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1. Introduction

The Poisson distribution is so important among the discrete distributions. Poisson distribution
represents the probability of prescribed number of events arising at a fixed time or space interval as
these events happen at a predicted constant mean rate and regardless of time after the last one. It’s an
occurrence. Also the Poisson distribution in other indicated intervals like time, area or volume can be
applicable for series of events. Probability mass function (PMF) of Poisson distribution is given by

P(T = t) =
µte−µ

t!
, t = 0, 1, 2, ..., µ > 0. (1.1)

Sadooghi-Alvandi [1] considered estimation of the parameter of a Poisson distribution using a linex
loss function. Zhang et al. [2] computed empirical Bayes estimators of the parameter of the Poisson
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distribution under Stein’s loss function. Li and Hao [3] computed E-Bayesian and hierarchical
Bayesian estimators of Poisson distribution parameter under the entropy loss function.

E-Bayesian estimation was introduced by Han [4] as a simpler method of estimation. Jaheen and
Okasha [5] studied E-Bayesian estimate for Burr Type XII model that focuses on type-2 censorship.
Karimnezhad et al. [6] considered Bayes, E-Bayes and robust Bayes predicts a potential discovery as
a precautionary step Prediction error functions for applications. Gonzalez-Lopez et al. [7] gave the
E-Bayesian approximations for device performance and feasible option centered on exponential
distribution. The apparatus stability to find parameter dependent on the function with asymmetric loss
was proposed by Yousefzadeh [8] for the estimations of E-Bayesian and hierarchical Bayesian.
Estimators of E-Bayesian for structural approach based statistical information are obtained by Okasha
and Wang [9]. Han [10, 12], computed the E-Bayesian estimates for different distributions.
Kiapour [13] considered premium estimate and forecast of Bayes, E-Bayes and robust Bayes through
square log error loss function. With the help of E-Bayesian method, Okasha [14, 15] concerned for
calculating estimates for parameters of different distributions for different types of data. Okasha et
al. [16] computed E-Bayesian estimators of Burr Type XII distribution based on adaptive Type-II
progressive hybrid censored data. Basheer et al. [17] considered E-Bayesian and Hierarchical
Bayesian Estimations for the parameter and reliability of the inverse Weibull distribution. E-Bayesian
estimates of a simple step stress model for exponential distribution are obtained by Nassar et al. [18].
Athirakrishnan and Abdul-Sathar [19] computed E-Bayesian and hierarchical Bayesian estimates for
the scale parameter and reversed hazard rate of inverse Rayleigh distribution. Okasha and
Mustafa [20] studied E-Bayesian estimation for Weibull distribution in the case of adaptive Type-I
progressive hybrid censored competing risks data.

The empirical Bayesian analysis considers the case when the parameters of the prior distribution
are unknown. This implies that the sampling distribution is identified, however the earlier distribution
isn’t. The marginal distribution in order to retrieve the prior distribution from representative sample is
then used. In this case, hyperparameters are estimated from the random sample, then we used to
compute the Bayesian estimators. The empirical Bayes method is introduced in Robbins [21–23].
Zhang et al. [24] computed the empirical Bayes estimators of the parameters of the normal
distribution with a conjugate normal-inverse-gamma prior. Mikulich-Gilbertson et al. [25] used
empirical Bayes predictors from generalized linear mixed models to test and visualize associations
among longitudinal outcomes. Martin et al. [26] proposed empirical Bayes posterior concentration in
sparse high dimensional linear models. Empirical Bayes estimates in exponential reliability model
was computed by Sarhan [27]. Chang and Li [28] proposed empirical Bayes decision rule for
classification on defective items in Weibull distribution. The role of empirical Bayes methodology in
medical statistics is discussed by van Houwelingen [29]. Jaheen [30] derived empirical Bayes
estimators for the parameter of the generalized exponential distribution based on record values. In this
paper, we extend the idea of empirical estimation to E-Bayesian estimation. We consider the
hyperparameters of the prior parameters are unknown. We use the moment method to estimate this
parameters using the random sample. In the case of the classical E-Bayesian estimation we treat the
hyperparameters as being known, but in practice the hyperparameters are unknown and therefore it is
more critical to use empirical E-Bayesian estimation.
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2. Bayesian estimation

