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Abstract: In this paper, we study the elliptic system of competitive type with nonhomogeneous terms
∆u = upvq + h1(x), ∆v = urvs + h2(x) in Ω with two types of boundary conditions: (I) u = v = +∞

and (SF) u = +∞, v = f on ∂Ω, where f > 0, (p − 1)(s − 1) − qr > 0, and Ω ⊂ RN is a smooth
bounded domain. The nonhomogeneous terms h1(x) and h2(x) may be unbounded near the boundary
and may change sign in Ω. First, for a single semilinear elliptic equation with a singular weight
and nonhomogeneous term, boundary asymptotic behaviour of large positive solutions is established.
Using this asymptotic behaviour, we show existence of large positive solutions for this elliptic system
with the boundary condition (SF), existence of maximal solution, boundary asymptotic behaviour and
uniqueness of large positive solutions for this elliptic system with (I).
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1. Introduction and main results

Consider the following elliptic system{
∆u = upvq + h1(x), in Ω,

∆v = urvs + h2(x), in Ω,
(1.1)

with two types of boundary conditions:

u = +∞, v = +∞, on ∂Ω, (I)

u = +∞, v = f , on ∂Ω, (SF)

where Ω ⊂ RN is a bounded domain of class C2,µ for some 0 < µ < 1 and h1(x), h2(x) ∈ C(Ω), f > 0,
the parameters p, s > 1 and q, r > 0 such that (p − 1)(s − 1) − qr > 0. The condition u = +∞, v = +∞
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on ∂Ω is defined in the sense of that u(x)→ +∞ and v(x)→ +∞ as d(x):=dist(x, ∂Ω)→ 0. The system
can represent the competitive model of the two populations in the environment Ω. If the problem have
a solution, it indicates that the two populations can coexist in Ω.

The large solutions of a single equation with nonhomogeneous terms have been studied recently
(see [3, 7, 8, 10, 15–17, 19]). In [10], Garcı́a-Melián studied existence, uniqueness and nonexistence of
boundary blow-up solutions to problem{

∆u = |u|p−1u + h(x), in Ω,

u = +∞, on ∂Ω,

where p > 1, Ω ⊂ RN is a bounded smooth domain. As far as we know, it was the first time that an
unbounded and sign-changing inhomogeneous term h(x) in this equation was studied. In [17], Wang
investigated the problem {

∆u = b(x)up − ad(x)−q, in Ω,

u = +∞, on ∂Ω,

where the parameters p > 1, a > 0, q ∈ R are constants, and b(x) ∈ Cµ(Ω) is a positive function. They
showed existence, uniqueness and the first order asymptotic behaviour of positive solutions. And,
in [19], Wang et al. studied the following problem{

∆u = a(x)|u|p−1u + h(x), in Ω,

u = +∞, on ∂Ω,
(1.2)

where p > 1, h(x) ∈ C(Ω), a(x) is a Cµ

loc (0 < µ < 1) continuous nonnegative function in Ω and satisfies

C1d(x)−γ ≤ a(x) ≤ C2d(x)−γ in {x ∈ Ω|0 < d(x) < δ0}

for some positive constants C1,C2, δ0 and 0 < γ < 2. They studied existence, uniqueness and
nonexistence of large solutions. For more results about existence and uniqueness of positive large
solutions, we refer to the citation of [6].

In addition to the single equation, the study of systems is also meaningful due to its multiple
applications. For example, the application of Newtonian fluids theory. Boundary blow-up solutions
for elliptic systems have been studied in many papers [5, 9, 11–13, 18]. Dancer and Du [2] studied the
predator-prey model. The boundary blow-up solutions to elliptic systems were studied in [11]. The
existence, uniqueness and the first order boundary estimates of large solutions to the following
systems (h1(x), h2(x) = 0), {

∆u = upvq, in Ω,

∆v = urvs, in Ω,

with conditions: (F) u = g, v = f , (I), (SF) on ∂Ω, where Ω ⊂ RN is a bounded domain of class
C2,µ for some 0 < µ < 1 and the parameters p, s > 1, q, r > 0, g, f > 0, were investigated in Garcı́a-
Melián and Rossi [12]. In [18], Wang et al. showed the existence of positive solutions for the elliptic
system (1.1) with (I). However, for large positive solutions to an elliptic system of competitive type
with nonhomogeneous terms, we need to find appropriate conditions to get properties of solutions. We
have to overcome this difficulty with the relevant results of a single equation.

In this paper, firstly, we explore boundary asymptotic behaviour of large positive solutions to{
∆u = a(x)up + h(x), in Ω,

u = +∞, on ∂Ω.
(1.3)
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Obviously all positive solutions of problem (1.2) are also solutions of (1.3). Then, we show boundary
asymptotic behaviour and uniqueness of large solutions for (1.1) with the boundary condition (I) using
the conclusions about the single equation.

The notations Ωδ := {x ∈ Ω : d(x) < δ}, Ωδ := {x ∈ Ω : d(x) > δ} for δ > 0, h+(x):=max {h(x), 0}
and h−(x):=min {h(x), 0} are used through this paper.

