > k − m, then for any finite β2, f (m)(z) ∈ εβ1−k+m.

Proof. For all z = reiθ ∈ D, set

g(z) = C3 +
1

(k − m − 1)!

∫ r

0
|F(seiθ)|(1 − s)k−m−1ds

and

h(z) = exp
(

1
(k − m − 1)!

∫ r

0
|A(seiθ)|(1 − s)k−m−1ds

)
.

By Lemma 5.1, there exists a constant C3 > 0 such that

| f (m)(z)| ≤ |g(z)| · |h(z)|.

From the conditions of Theorem 5.4, we get

|g(z)| ≤


C3 +

C4

(1 − r)β2−k+m , β2 > k − m,

C3 + C6 log
1

1 − r
, β2 = k − m,

C3 −C4, β2 < k − m,

and

|h(z)| ≤



exp
(

C5

(1 − r)β1−k+m

)
, β1 > k − m,(

1
1 − r

)C7

, β1 = k − m,

exp (−C5) , 0 ≤ β1 < k − m,

where C3 > 0, C4 = α2
(k−m−1)!(β2−k+m) , C5 = α1

(k−m−1)!(β1−k+m) , C6 = α2
(k−m−1)! and C7 = α1

(k−m−1)! are constants.
It follows from these inequalities that these conclusions (i)-(vii) hold. �
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9. J. Heittokangas, R. Korhonen, J. Rättyä, Linear differential equations with coefficients in weighted
Bergman and Hardy space, Trans. Amer. Math. Soc., 360 (2008), 1035–1055.
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