Based on a complete sample T1,T2, ...,Tn of size n, from Poisson distribution, the likelihood
function can be written as

L(t; µ) =
µ

∑n
i=1 tie−nµ∏n

i=1 ti!
, t = 0, 1, 2, ..., µ > 0. (2.1)

The prior distribution with gamma conjugate for µ, as

π(µ) =
λθ

Γ(θ)
µθ−1e−λµ; µ > 0, θ > 0, λ > 0. (2.2)

From (2.1) and (2.2), the posterior distribution function can be obtained as following

π∗(µ | t) =
(λ∗)θ

∗

Γ(θ∗)
µθ
∗−1e−λ

∗µ; µ > 0, θ∗ > 0, λ∗ > 0, (2.3)

where

λ∗ = n + λ, θ∗ = θ +

n∑
i=1

ti. (2.4)

In view of squared error loss function, the Bayes estimator of the parameter µ is suggested as

µ̂B =
θ∗

λ∗
. (2.5)

3. E-Bayesian estimation

According to E-Bayesian method, prior parameters θ and λ ought to be chosen to ensure that π(µ)
is a lower bound of µ. The differential of π(µ) is given as

dπ(µ)
dµ

=
λθ

Γ(θ)
µθ−2e−λµ

[
(θ − 1) − λµ

]
. (3.1)

Then the prior distribution π(µ) is decreasing function for λ > 0, 0 < θ < 1, for more details see
Han [4].

By considering θ and λ are independent parameters with bivariate density function

g(θ, λ) = g1(θ)g2(λ). (3.2)

Therefore, the E-Bayesian estimator of the parameter µ is given by

µ̂EB = E(µ | t) =

∫ ∫
D
µ̂Bg(θ, λ)dθdλ. (3.3)
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In this section, E-Bayesian approximation of µ parameter is based on different distributions of θ and
λ. The effect of numerous previous distributions on E-Bayesian estimates of µ is explored by these
distributions. The distributions of the parameters θ and λ are considered below:

g1(θ, λ) =
1

cB(a, b)
θa−1(1 − θ)b−1, 0 < θ < 1, 0 < λ < c,

g2(θ, λ) =
2

c2B(a, b)
(c − λ)θa−1(1 − θ)b−1, 0 < θ < 1, 0 < λ < c,

g3(θ, λ) =
2λ

c2B(a, b)
θa−1(1 − θ)b−1, 0 < θ < 1, 0 < λ < c.


(3.4)

For g1(θ, λ), g2(θ, λ) and g3(θ, λ), the E-Bayesian estimators of the parameter µ are given from (2.5),
(3.3) and (3.4), respectively, by

µ̂EB1 =
1
c

ln(
n + c

n
)(

n∑
i=1

ti +
a

a + b
), (3.5)

µ̂EB2 =
2
c

(n + c
c

ln(
n + c

n
) − 1

)
(

n∑
i=1

ti +
a

a + b
), (3.6)

and

µ̂EB3 =
2
c

(
1 −

n
c

ln(
n + c

n
)
)
(

n∑
i=1

ti +
a

a + b
). (3.7)

3.1. Estimation of E-Bayesian with E-posterior risk

Posterior risk for E-Bayesian approximation was introduced first by Han [31], as follows

E − R(µ̂EB) =

∫ ∫
D

R(µ̂B)g(θ, λ)dθdλ = E
[
R(µ̂B)

]
, (3.8)

where posterior risk R[µ̂B] of Bayesian estimation is given by

R(µ̂B) = Var(µ|t) = E(µ2|t) −
[
E(µ|t)