The weight function a(x) in (1.3) satisfies the following two conditions.
(a1) a(x) is a Cµ

loc continuous nonnegative function in Ω, 0 < µ < 1.
(a2) There exists a positive continuous function c0(x) on ∂Ω such that lim

x→x0
d(x)γa(x) = c0(x0) for every

x0 ∈ ∂Ω, 0 < γ < 2.
For h(x) in (1.3), here are three conditions that will be used and γ is the same constant in (a2).

(h1) lim inf
x→∂Ω

d(x)
2p−γ
p−1 h(x) > −∞.

(h2) d(x)2−λh+(x) ≤ C, where C is a constant and 0 < λ < min {1, 2 − γ}.
(h3) lim

x→∂Ω
d(x)

2p−γ
p−1 h−(x) = 0.

Apparently, (h3) implies (h1). We use different conditions in our theorems.
The main purpose of the paper is to study the influence of nonhomogeneous terms on the properties

of the solution for the elliptic systems. In fact, the results shows that the solution is stable when the
nonhomogeneous terms don’t change much. It is worthwhile to mention our assumption that a(x) is
nonnegative in Ω and singular on ∂Ω. And, h(x) may be unbounded near ∂Ω and change sign in Ω.
This work can be considered as an extension of such results on the system without nonhomogeneous
terms. With regard to boundary asymptotic behavior of positive solutions to (1.3), we have:

Theorem 1.1. Suppose that p > 1, a(x) satisfies conditions (a1) and (a2), h(x) ∈ C(Ω) satisfies (h2)
and (h3). The problem (1.3) admits at most one positive solution and if u(x) is the solution, then u(x)
satisfies

lim
x→x0

d(x)τu(x) = ( τ(τ+1)
c0(x0) )

1
p−1

for every x0 ∈ ∂Ω, where τ =
2−γ
p−1 and γ is given in (a2).

With regard to existence of positive solutions for the elliptic system with the boundary condition
(SF), we have:

Theorem 1.2. Suppose that (p − 1)(s − 1) > qr and 1
2 (p − 1) < r < p − 1. For 0 < λ̃1 < 1,

2 − 2r
p−1 ≤ λ̃2 < 1, there exists a constant c̃ > 0 such that if sup

x∈Ω
d(x)2−λ̃1h1(x) ≤ c̃, sup

x∈Ω
d(x)2−λ̃2h2(x) ≤ c̃,

then system (1.1) with the boundary condition (SF) admits a positive solution.

Definition 1.3. If the solution (ū∗, v̄∗) and any other solution (u, v) of system (1.1) with the boundary
condition (I) is such that ū∗ ≥ u, v̄∗ ≤ v, then we call (ū∗, v̄∗) the maximal solution of system (1.1) with
the boundary condition (I). And, if the reversing inequalities hold, then we call it is a minimal solution
(denoted as (u∗, v∗)).

For the elliptic system with the boundary condition (I), we have:

Theorem 1.4. Suppose that (p−1)(s−1) > qr, 1
2 (p−1) < r < p−1. For 0 < λ̃1 < 1, 2− 2r

p−1 ≤ λ̃2 < 1,
there exists a constant c̃ > 0 such that if sup

x∈Ω
d(x)2−λ̃1h1(x) ≤ c̃, sup

x∈Ω
d(x)2−λ̃2h2(x) ≤ c̃, then system (1.1)

with the boundary condition (I) admits a maximal solution.
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Theorem 1.5. Suppose that (p − 1)(s − 1) > qr, h1(x), h2(x) ∈ C(Ω) and

d(x)2−λ1h+
1 (x) ≤ C, lim

x→∂Ω
d(x)α+2h−1 (x) = 0,

d(x)2−λ2h+
2 (x) ≤ C, lim

x→∂Ω
d(x)β+2h−2 (x) = 0,

(1.4)

where α =
2(s−1−q)

(p−1)(s−1)−qr , β =
2(p−1−r)

(p−1)(s−1)−qr , C > 0, 0 < λ1 < min(1, 2 − βq), and 0 < λ2 < min(1, 2 − αr).
Assume (u, v) is a positive solution to system (1.1) with the boundary condition (I), then

lim
x→x0

d(x)αu(x) =

(
(α(α + 1))s−1

(β(β + 1))q

) 1
(p−1)(s−1)−qr

,

lim
x→x0

d(x)βv(x) =

(
(β(β + 1))p−1

(α(α + 1))r

) 1
(p−1)(s−1)−qr

,

(1.5)

for every x0 ∈ ∂Ω.

Theorem 1.6. Suppose that (p − 1)(s − 1) > qr, h1(x), h2(x) ∈ C(Ω) are non-positive functions and
satisfy (1.4). Then system (1.1) with the boundary condition (I) admits at most one positive solution.

This paper is organized as follows. Section 2 presents some preliminaries. In Section 3, we proceed
with the study of boundary asymptotic behaviour of positive solutions for the single equation. In
Section 4, the existence, global estimates, boundary asymptotic behaviour and uniqueness of positive
solutions to the system of competitive type with different boundary conditions are considered.

