
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(8): 8173–8190.
DOI:10.3934/math.2021473
Received: 15 January 2021
Accepted: 25 April 2021
Published: 25 May 2021

Research article

Finite-time anti-synchronization for delayed inertial neural networks via the
fractional and polynomial controllers of time variable

Ailing Li1∗ and Xinlu Ye2

1 College of Science, Hebei North University, Zhangjiakou, 075000, China
2 School of Mathematics, Hunan University, Changsha, 410082, China

* Correspondence: Email: liailing@hnu.edu.cn.

Abstract: This paper focuses on the finite-time anti-synchronization for a class of delayed master-
slave inertial neural networks. By means of using the property of quadratic inequality of one variable
and designing the fractional and polynomial controllers of time variable, two sufficient conditions to
assure the finite-time anti-synchronization for the master-slave delayed inertial neural networks are
established. Our controllers designed related to time variable t and the study method on the finite-time
anti-synchronization are different from these in the existing papers.

Keywords: drive-response delayed inertial neural networks; finite-time anti-synchronization;
quadratic inequality of one variable; the fractional and polynomial controllers of time variable
Mathematics Subject Classification: 34K24

1. Introduction

As a very important neural network system, the inertial neural network model was first proposed
by Babcock and Westervelt [1]. In view of its important application background in biology and
engineering [2], for example, the surface layer of hair cells can be achieved in the semicircular canal
of some membrane animals, which consists of an equivalent integrated circuit containing an inductor
[3, 4], thus, it is very crucial to add an inertial term to the nervous system. Further, the inertial term
can be regarded as a powerful tool for inducing bifurcation and chaos [5, 6]. Consequently, the study
of dynamical behavior of the inertial delayed neural networks is very important. Recently, the
dynamic behaviors of inertial neural networks have received wide attention [7–17].

Synchronization of neural networks has been extensively discussed in recent years in view of their
potential applications in image process, secure communication, information science and many other
fields [10, 12]. In practice, it also appears another prevailing phenomenon in symmetrical oscillators,
anti-synchronization, which means that the state vector of synchronized systems have the same
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absolute values but opposite signs. It was stated that the application of anti-synchronization to lasers
provides a new way to generate pulses with special forms; and its application to communication
systems can strengthen the security and secrecy by the transform of the synchronization and
anti-synchronization continuously in the process of digital signal transmission. As a result, the
research of anti-synchronization for delayed neural networks is of very great importance in both
theory and application. So far, the finite-time anti-synchronization for delayed neural networks has
been investigated by some researchers [18–27]. In [18], the finite-time anti-synchronization of neural
networks with time-varying delays were concerned, by combining the Holder inequality and other
techniques, a sufficient condition to assure the finite-time anti-synchronization for the considered
drive-response neural networks was gained. In [19], by applying integral inequality method, two
criteria to ensure the finite-time anti-synchronization for the master-slave neural networks discussed
in [18] were established. In [20], by mean of the inequality skills used in [18], the criteria to assure
the finite-time anti-synchronization for the discussed master-slave were achieved. In [21], the
master-slave finite-time anti-synchronization for memristive bidirectional associative memory neural
networks (MBAMNNS) was discussed, by employing some inequality skills and constructing an
appropriate Lyapunov function, some anti-synchronization criteria were derived. In [22], the
finite-time anti-synchronization control of memristive neural networks with stochastic perturbations
was studied by using the linear matrix inequality method. In [23], the finite-time anti-synchronization
of time-varying delayed neural networks was investigated, by employing some differential
inequalities and finite-time stability theory, some novel effective finite-time anti-synchronization
criteria were derived based on the Lyapunov function method. In [24], the finite-time
anti-synchronization of the multi-weighted coupled neural networks with and without coupling delays
was analyzed, by utilizing Lyapunov functional approach and some inequality skills, several
anti-synchronization criteria were put forward for the considered networks.