]2
. (3.9)

From (2.3) and (3.9) we have

R(µ̂B) =
θ∗

(λ∗)2 , (3.10)

where θ∗ and λ∗ as in (2.4).
The E-posterior risk for µ̂EBi(i = 1, 2, 3) from (3.4), (3.8) and (3.10), respectively, are shown by

E − R(µ̂EB1) =
1

n(n + c)
(

n∑
i=1

ti +
a

a + b
),

E − R(µ̂EB2) =
2
c2 (

c
n
− ln(

n + c
n

))(
n∑

i=1

ti +
a

a + b
),

E − R(µ̂EB3) =
2
c2 (ln(

n + c
n

) −
c

n + c
)(

n∑
i=1

ti +
a

a + b
).


(3.11)
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4. Characteristics of E-Bayesian estimators for µ

This section explores relationship among µ̂EBi and E − R(µ̂EBi), i = 1, 2, 3.

(A) Relations between µ̂EBi, i = 1, 2, 3

Lemma 1. It leads from (3.5)–(3.7)
(i) µ̂EB3 < µ̂EB1 < µ̂EB2.
(ii) limn→∞ µ̂EB1 = limn→∞ µ̂EB2 = limn→∞ µ̂EB3.

Proof. (i) Eqs (3.5)–(3.7) provide

µ̂EB1 − µ̂EB3 = µ̂EB2 − µ̂EB1 =
1
c

(
n∑

i=1

ti +
a

a + b
)[

c + 2n
c

ln(
n + c

n
) − 2]. (4.1)

For −1 < y < 1, we have ln(1 + y) = y − y2

2 +
y3

3 −
y4

4 + ... =
∑∞

k=1(−1)k−1 yk

k . Let y = c
n , when

0 < c < n, 0 < c
n < 1, we have

[c + 2n
c

ln(
n + c

n
) − 2

]
=

c + 2n
c

[c
n
−

1
2

(
c
n

)2 +
1
3

(
c
n

)3

−
1
4

(
c
n

)4 +
1
5

(
c
n

)5 + ...
]
−2

=
[c
n
−

1
2

(
c
n

)2 +
1
3

(
c
n

)3 −
1
4

(
c
n

)4 +
1
5

(
c
n

)5 + ...
]

+
[
2 −

c
n

+
2
3

(
c
n

)2 −
2
4

(
c
n

)3 +
2
5

(
c
n

)4 − ...
]
−2

=
(1
6

(
c
n

)2 −
1
6

(
c
n

)3
)
+
(3
6

(
c
n

)4 −
2

15
(
c
n

)5
)
+...

=
1
6

(
c
n

)2(1 −
c
n

) +
1

60
(
c
n

)4(9 − 8
c
n

) + ... > 0.

(4.2)

From (4.1) and (4.2), we have

µ̂EB1 − µ̂EB3 = µ̂EB2 − µ̂EB1 > 0,

that is

µ̂EB3 < µ̂EB1 < µ̂EB2.

(ii) From (4.1) and (4.2), we have

lim
n→∞

(
µ̂EB1 − µ̂EB3

)
= lim

n→∞

(
µ̂EB2 − µ̂EB1

)
=

1
c

(
n∑

i=1

ti +
a

a + b
) lim

n→∞

{1
6

(
c
n

)2(1 −
c
n

) +
1

60
(
c
n

)4(9 − 8
c
n

) + ...
}
= 0.

That is, limn→∞ µ̂EB1 = limn→∞ µ̂EB2 = limn→∞ µ̂EB3.
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(B) Connections between E − R(µ̂EBi), i = 1, 2, 3

Lemma 2. It follows from (3.11) that
(i) E − R(µ̂EB3) < E − R(µ̂EB1) < E − R(µ̂EB2).
(ii) limn→∞ E − R(µ̂EB1) = limn→∞ E − R(µ̂EB2) = limn→∞ E − R(µ̂EB3).