2. Preliminaries

We present some useful results about solutions to problem (1.3) in this section. The following
lemma is the remark after Lemma 4.1 in [19].

Lemma 2.1 ( [19]). Suppose that p > 1, a(x) satisfies conditions (a1) and (a2). And h(x) ∈ C(Ω)
satisfies (h1) and (h2). Then for any positive solution u of (1.3), Pd(x)−τ ≤ u ≤ P̃d(x)−τ for some
positive constants P, P̃ in Ωδ, where τ =

2−γ
p−1 .

Next lemma shows the uniqueness of positive solutions for problem (1.3), even when h(x) may be
unbounded near ∂Ω.

Lemma 2.2. Suppose that p > 1, a(x) satisfies conditions (a1) and (a2). And h(x) ∈ C(Ω) satisfies (h1)
and (h2). Then problem (1.3) has at most one positive solution.

Proof. We know that the condition (h2) implies that the function h(x) is bounded from above. Then,
we have the conditions of Theorem 1.4 in [19] and omit the detail. �

In particular, for the following problem{
∆u = d(x)−γup + h(x), in Ω,

u = +∞, on ∂Ω,
(2.1)

where p > 1, 0 < γ < 2 and h(x) ∈ C(Ω) satisfies (h2), (h3), we have:
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Corollary 2.3. Assume that p > 1 and γ < 2. If Up,γ,h denotes the unique positive solution of problem
(2.1), then

lim
x→x0

d(x)αUp,γ,h(x) = (α(α + 1))
1

p−1

for every x0 ∈ ∂Ω, where α =
2−γ
p−1 .

Lemma 2.4. Let u ∈ C2(Ω) satisfies{
∆u ≤ c0d(x)−γup + h(x), in Ω,

u = +∞, on ∂Ω,
(2.2)

where c0 is some positive constant and h(x) ∈ C(Ω) satisfies (h2), (h3). Then u(x) ≥ c
− 1

p−1

0 Up,γ,h̃, where

h̃(x) = c
1

p−1

0 h(x). Similarly, if {
∆u ≥ c0d(x)−γup + h(x), in Ω,

u = +∞, on ∂Ω,

then u(x) ≤ c
1

p−1

0 Up,γ,h̃.

Proof. Firstly, ∆(c
1

p−1

0 u) = c
1

p−1

0 ∆u. By (2.2), we have

∆(c
1

p−1

0 u) ≤ c
1

p−1

0 · c0d(x)−γup + c
1

p−1

0 h(x) = d(x)−γ(c
1

p−1

0 u)p + c
1

p−1

0 h(x).

Note h̃(x) = c
1

p−1

0 h(x), then ∆(c
1

p−1

0 u) ≤ d(x)−γ(c
1

p−1

0 u)p + h̃(x). It is clear that h̃(x) ∈ C(Ω) and satisfies
the conditions (h2), (h3). By Corollary (2.3) and the methods of sub- and supersolutions, we have

c
1

p−1

0 u(x) ≥ Up,γ,h̃, that is u(x) ≥ c
− 1

p−1

0 Up,γ,h̃. The other case is proved similarly. �

The following lemma is a straightforward extension of Lemma 2.4 that is about the case where Ω is
a half-space D = {x ∈ RN : x1 > 0}. We write x = (x1, x

′

), where x
′

∈ RN−1. This lemma will be used
to deduce boundary estimates for positive solutions to system (1.1).

Lemma 2.5. Suppose that u ∈ C2(D) satisfies{
∆u ≤ C1x−γ1 up + h(x), in D,
u ≥ Kx−α1 ,

where C1,K are some positive constants, α =
2−γ
p−1 and h(x) ∈ C(Ω) satisfies (h2), (h3). Then u ≥

(α(α+1)
C1

)
1

p−1 x−α1 in D. Similarly, if {
∆u ≥ C1x−γ1 up + h(x), in D,
u ≤ Kx−α1 ,

then u ≤ (α(α+1)
C1

)
1

p−1 x−α1 in D.

Proof. The proofs are analogous to the one of Lemma 9 in [12]. Assume that there exists x0 ∈ D and
l > 1 so that u(x0) > lE(x0

1)−α, where x0
1 is the first component of x0 and E = (α(α+1)

C1
)

1
p−1 . Set
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D0 = {u > lEx−α1 } ∩ Br(x0)

with r =
d(x0)

2 . By (h3), we have lim inf
x→∂Ω

d(x)
2p−γ
p−1 h(x) > −∞, that is h(x) ≥ −K1x−(α+2)

1 in D0 for some
positive constant K1. Then we deduce

∆(u − lEx−α1 ) > [Eα(α + 1)lp − K1 − lEα(α + 1)]x−α−2
1 in D0.

For simplification, we note F := Eα(α + 1)lp − K1 − lEα(α + 1).
Choose K1 > 0 such that F > 0. Since x1 ≤

3r
2 in D0, and if we define w(x) = F2α+2r−α−2

2N3α+2 (r2−|x− x0|2),
then ∆(u − lEx−α1 + w) > 0 in D0. By the maximum principe, we have that there exists x1 ∈ ∂D0 such
that

u(x0) − lE(x0
1)−α + w(x0) < u(x1) − lE(x1

1)−α + w(x1).