To the best of our knowledge, up to now, the finite-time anti-synchronization (or finite-time
synchronization) has been extensively studied mainly by applying the following four classes of study
approaches: (1) Some finite-time stability theorems were used to study the finite-time
anti-synchronization (or finite-time synchronization)[23, 28, 29]; (2) Algebraic inequality approaches
were used to investigate finite-time the anti-synchronization (or finite-time synchronization)[17,18,
21, 24]; (3) Linear matrix inequality approaches were applied to studying the finite-time
anti-synchronization (or finite-time synchronization)[22]; (4) Integral inequality approaches were
used to investigate the finite-time anti-synchronization (or finite-time synchronization)[19, 25–27].
On the other hand, up to until, in almost papers which studied the synchronization, the controllers
designed only have been independent of the time variable t, a.e, the designed controllers are only the
functions of the error variables ei(t).

Inspired by the above analysis, we will attempt to study the finite-time anti-synchronization of the
master-slave delayed inertial neural networks by employing the quadratic inequality of one variable
under the fractional and polynomial controllers of time variable t. By applying the quadratic
inequality of one variable (see Lemma 2.1), the differential inequalities (3.7) and (3.20) (see (3.7) and
(3.20) In the proofs of Theorem 3.1 and Theorem 3.2) are obtained. Then integrating two differential
inequalities give two sufficient conditions on the finite-time anti-synchronization for the master-slave
neural networks. Our results of the finite-time anti-synchronization are more concise and easily
verified than these obtained in the existing papers [18–29]. Designing the the fractional and
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polynomial controllers of time variable t, our results obtained are more objective and practical than
these obtained in [18–33] on the finite-time anti-synchronization of the master-slave systems. The
main contributions of this paper are the following aspects: (1) For the first place, by using the
behavior of quadratic inequality of one variable, more concise and easily verified criteria of the
finite-time anti-synchronization for the delayed master-slave neural networks are put forward; (2) By
using the fractional and polynomial controllers of time variable, the more objective and practical
criteria of finite-time anti-synchronization for the master-slave neural networks are given.

2. Preliminaries

Consider the following delayed inertial neural networks:

d2xr(t)
dt2 = −ar

dxr(t)
dt
− br xr(t) + Fr(x′(t), x(t)), r = 1, 2, · · · , n̂, (2.1)

where

Fr(x′(t), x(t)) =

n̂∑
j=1

cr j f j(x j(t)) +

n̂∑
j=1

dr j f j(x j(qt)) +

n̂∑
j=1

fr j f j(x′j(qt)) + Îr,

x(t) = (x1(t), x2(t), · · · , xn̂(t))T ∈ Rn̂, xr(t) represents the states of the rth neuron at time t; the second
derivatives are called inertial terms of system (2.1); ar > 0, br > 0 they denote the rates with which the
ith neuron will reset its potential to the resting state in isolation when disconnected from the network
and external inputs; cr j, dr j, fr j are constants, denoting the connection weights; Îr denotes external
inputs of the rth neurons, f j is the activation function; qt = t − τ(t), τ(t) ≥ 0, τ′(t) ≤ τ < 1.

The initial conditions of system (2.1) are

xr(s) = φx
r (s),

dxr(s)
dt

= ψx
r (s), s ∈ [−α, 0],

where φx
r (s), ψx

r (s) are real-valued bounded continuous functions on [−α, 0], α = max
t∈R
{τ(t)}.

If we refer to system (2.1) as the master system, then the slave system is expressed as follows:

d2ur(t)
dt2 = −ar

dur(t)
dt
− brur(t) + Fr(u′(t), u(t)) + Îr + vr(t), r = 1, 2, · · · , n̂,

where vr(t) is the controller to design later.
The initial conditions of system (2.2) are

ur(s) = φu
r (s),

dur(s)
dt

= ψu
r (s), s ∈ [−α, 0],

where φu
r (s), ψu

r (s) are real-valued continuous functions on [−α, 0].
Let wr(t) = ur(t) + xr(t). Then we can get the following error system of (2.1) and (2.2) for r =

1, 2, · · · , n̂ :

d2wr(t)
dt2 = −ar

dwr(t)
dt

− brwr(t) + Fr(u′(t), u(t)) + Fr(x′(t), x(t)) + 2Îr + vr(t), (2.2)
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where

Fr(u′(t), u(t)) + Fr(x′(t), x(t))

=

n̂∑
j=1

cr j[ f j(u j(t)) + f j(x j(t))] +

n̂∑
j=1

dr j[ f j(u j(qt)) + f j(x j(qt))] +

n̂∑
j=1

fr j[ f j(u′j(qt))

+ f j(x′j(qt))].