Proof. (i) From (3.11), we achieve[
E − R(µ̂EB1)

]
−
[
E − R(µ̂EB3)

]
=

[
E − R(µ̂EB2)

]
−
[
E − R(µ̂EB1)

]
= (

n∑
i=1

ti +
a

a + b
)
[ 2n + c
nc(n + c)

−
n
c2 ln(

n + c
n

)
]
.

(4.3)

For −1 < y < 1, we have ln(1 + y) = y − y2

2 +
y3

3 −
y4

4 + ... =
∑∞

k=1(−1)k−1 yk

k . Let y = c
n , when

0 < c < n, 0 < c
n < 1, we have

2n + c
nc(n + c)

−
n
c2 ln(

n + c
n

) =
2n + c

nc(n + c)
−

n
c2

[c
n
−

1
2

(
c
n

)2

+
1
3

(
c
n

)3 −
1
4

(
c
n

)4 +
1
5

(
c
n

)5
]

=
1

n(n + c)
+

1
n2

[
1 −

2
3

(
c
n

)
]
+

c2

n3

[1
2
−

2
5

(
c
n2 )

]
+... > 0.

(4.4)

Eqs (4.3) and (4.4) imply that

E − R(µ̂EB3) < E − R(µ̂EB1) < E − R(µ̂EB2).

(ii) From (4.3) and (4.4), we have

lim
n→∞

([
E − R(µ̂EB1)

]
−
[
E − R(µ̂EB3

]
)
)
= lim

n→∞

([
E − R(µ̂EB2)

]
−
[
E − R(µ̂EB1)

])
= lim

n→∞

[ 1
n(n + c)

+
1
n2

[
1 −

2
3

(
c
n

)
]
+

c2

n3

[1
2
−

2
5

(
c
n2 )

]
+...

]
= 0.

That is, limn→∞ E − R(µ̂EB1) = limn→∞ E − R(µ̂EB2) = limn→∞ E − R(µ̂EB3). Thus, the proof is
complete.

5. Empirical E-Bayesian estimation

In this section, we introduce empirical E-Bayesian method (EE-Bayesian). In this method, we
consider the case when the parameters a, b and c in (3.4) which are used in E-Bayesian estimation are
unknown parameters, we use empirical Bayes approach to get their estimates. The marginal PMF of
the random variable T is obtained from (1.1) and (2.2) as

f (t) =

∫ ∞

0
f (t | µ)π(µ)dµ

=
Γ(t + θ)

Γ(t + 1)Γ(λ)
λθ

(λ + 1)t+θ ; t = 0, 1, 2, ....
(5.1)
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Specifically, since θ is a positive integer, marginal distribution of random variable T is a negative
binomial distribution, NB(r, p), with parameters

r = θ, p =
λ

1 + λ
. (5.2)

The estimators of the parameters θ and λ are obtained by using the moment method. To obtain the
moment estimators of θ and λ, we need to calculate the first two moments of T , E(T ) and E(T 2). It is
easy to show that

E(T ) =
θ

λ
, E(T 2) =

θ(θ + λ + 1)
λ2 . (5.3)

Furthermore, the moment estimators can be obtained by equal the population moments with the sample
moments as

E(T r) =
1
n

n∑
i=1

T r
i . (5.4)

From (5.3) and (5.4), we obtain the moment estimators of θ and λ, respectively, by

θ̂m =
S 2

1

S 2 − S 1 − S 2
1

, (5.5)

and

λ̂m =
S 1

S 2 − S 1 − S 2
1

, (5.6)

where

S l =
1
n

n∑
i=1

T l
i , l = 1, 2. (5.7)

Also, to obtain moment estimators of parameters a and b in (3.4), we need to calculate E(θ) and E(θ2),
which is easy to show that

E(θ) =
a

a + b
, E(θ2) =

a(a + 1)
(a + b)(a + b + 1)