Thus x1 ∈ ∂Br(x0). Then w(x0) < u(x1) − lE(x1
1)−α.

Now, using x1
1 ≥

r
2 and the definition of w, we have

u(x1) >
2α+2Fr−α

2N3α+2 + lE(x1
1)−α

={
2

N3α+2 [lEα(α + 1)(lp−1 − 1) − K1] + lE}(x1
1)−α

={
2

N3α+2 lE[α(α + 1)(lp−1 − 1) −
K1

lE
] + lE}(x1

1)−α

={
2

N3α+2 [α(α + 1)(lp−1 − 1) −
K1

lE
] + 1}lE(x1

1)−α,

where α(α + 1)(lp−1 − 1) − K1
lE > 0 by F > 0. Proceeding inductively, a sequence of points xn ∈ D

satisfies

u(xn) > { 2
N3α+2 [α(α + 1)(lp−1 − 1) − K1

lE ] + 1}nlE(xn
1)−α

can be obtained, which contradicts with the inequality u ≤ Kx−α1 . Similarly, we can prove the other
case, and the lemma follows. �

3. The single equation

Proof of Theorem 1.1. Let x0 ∈ ∂Ω and {xn} ⊂ Ω be a sequence converging to x0. Let W be an open
neighborhood of x0 such that ∂Ω admits C2,µ local coordinates ϕ = (ϕ1, ϕ2, · · · , ϕn) : W → RN with
x ∈ W ∩ Ω if and only if ϕ1(x) > 0. We can also suppose ϕ(x0) = 0. If u(x) = ū(ϕ(x)), h(x) = h̄(ϕ(x)),
a(x) = ā(ϕ(x)), then we have

N∑
i, j=1

ai j(ϕ) ∂2ū
∂ϕi∂ϕ j

+
N∑

i=1
bi j(ϕ) ∂ū

∂ϕi
= ā(ϕ)ūp + h̄(ϕ), in ϕ(W ∩Ω),

where ai j, bi are Cµ and ai j(0) = δi j. Denote tn be the projections onto ϕ(W∩∂Ω) of ϕ(xn), and introduce
the functions

un(y) = dτnū(tn + dny),

where dn = d(ϕ(xn)), ϕ(xn) = tn + dn(1, 0, · · · , 0). Then the function un satisfies
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N∑
i, j=1

ai j(tn + dny) ∂2un
∂ϕi∂ϕ j

+ dn

N∑
i=1

bi j(tn + dny)∂un
∂ϕi

= dγn ā(tn + dny)up
n + dτp+γ

n h̄(tn + dny).

And, the conclusion of Lemma 2.1 implies that, for y in compact subsets M of D := {y ∈ RN : y1 >

0}, there exists n0 = n0(M) such that Λ1y−τ1 ≤ un(y) ≤ Λ2y−τ1 for n ≥ n0, where Λ1,Λ2 are positive
constants. By the above estimates, the conditions (h2), (h3) and standard methods, we obtain that for a
subsequence we have un → u0 in C1,µ

loc (M), where u0 satisfies{
∆u0 = c0(x0)y−γ1 up

0 , in D,
Λ1y−τ1 ≤ u0 ≤ Λ2y−τ1 .

By Theorem 10 and Remarks 3 b) in [1], we know this problem has a unique positive solution, that is

u0(y) =
(
τ(τ+1)
c0(x0)

) 1
p−1 y−τ1 ,

which completes the proof. �

4. The system of competitive type

In this section, it is shown that existence, global estimates, asymptotic behaviour and uniqueness of
positive solutions to this system with different boundary conditions.

4.1. Existence of positive solutions

In this subsection, we present existence of positive solution for the elliptic system (1.1) with (SF)
and existence of maximal solution for the elliptic system (1.1) with (I).

Recall that if {
∆u ≥ upvq + h1(x), in Ω,

∆v ≤ urvs + h2(x), in Ω,

then (u, v) is called a subsolution. And, if the reversing inequalities hold, then we call it a supersolution
(denoted as (ū, v̄)).

We shall show existence of positive solutions for the elliptic system (1.1) with (SF). First, we show
some lemmas which will use to prove Theorem 1.2.

Remark 4.1. The following conclusions also hold if v = f (x) is a continuous positive function on ∂Ω.

Lemma 4.2. Let n ∈ N. Suppose that p > 1, a(x) satisfies conditions (a1), (a2). There exists a constant
c̃ > 0 such that if h(x) ∈ C(Ω) satisfies sup

x∈Ω
d(x)2−λ̄h(x) ≤ c̃ for 0 < λ̄ < 1, then the following problem

{
∆u = a(x)up + h(x), in Ω,

u = n, on ∂Ω,

admits a unique positive solution.

Analogous to the proofs of Corollary 1.2 in [19] and Lemma 3 in [1], we omit the proof of Lemma
4.2.