Assumption 1. The activation function f j is odd, and there exists a constant L j ≥ 0 such that

| f j(w) − f j(z)| ≤ L j|w − z|, j = 1, 2, · · · , n̂,w, z ∈ R.

Definition 2.1. Master system (2.1) and slave system (2.2) are said to achieve the finite-time anti-
synchronization, if there exists a constant T̄ > 0, which depends on the initial conditions of the system
(2.1) and system (2.2), such that for r = 1, 2, · · · , n̂,

lim
t→T̄
|ur(t) + xr(t)| = 0, |ur(t) + xr(t)| = 0, t ≥ T̄ .

Lemma 2.1. [quadratic inequality of one variable] If a < 0, b2 < 4ac, then ax2 + bx + c < 0, x ∈ R.
Proof. The inequality is well known and its proof is omitted.

3. Main results

In this section, two novel sufficient conditions on the finite-time anti-synchronization for drive-
response delayed inertial neural networks (2.1) and (2.2) are derived by applying quadratic inequality
of one variable under the fractional and polynomial controllers.

The controllers in system (2.3) are designed as follows :

vr(t)
= −[w′r(t)]

−1
[
ξ1w2

r (t) + β0 + c0 + 2c1t + 3c2t2 + 4c3t3 + · · · + (k̂ + 1)ck̂t
k̂
]
,w′r(t) , 0,

(3.1)

and

vr(t) = sign[w′r(t)]
[ b
(t + a)2 + β1 + β2w2

r (t) + β3[w′r(t)]
2 − β4 − β5

]
, (3.2)

where sign[w′r(t)] =


1,w′r(t) > 0,
−1,w′r(t) < 0,
0,w′r(t) = 0,

a > 0, b < 0, β1 < 0, ξ1 > 0, β2 < 0, β3 < 0, β4 > 0, β5 > 0, k̂

is a positive integer, t ≥ 0, β0 > 0, c1 > 0, c2 > 0, · · · , ck̂ > 0 with c0 − Î2
r < 0, β4 > Îr, β5 > Îr, b <

−aM(0),M(0) =
n̂∑

r=1
(|wr(0)| + |w′r(0)|) + 1

1−τ

n̂∑
r=1

n̂∑
j=1

L j

(
|dr j|

∫ 0

−τ(0)
|w′j(s)|ds + | fr j|

∫ 0

−τ(0)
|w′j(s)|ds

)
.

Theorem 3.1. Under Assumption 1, the master system (2.1) and slave system (2.2) can gain the finite-
time anti-synchronization under the controller (3.1) when the following conditions are satisfied for
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r = 1, 2, · · · , n̂:
(m1)

ξ1 > 0.5
n̂∑

j=1

(|cr j| +
|dr j|

1 − τ
)Lr

(m2) There exists a constant γr > 0 such that

(γr − br)2

< 4
[
1 − ar + 0.5

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)L j +

n̂∑
j=1

| fr j|L j

1 − τ

][
0.5

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)Lr − ξ1

]
,

where, the finite-time t∗ = max{t1, t2}, t2 =
K(0)
k̂β0
, t1 is the only positive real root of the equation −Î2

r +

c0 + c1t + c2t2 + · · · + cn̂tn̂ = 0.
Proof. Without loss of generalization, we assume that w′r(t) , 0, r = 1, 2, · · · , n̂. If w′r(t) = 0, then
wr(t)=constant. In the case, by letting φu

r (s) + φx
r (s) = 0, s ∈ [−α, 0], where φx

r (s) and φu
r (s) are

respectively the initial conditions of the solution xr(s) of system (2.1) and the solution ur(s) of system
(2.2), the proof of Theorem 3.1 can be finished.