. (5.8)

Then, from (5.8) and applying moment method, we attain moment estimators of parameters a and b,
respectively,

âm =
A2

1 − A1A2

A2 − A2
1

, (5.9)

and

b̂m =
(1 − A1)(A1 − A2)

A2 − A2
1

, (5.10)
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where

Ah =
1
k

k∑
i=1

θh
i '

1
k

k∑
i=1

(θ̂mi)
h, h = 1, 2, (5.11)

where θ̂m is given by (5.5).
The moment estimators of c for g1(θ, λ), g2(θ, λ) and g3(θ, λ) is given, respectively, by

ĉm1 '
2
k

k∑
i=1

λ̂mi , (5.12)

ĉm2 '
3
k

k∑
i=1

λ̂mi , (5.13)

and

ĉm3 '
3
2k

k∑
i=1

λ̂mi , (5.14)

where λ̂m, is given by (5.6).
Then, the EE-Bayesian estimates of the parameter µ for g1(θ, λ), g2(θ, λ) and g3(θ, λ) are given,

respectively, by

µ̂EEB1 =
1

ĉm1
ln(

n + ĉm1

n
)(

n∑
i=1

ti +
âm

âm + b̂m
), (5.15)

µ̂EEB2 =
2

ĉm2
(
n + ĉm2

ĉm2
ln(

n + ĉm2

n
) − 1)(

n∑
i=1

ti +
âm

âm + b̂m
), (5.16)

and

µ̂EEB3 =
2

ĉm3
(1 −

n
ĉm3

ln(
n + ĉm3

n
))(

n∑
i=1

ti +
âm

âm + b̂m
). (5.17)

5.1. The empirical E-posterior risk of EE-Bayesian estimation

Empirical E-posterior risk related to estimates of EE-Bayesian µ̂EEBi(i = 1, 2, 3) are given from
(3.11), by replacing the parameters a, b and c with their corresponding moment estimators

EE − R(µ̂EEB1) =
1

n(n + ĉm1)
(

n∑
i=1

ti +
âm

âm + b̂m
),

EE − R(µ̂EEB2) =
2

ĉ2
m2

(
ĉm2

n
− ln(

n + ĉm2

n
))(

n∑
i=1

ti +
âm

âm + b̂m
),

EE − R(µ̂EEB3) =
2

ĉ2
m3

(ln(
n + ĉm3

n
) −

ĉm3

n + ĉm3
)(

n∑
i=1

ti +
âm

âm + b̂m
).


(5.18)

AIMS Mathematics Volume 6, Issue 8, 8205–8220.



8213

6. Simulation in Monte Carlo

In this part, a Monte Carlo modeling is applied for an examination of E-Bayes and EE-Bayesian
assessment with the respective projections estimating maximum likelihood.

6.1. E-Bayesian estimation

Here, Monte Carlo simulation is being established to equate the maximum likelihood and
E-Bayesian model specification. It calls the following steps:

(i) We generate θ and λ for specified values of previous parameters (a, b) and (0, c) via beta and
uniform priors (3.4), individually.

(ii) Generate µ from gamma density (2.2) for predicted values of θ and λ.

(iii) For known values of µ in step (2), we generate complete sample of Poisson distribution with PMF
(1.1).

(iv) Maximum likelihood estimate µ̂ML and µ̂EBi, i = 1, 2, 3 are computed based on squared loss
function.

(v) Also we compute E − R(µ̂EBi) from (3.11) where i = 1, 2, 3.

(vi) The output of all results has been analyzed mathematically in three terms with i = 1, 2, 3. First
is taken as the average of the estimates µ̂ML and µ̂EBi, the second is the estimated risks (ERs) of
µ̂ML and µ̂EBi, and the third is E-posterior risks E − R(µ̂EBi), i = 1, 2, 3. Repetition 10000 times of
above steps, then simulation tests are appeared in Tables 1–3.