Lemma 4.3. Suppose that (p − 1)(s − 1) > qr, h1(x), h2(x) ∈ C(Ω) satisfies (1.4). If (u, v) denotes a
solution to system (1.1) with (SF), then
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lim
x→x0

d(x)ϑu(x) =
(

(ϑ(ϑ+1))
f q

) 1
(p−1) ,

where ϑ = 2
p−1 .

Proof. Since v = f on ∂Ω, u is a positive solution to problem{
∆u = vqup + h(x), in Ω,

u = +∞, on ∂Ω,

then the proof is completed by Theorem 1.1 with γ = 0 and c0(x) ≡ f q, for every x ∈ Ω. �

Lemma 4.4 ( [4]). Let Ω be a C2 bounded domain of RN , g ∈ C(Ω) is a function such that sup
x∈Ω

d(x)γ |

g(x) |< +∞ for some 1 < γ < 2 and u ∈ C2(Ω) is a solution to the problem ∆u = g in Ω with u = 0 on
∂Ω. Then there exists C > 0 depending only on Ω and γ such that

sup
x∈Ω

d(x)γ−2 | u(x) |≤ C sup
x∈Ω

d(x)γ | g(x) |.

Lemma 4.5. Suppose (ū, v̄) is a supersolution and (u, v) is a subsolution to the problem (1.1) with
u = ū = +∞, v ≥ f ≥ v̄ on ∂Ω, and u ≤ ū, v ≥ v̄ in Ω. Also assume that ū ≤ Cd(x)−ϑ for some
positive constant C and ϑ < 2

r , 1
2 (p − 1) < r < p − 1. For 0 < λ̃1 < 1, 2 − 2r

p−1 ≤ λ̃2 < 1, there exists
a constant c̃ > 0 such that if sup

x∈Ω
d(x)2−λ̃1h1(x) ≤ c̃, sup

x∈Ω
d(x)2−λ̃2h2(x) ≤ c̃, then system (1.1) admits at

least a solution (u, v) such that u ≤ u ≤ ū, v ≥ v ≥ v̄ in Ω and u = +∞, v = f on ∂Ω.

Proof. From Lemma 4.2, there exists a constant c̃1 > 0 such that if sup
x∈Ω

d(x)2−λ̃2h2(x) ≤ c̃1, then v is a

positive, bounded function in Ω̄. There exists a constant c̃2 > 0 such that if sup
x∈Ω

d(x)2−λ̃2h2(x) ≤ c̃2, then

the problem {
∆u = vqup + h1(x), in Ω,

u = +∞, on ∂Ω,
(4.1)

admits a unique positive solution, which we denote by u1. And, ∆u ≥ vqup + h1(x) in Ω. By uniqueness
of solutions to (4.1) and the methods of sub- and supersolutions, we have u ≤ u1. Similarly, ∆ū ≤
v̄qūp + h1(x) ≤ vqūp + h1(x) in Ω, and so ū ≥ u1. By Lemma 4.2 and 0 < ur

1 ≤ Cd(x)−ϑr, ϑr < 2, we let
v1 as the unique solution to {

∆v = ur
1vs + h2(x), in Ω,

v = f , on ∂Ω.
(4.2)

We see at once that v ≥ v1 ≥ v̄ in Ω. We let u2 as the unique solution to{
∆u = vq

1up + h1(x), in Ω,

u = +∞, on ∂Ω.
(4.3)

Then, we also have that u ≤ u2 ≤ ū in Ω. And, ∆u1 = vqup
1 + h1(x) ≥ vq

1up
1 + h1(x), so u1 ≤ u2.

Recursively, we let vn be the unique solution to (4.2), with u1 replaced by un, and un be the unique
solution to (4.3), with v1 replaced by vn−1. Thus, we can obtain two sequences {un} and {vn} which
satisfy {un} is increasing, {vn} is decreasing, u ≤ un ≤ ū and v ≥ vn ≥ v̄ in Ω. By standard methods, we
conclude that there is a subsequence (still labelled by un and vn) such that un → u, vn → v in C1,µ

loc (Ω),
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where (u, v) is a solution to (1.1) with the boundary condition (SF) and u ≤ u ≤ ū, v ≥ v ≥ v̄ in Ω,
u = +∞ on ∂Ω.

Now let ωn = f − vn. Then ∆ωn = −ur
n( f − ωn)s + h2(x) in Ω, ωn = 0 on ∂Ω. Since ur

n ≤ Cd−ϑr and
ϑ < 2

r in Ω and ωn is uniformly bounded, then

| ωn |≤ C
′

d2−ϑr (4.4)

by Lemma 4.4. The inequality (4.4) also holds for ω = f − v, therefore ω = 0 on ∂Ω, that is v = f on
∂Ω. �

Proof of Theorem 1.2. By Lemma 4.2, p > 1, γ < 2, h(x) ∈ C(Ω) and there exist constants c̃ > 0,
0 < λ̄ < 1 such that sup

x∈Ω
d(x)2−λ̄h(x) ≤ c̃, then there exists a unique positive solution to problem

{
∆u = d(x)−γup + h(x), in Ω,

u = 1, on ∂Ω,

which is denoted by Vp,γ. Let ε > 0 be small, δ > 0, σ = 2r
p−1 to be chosen and (u, v) = (εUp,0, ε

−δVs,σ),
where Up,0 is a positive solution to problem{

∆u = up + h(x), in Ω,

u = +∞, on ∂Ω.