Table 1. The estimates of µ̂ML and µ̂EBi, (i = 1, 2, 3).

n c (a, b) µ̂ML µ̂EB1 µ̂EB2 µ̂EB3

10 3 (2,1) 0.6708 0.6449 0.6731 0.6168
(3,4) 0.5366 0.5067 0.5289 0.4846

4 (2,1) 0.4999 0.4766 0.5033 0.4499
(3,4) 0.4032 0.3752 0.3962 0.3542

30 3 (2,1) 0.6673 0.6572 0.6676 0.6467
(3,4) 0.5368 0.5252 0.5336 0.5169

4 (2,1) 0.5002 0.4904 0.5006 0.4802
(3,4) 0.4018 0.3906 0.3987 0.3824

50 3 (2,1) 0.6689 0.6626 0.6690 0.6562
(3,4) 0.5374 0.5302 0.5353 0.5250

4 (2,1) 0.5012 0.4950 0.5013 0.4886
(3,4) 0.4027 0.3957 0.4007 0.3906

100 3 (2,1) 0.6694 0.6661 0.6694 0.6629
(3,4) 0.5380 0.5343 0.5370 0.5317

4 (2,1) 0.5017 0.4985 0.5017 0.4952
(3,4) 0.40330 0.39965 0.40226 0.39704
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Table 2. Estimated risks (ERs) of µ̂ML and µ̂EBi, (i = 1, 2, 3).

n c (a, b) µ̂ML µ̂EB1 µ̂EB2 µ̂EB3

10 3 (2,1) 0.0666 0.0515 0.0555 0.0493
(3,4) 0.0529 0.0414 0.0441 0.0398

4 (2,1) 0.0503 0.0362 0.0397 0.0343
(3,4) 0.0400 0.0291 0.0316 0.0276

30 3 (2,1) 0.0214 0.0196 0.0201 0.0193
(3,4) 0.0178 0.0164 0.0167 0.0161

4 (2,1) 0.0167 0.0148 0.0153 0.0145
(3,4) 0.0132 0.0118 0.0122 0.0116

50 3 (2,1) 0.0134 0.0127 0.0129 0.0125
(3,4) 0.0109 0.0103 0.0105 0.0102

4 (2,1) 0.0101 0.0094 0.0096 0.0092
(3,4) 0.0080 0.0075 0.0076 0.0074

100 3 (2,1) 0.0066 0.00639 0.00645 0.00635
(3,4) 0.00521 0.00507 0.00511 0.00504

4 (2,1) 0.00492 0.00474 0.00479 0.00471
(3,4) 0.00399 0.00385 0.00389 0.00382

Table 3. The values of E − R(µ̂EBi), (i = 1, 2, 3).

n c (a, b) E − R(µ̂EB1) E-R(µ̂EB2) E-R(µ̂EB3)

10 3 (2,1) 0.0567 0.0617 0.0518
(3,4) 0.0446 0.0485 0.0407

4 (2,1) 0.0405 0.0450 0.0359
(3,4) 0.0319 0.0354 0.0283

30 3 (2,1) 0.0209 0.0216 0.0202
(3,4) 0.0167 0.0172 0.0162

4 (2,1) 0.0154 0.0160 0.0147
(3,4) 0.0122 0.0127 0.0117

50 3 (2,1) 0.0129 0.0131 0.0126
(3,4) 0.0103 0.0105 0.0101

4 (2,1) 0.0095 0.0098 0.0093
(3,4) 0.0076 0.0078 0.0074

100 3 (2,1) 0.00656 0.00663 0.00649
(3,4) 0.00527 0.00532 0.00521

4 (2,1) 0.00489 0.00495 0.00482
(3,4) 0.00392 0.00397 0.00387
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6.2. EE-Bayesian estimation

In order to compare maximum likelihood and approximation of EE-Bayesian design, a Monto Carlo
technique is enforced. The subsequent measures are noticed.

(i) We construct θ and λ for the desired value of obtained parameters (a, b) and (0, c) by beta and
(3.4), independently.

(ii) Develop µ from gamma calculated density (2.2) for expected values of θ and λ.

(iii) For recognized values of µ in step (2), we generate complete sample of Poisson distribution with
PMF (1.1).

(iv) Estimations µ̂ML and µ̂EEBi, i = 1, 2, 3 are computed by orienting squared loss function.

(v) Also we compute EE − R(µ̂EEBi), i = 1, 2, 3 from (5.18).

(vi) The efficiency of all findings was examined statistically in three terms. The first is the average of
the estimates µ̂ML and µ̂EEBi, the second is the estimated risks (ERs) of µ̂ML, µ̂EEBi, and the third is
empirical E-posterior risks EE − R(µ̂EEBi), for all i = 1, 2, 3. Simulation runs by repeating 10000
times of above steps are seen in Tables 4–6.

Table 4. The estimates of µ̂ML and µ̂EEBi, (i = 1, 2, 3).

n c (a, b) µ̂ML µ̂EEB1 µ̂EEB2 µ̂EEB3

10 3 (3,2) 0.6281 0.6285 0.6301 0.6262
(4,3) 0.6078 0.6094 0.6109 0.6072

4 (3,2) 0.4693 0.4755 0.4766 0.4741
(4,3) 0.4547 0.4608 0.4617 0.4594

30 3 (3,2) 0.62631 0.62563 0.62587 0.62532
(4,3) 0.60590 0.60573 0.605947 0.60544

4 (3,2) 0.46938 0.47108 0.47123 0.47089
(4,3) 0.45552 0.45716 0.45730 0.45698

50 3 (3,2) 0.62671 0.62616 0.62625 0.62604
(4,3) 0.60739 0.60714 0.60722 0.60703

4 (3,2) 0.46936 0.47032 0.47038 0.47025
(4,3) 0.45586 0.45678 0.45684 0.45672

100 3 (3,2) 0.62715 0.62682 0.62684 0.62679
(4,3) 0.60866 0.60847 0.60849 0.60844

4 (3,2) 0.47019 0.47064 0.47065 0.47062
(4,3) 0.45601 0.45645 0.45646 0.45643

AIMS Mathematics Volume 6, Issue 8, 8205–8220.



8216

Table 5. Estimated risks (ERs) of µ̂ML and µ̂EEBi, (i = 1, 2, 3).

n c (a, b) µ̂ML µ̂EEB1 µ̂EEB2 µ̂EEB3

10 3 (3,2) 0.0616 0.0470 0.0472 0.0466
(4,3) 0.0596 0.0457 0.0459 0.0454

4 (3,2) 0.0463 0.0362 0.0363 0.0359
(4,3) 0.0451 0.0353 0.0355 0.0351

30 3 (3,2) 0.02063 0.018716 0.018729 0.018700
(4,3) 0.01987 0.01807 0.01808 0.01805

4 (3,2) 0.01569 0.01438 0.01438 0.01437
(4,3) 0.01507 0.01381 0.01382 0.01380

50 3 (3,2) 0.01241 0.01170 0.01171 0.01169
(4,3) 0.01211 0.01142 0.01143 0.01142

4 (3,2) 0.00934 0.008854 0.008855 0.008852
(4,3) 0.00911 0.008635 0.008637 0.008633

100 3 (3,2) 0.00611 0.005933 0.005934 0.005933
(4,3) 0.00597 0.005793 0.005793 0.005792

4 (3,2) 0.00457 0.0044478 0.00444779 0.0044480
(4,3) 0.00455 0.0044253 0.0044255 0.0044249

Table 6. Values of EE − R(µ̂EEBi), (i = 1, 2, 3).

n c (a, b) EE − R(µ̂EEB1) EE − R(µ̂EEB2) EE − R(µ̂EEB3)