We show (u, v) is a subsolution to system (1.1) with (SF) firstly. That is to show

1 ≥ εp−δq−1Vq
s,σ + U−p

p,0(ε−1 − 1)h1(x),

1 ≤ εr−δs+δd(x)σUr
p,0 + d(x)σV−s

s,σ(εδ − 1)h2(x).
(4.5)

Inequalities p − δq − 1 > 0 and r − δs + δ < 0 will be hold if we fix δ ∈
(

r
s−1 ,

p−1
q

)
. We know

Vq
s,σ and d(x)σUr

p,0 are bounded. Then, for ε small, inequality (4.5) holds because of conditions about
h1(x), h2(x), and we get a subsolution to (1.1) with (SF).

Similarly, let (ū, v̄) = (QUp,0,Q−δVs,σ). Now we show (ū, v̄) is a supersolution to system (1.1) with
the boundary condition (SF). That is to show

1 ≤ Qp−δq−1Vq
s,σ + U−p

p,0(Q−1 − 1)h1(x),

1 ≥ Qr−δs+δd(x)σUr
p,0 + d(x)σV−s

s,σ(Qδ − 1)h2(x).
(4.6)

Then, for Q large, inequality (4.6) holds because of conditions about h1(x), h2(x), and we get a
supersolution to (1.1) with (SF) and u ≤ ū, v ≥ v̄. Therefore, the existence of a positive solution (u, v)
to (1.1) with (SF) follows from Lemma 4.5 and r < p − 1. �

Next, we show existence of solutions to the following problem
∆u = upvq + h1(x), in Ω,

∆v = urvs + h2(x), in Ω,

u = k1(x), v = k2(x), on ∂Ω,

(4.7)

where k1(x), k2(x) are positive continuous functions on ∂Ω. By the standard method in [14], one can
prove the following lemma.
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Lemma 4.6 ( [18]). Suppose that (ū, v̄) is a supersolution and (u, v) is a subsolution to problem (4.7)
with u ≤ k1(x) ≤ ū, v ≥ k2(x) ≥ v̄ on ∂Ω. And, u ≤ ū, v ≥ v̄ in Ω. Then Problem (4.7) admits at least a
solution (u, v) that u ≤ u ≤ ū, v ≥ v ≥ v̄ in Ω and u = k1(x), v = k2(x) on ∂Ω.

Proof of Theorem 1.4. Define Ω 1
n

:= {x ∈ Ω : d(x) < 1
n }. First, we prove that for the following

problems 
∆un = up

nvq
n + h1(x), in Ω 1

n
,

∆vn = ur
nvs

n + h2(x), in Ω 1
n
, n, n0 ∈ N, n > n0,

un = +∞, vn = f (n), on ∂Ω 1
n
,

(4.8)

we have  un ≥ un+1, in Ω 1
n
,

vn ≤ vn+1, in Ω 1
n
.

Choose f (n) = 1 + C
′

( 1
n2 )%, where C

′

is the uniform constant in (4.4), % = 2 − ϑr, that is | vn − f (n) |≤
C
′

d%. Since f (n+1) = 1+C
′

( 1
(n+1)2 )%, f (n) = 1+C

′

( 1
n2 )% on ∂Ω 1

n
, then f (n+1) > f (n). That is vn+1 > vn

on ∂Ω 1
n
. Clearly, un+1 < un on ∂Ω 1

n
. By Lemma 4.6, we have un > un+1, in Ω 1

n
,

vn < vn+1, in Ω 1
n
.

Thus, we get two sequences {un} and {vn} which satisfy {un} is decreasing, {vn} is increasing and un →

ū∗, vn → v̄∗ in Ω. It is easy to check that (ū∗, v̄∗) is a solution to system (1.1) with (I) and by the
construction of {un}, {vn}, (ū∗, v̄∗) is also the maximal solution. Then, for any positive solution (u, v) to
system (1.1) with (I) and for any x ∈ Ω, we have un > u, vn < v. Thus, ū∞ ≥ u, v̄∞ ≤ v as n → +∞.
The Theorem is proved. �

4.2. Global estimates of solutions

Theorem 4.7. Assume that (p − 1)(s − 1) > qr and r < p − 1, q < s − 1, and h1(x), h2(x) satisfy (1.4),
then positive solutions (u, v) of system (1.1) with the boundary condition (I) satisfy

Ad(x)−α ≤ u ≤ Bd(x)−α, Ad(x)−β ≤ v ≤ Bd(x)−β, in Ω, (4.9)

for some A, B > 0.

Proof. Let a0 = inf v > 0. Then ∆u ≥ aq
0up + h1(x) in Ω. Note

Ap,γ,h̃ = sup
x∈Ω

d(x)αUp,γ,h̃(x), Bp,γ,h̃ = inf
x∈Ω

d(x)αUp,γ,h̃(x). (4.10)

Clearly, they are positive and finite. Lemma 2.4 implies that u ≤ a
−

q
p−1

0 Up,0,h̃(1)
1

, that is

u ≤ a
−

q
p−1

0 Ap,0,h̃(1)
1

d−α0 , where α0 = 2
p−1 , h̃(1)

1 = a
q

p−1

0 h1. We use this into the right side of the latter
equation in (1.1). Then,

∆v ≤ a
−

qr
p−1

0 Ar
p,0,h̃(1)

1

d−α0rvs + h2(x), in Ω.

Using Lemma 2.4, we obtain
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v ≥ (a
−

qr
p−1

0 Ar
p,0,h̃(1)

1

)−
1

s−1 Bs,α0r,h̃(1)
2

d−β0 , in Ω,

where β0 = 2−α0r
s−1 , h̃(1)

2 = (a
−

q
p−1

0 Ap,0,h̃(1)
1

)
r

s−1 h2. Inductively, we have

u ≤ a
−

q
p−1

n Ap,βn−1q,h̃(n+1)
1

d−αn , v ≥ an+1d−βn , (4.11)

in Ω, where

αn =
2 − βn−1q

p − 1
,

βn =
2 − αnr

s − 1
,

an+1 = a
qr

(p−1)(s−1)−qr
n A−

r
s−1

p,βn−1qBs,αnr,

h̃(n+1)
1 = a

q
p−1
n h1,

h̃(n+1)
2 = (a

−
q

p−1
n Ap,βn−1q,h̃(n+1)

1
)

r
s−1 h2.

(4.12)

In fact,

βn =
2(p−1−r)

(p−1)(s−1) +
qr

(p−1)(s−1)βn−1

and β1 > β0, βn ≤ β. By elementary calculations, we have βn → β =
2(p−1−r)

(p−1)(s−1)−qr as n → +∞. Then
αn → α =

2(s−1−q)
(p−1)(s−1)−qr .

For an+1, the third Eq in (4.12) and Lemma 7 in [12] imply that there exists a positive constant N
such that an+1 ≥ Naθn, where θ =

qr
(p−1)(s−1) < 1. Iterating above inequality we deduce

an+1 ≥ aθ
n+1

0 Nθn+θn−1+···+θ+1.

Then lim inf
n→+∞

an+1 ≥ N
1

1−θ > 0 is obtained by n → +∞. Then, for h̃(n+1)
2 , the fifth equation in (4.12) and

the analysis of an+1, we have

a
−

qr
(p−1)(s−1)

n A
r

s−1

p,βn−1q,h̃(n+1)
1

≥ Na−θn−1 ≥ a(−θ)n

0 N1−θ+θ2−θ3+···+(−θ)n−1
.

Passing to the limit we have lim inf
n→+∞

(a
−

q
p−1

n Ap,βn−1q,h̃(n+1)
1

)
r

s−1 ≥ N1 > 0 when n are odd numbers, and

lim inf
n→+∞

(a
−

q
p−1

n Ap,βn−1q,h̃(n+1)
1

)
r

s−1 ≥ N
1−θ
1+θ > 0 when n are even numbers.

Therefore, h̃(n+1)
1 and h̃(n+1)

2 satisfy the conditions (h2) and (h3). Thus, by (4.11), we have u ≤ Bd−α,
v ≥ Ad−β in Ω as n → +∞ for some A, B > 0. Similarly, the reversed inequalities can be proved, thus
the proof is complete. �
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4.3. Boundary asymptotic behavior and Uniqueness of positive solutions

Proof of Theorem 1.5. Let x0 ∈ ∂Ω and {xn} ⊂ Ω be a sequence converging to x0. Take V be an open
neighborhood of x0 such that ∂Ω admits C2,µ local coordinates ξ = (ξ1, ξ2, · · · , ξN) : V → RN with
x ∈ V ∩ Ω if and only if ξ1(x) > 0. We can also suppose ξ(x0) = 0. If u(x) = ū(ξ(x)), v(x) = v̄(ξ(x)),
h1(x) = h̄1(ξ(x)), h2(x) = h̄2(ξ(x)), then we have

N∑
i, j=1

ai j(ξ) ∂2ū
∂ξi∂ξ j

+
N∑

i=1
bi j(ξ) ∂ū

∂ξi
= ūpv̄q + h̄1(ξ),

N∑
i, j=1

ai j(ξ) ∂2v̄
∂ξi∂ξ j

+
N∑

i=1
bi j(ξ) ∂v̄

∂ξi
= ūrv̄s + h̄2(ξ),

in ξ(V ∩Ω), where ai j, bi are Cµ and ai j(0) = δi j. Denote ζn be the projections onto ξ(V ∩ ∂Ω) of ξ(xn).
Let us introduce the functions

un(y) = dαn ū(ζn + dny), vn(y) = dβn v̄(ζn + dny)

where dn = d(ξ(xn)), ξ(xn) = ζn + dn(1, 0, · · · , 0). Then the functions (un, vn) satisfy the equations
N∑

i, j=1
ai j(ζn + dny) ∂2un

∂ξi∂ξ j
+ dn

N∑
i=1

bi j(ζn + dny)∂un
∂ξi

= up
nvq

n + dα+2
n h̄1(ζn + dny),

N∑
i, j=1

ai j(ζn + dny) ∂2vn
∂ξi∂ξ j

+ dn

N∑
i=1

bi j(ζn + dny)∂vn
∂ξi

= ur
nvs

n + dβ+2
n h̄2(ζn + dny)