10 3 (3,2) 0.0552 0.0556 0.0546
(4,3) 0.0536 0.0540 0.0531

4 (3,2) 0.0422 0.0425 0.0418
(4,3) 0.0409 0.0412 0.0406

30 3 (3,2) 0.019875 0.019897 0.019846
(4,3) 0.019260 0.019280 0.019233

4 (3,2) 0.015032 0.015045 0.015014
(4,3) 0.0145952 0.0146081 0.0145780

50 3 (3,2) 0.012159 0.012164 0.012152
(4,3) 0.0117963 0.011801 0.011790

4 (3,2) 0.009158 0.009161 0.009154
(4,3) 0.008898 0.008901 0.008894

100 3 (3,2) 0.0061747 0.0061754 0.0061738
(4,3) 0.0059957 0.0059963 0.0059949

4 (3,2) 0.0046429 0.0046433 0.0046423
(4,3) 0.0045037 0.0045040 0.0045031
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7. Real data analysis

Information on the quantity of deaths caused by horse kicks in light of the perception of 10
Prussian cavalry corps for a very long time (proportionally, 200 corps-years) in Figure 1 are issued.
Prussian authorities gathered this data during the last year of the nineteenth century to consider the
perils that horses presented to fighters, (see Bortkiewicz [32]). Padilla [33] discussed the validity of

the model for the given real data set and showed that Poisson distribution fits quite well to it.
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Figure 1. Bortkiwewicz data on deaths in Prussian cavalry.

In the present circumstance, possibilities of death because of a kick from a horse are little while.
Although the number of troops exposed to this danger is very high. Hence, a Poisson distribution can
well match the results. Then, it is possible to approximate the mean amount of deaths per period as

µ̂ =
0 × 109 + 1 × 65 + 2 × 22 + 3 × 3 + 4 × 1

200
= 0.61. (7.1)

In this section we consider E-Bayesian and EE-Bayesian estimation for parameter µ.

7.1. E-Bayesian

For the real data that is considered in Figure 1, we obtain E-Bayesian estimates and E-posterior risk
for µ. The computational results are recorded in Table 7.

Table 7. Estimates µ̂EBi and corresponding values E − R(µ̂EBi), (i = 1, 2, 3).

µ̂EB1 µ̂EB2 µ̂EB3 E − R(µ̂EB1) E-R(µ̂EB2) E-R(µ̂EB3)

0.6110 0.6115 0.6105 0.003047 0.003052 0.003042

7.2. EE-Bayesian

For the real data that is considered in Figure 1, we obtain EE-Bayesian estimates and EE-posterior
risk for the parameter µ. The numerical results are listed in Table 8.
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Table 8. The estimates µ̂EEBi and corresponding values EE − R(µ̂EBi), (i = 1, 2, 3).

µ̂EEB1 µ̂EEB2 µ̂EEB3 EE − R(µ̂EEB1) EE − R(µ̂EEB2) EE − R(µ̂EEB3)

0.60026 0.60031 0.60021 0.0029407 0.002941 0.002900

8. Conclusions

This paper describes E-Bayesian and EE-Bayesian methodology which are considered as to find
approximation of unknown parameter of Poisson distribution with complete sample. E-Bayesian and
EE-Bayesian estimators are implemented under the function of squared error loss and three
hyper-parameter distributions. Also, E-posterior and EE-posterior risks are computed. Some
statistical properties of E-Bayesian and E-posterior risk estimates relative to squared error loss
function are extracted. Via a simulation analysis, a survey of different estimated parameters is carried
out. The simulation results indicate that E-Bayesian and EE-Bayesian methods do very well in the
estimation of model parameters under minimal mean square defects. Finally, to follow the E-Bayes
and EE-Bayes estimator, one individual data set is scrutinized. It is inferred from the mathematical
examination that E-Bayesian and EE-Bayesian estimators operate effectively than classical estimators.
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