On the other hand, Theorem 4.7 implies that, for un and vn in compact subsets of D := {y ∈ RN :
y1 > 0}, we have Ay−α1 ≤ un(y) ≤ By−α1 , Ay−β1 ≤ vn(y) ≤ By−β1 . Using standard theory we obtain that
un → u0, vn → v0 in C2

loc(D), where (u0, v0) satisfies
∆u0 = up

0vq
0,

∆v0 = ur
0vs

0, in D.
Ay−α1 ≤ u0 ≤ By−α1 , Ay−β1 ≤ v0 ≤ By−β1 ,

Now, we claim u0 = η1y−α1 , v0 = η2y−β1 , where

η1 =

(
(α(α + 1))s−1

(β(β + 1))q

) 1
(p−1)(s−1)−qr

, η2 =

(
(β(β + 1))p−1

(α(α + 1))r

) 1
(p−1)(s−1)−qr

. (4.13)

Since ∆u0 ≥ Aqy−βq
1 up

0 + h1(x) in Ω, Lemma 2.5 implies that u0 ≤ B1y−α1 in Ω, where B1 =
(
α(α+1)

Aq

) 1
p−1 .

And, since ∆v0 ≤ Br
1y−αr

1 vs
0+h2(x) in Ω, Lemma 2.5 implies that v0 ≥ A1y−β1 in Ω, where A1 =

(
β(β+1)

Br
1

) 1
s−1

.

Iterating this procedure, we obtain u0 ≤ Bny−α1 , v0 ≥ Any−β1 in Ω, where

Bn+1 =
(
α(α+1)

Aq
n

) 1
p−1 , An+1 =

(
β(β+1)
Br

n+1

) 1
s−1

.

Clearly, if A is small enough, then the sequences {An} and {Bn} are convergent. And, An → η2, Bn → η1.
Thus, u0 ≤ η1y−α1 , v0 ≥ η2y−β1 in Ω. Similarly, we can prove the reversed inequalities.

By setting y = e1 in un → η1y−β1 and vn → η2y−β1 , and recalling ξ(xn) = ζn + dne1, the Theorem is
proved. �
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The uniqueness of solutions to system (1.1) can be obtained based on the fact that all positive
solutions have the same boundary behavior.

Proof of Theorem 1.6. Let (u1, v1) and (u2, v2) be two positive solutions to system (1.1). By Theorem
1.5, we have u1

u2
= 1, v1

v2
= 1 on ∂Ω, that is, ω := u1

u2
= 1 on ∂Ω. Assume that k := sup

Ω

ω > 1. We will

prove k < 1 to establish a contradiction.
On the one hand, we prove v2 < k

r
s−1 v1 in Ω. We argue by contradiction. Assume Ω̃ := {v2 > k

r
s−1 v1}

is nonempty. Since ∂Ω̃ ⊂ Ω, k > 1 and v1
v2

= 1 on ∂Ω, v2 = k
r

s−1 v1 on ∂Ω̃. Then

∆v2 = ur
2vs

2 + h2(x) ≥ k−r+ rs
s−1 ur

1vs
1 + h2(x) ≥ k

r
s−1 ur

1vs
1 + k

r
s−1 h2(x) = ∆(k

r
s−1 v1)

in Ω̃. Using the maximum principle, we have v2 ≤ k
r

s−1 v1, which is impossible. Then, through the
strong maximum principle, we have v2 ≤ k

r
s−1 v1 in Ω and v2 < k

r
s−1 v1.

On the other hand, we conclude from ω = 1 on ∂Ω that there exists x0 ∈ Ω such that ω(x0) = k.
Then ∆ω(x0) ≤ 0, that is u2∆u1 − u1∆u2 ≤ 0 at x0. Therefore

vq
2(x0) ≥ kp−1vq

1(x0) +
(1−k)h1(x0)

kup
2 (x0) ≥ kp−1vq

1(x0),

that is v2(x0) ≥ k
p−1

q v1(x0).
By the above inequalities, we deduce that k

r
s−1 v1(x0) > k

p−1
q v1(x0), and so k

(p−1)(s−1)−qr
q(s−1) < 1. We obtain

k < 1 by (p − 1)(s − 1) > qr. This is a contradiction. Thus k ≤ 1 and u1 ≤ u2. Similarly, we can prove
u1 ≥ u2. We obtain u1 = u2. Since

∆u1 = up
1vq

1 + h1(x), ∆u2 = up
2vq

2 + h1(x),

we have v1 = v2. The uniqueness of solutions is established. �
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