Introduce a Lyapunov functional as follows:

K(t) = K1(t) + K2(t),

where

K1(t) =
1
2

n̂∑
r=1

[dwr(t)
dt

]2
+

1
2

n̂∑
r=1

γrw2
r (t),

K2(t) =
1

1 − τ

n̂∑
r=1

n̂∑
j=1

∫ t

t−τ(t)
| fr j|L j|w′j(s)|ds +

1
1 − τ

n̂∑
r=1

n̂∑
j=1

∫ t

t−τ(t)
|dr j|L j|w j(s)|ds.

Calculating the derivatives of K1(t) along the solution of system (2.3), one has based on the
Assumption 1 as follows:

K′1(t)

=

n̂∑
r=1

(
w′r(t)w

′′
r (t) + γrwr(t)w′r(t)

)
=

n̂∑
r=1

{
w′r(t)

(
− arw′r(t) + (γr − br)wr(t) +

n̂∑
j=1

cr j[ f j(u j(t)) + f j(x j(t))] +

n̂∑
j=1

dr j ×

[ f j(u j(qt)) + f j(x j(qt))] +

n̂∑
j=1

fr j[ f j(u′j(qt)) + f j(x′j(qt))] + 2Îr + vr(t)
)}

≤

n̂∑
r=1

{
w′r(t)

(
− arw′r(t) + (γr − br)wr(t) +

n̂∑
j=1

|cr j|| f j(u j(t)) + f j(−[−x j(t)])| +
n̂∑

j=1

|dr j|

×| f j(u j(qt)) + f j(−[−x j(qt)])| +
n̂∑

j=1

| fr j|| f j(u′j(qt)) + f j(−[−x′j(qt)])| + 2Îr + vr(t)
)}
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≤

n̂∑
r=1

{
w′r(t)

(
− arw′r(t) + (γr − br)wr(t) +

n̂∑
j=1

|cr j|L j|w j(t)| +
n̂∑

j=1

|dr j||w j(qt)|L j +

n̂∑
j=1

| fr j||w′j(qt)|L j + 2Îr

)
−

[
ξ1w2

r (t) + β0 + c0 + 2c1t + 3c2t2 + · · · + (k̂ + 1)ck̂t
k̂
]
. (3.3)

At the same time, one has

K′2(t)

=
1

1 − τ

n̂∑
r=1

n̂∑
j=1

| fr j|L j

[
|w′j(t)| − (1 − τ′(t))|w′j(t − τ(t))|

]
+

1
1 − τ

n̂∑
r=1

n̂∑
j=1

|dr j|

×L j

[
|w j(t)| − (1 − τ′(t))|w j(t − τ(t))|

]
≤

1
1 − τ

n̂∑
r=1

n̂∑
j=1

| fr j|L j

[
|w′j(t)| − (1 − τ)|w′j(t − τ(t))|

]
+

1
1 − τ

n̂∑
r=1

n̂∑
j=1

|dr j|

×L j

[
|w j(t)| − (1 − τ)|w j(t − τ(t))|

]
. (3.4)

Based on (3.3) and (3.4), one obtain

K′(t)

≤

n̂∑
r=1

{
w′r(t)

(
− arw′r(t) + (γr − br)wr(t) +

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)L j|w j(t)| +

n̂∑
j=1

| fr j|

1 − τ
×

|w′j(t)|L j + 2Îr

)
−

[
ξ1w2

r (t) + β0 + c0 + 2c1t + 3c2t2 + · · · + ck̂t
k̂
]}
,

from which, by means of using ab ≤ 0.5(a2 + b2), it follows that

K′(t)

≤

n̂∑
r=1

{[
0.5

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)Lr − ξ1

]
w2

r (t) + (γr − br)w′r(t)wr(t) +
[
1 − ar + 0.5×

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)L j +

n̂∑
j=1

| fr j|L j

1 − τ

]
[w′r(t)]

2
}

+ n̂
(
Î2
r −

[
β0 + c0 + 2c1t + 3c2t2 + · · · +

(k̂ + 1)ck̂t
k̂
])
. (3.5)

According to Lemma 2.1, in view of (m1) and (m2), one has

[
0.5

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)Lr − ξ1

]
w2

r (t) + (γr − br)w′r(t)wr(t) +
[
1 − ar + 0.5 ×

n̂∑
j=1

(|cr j| +
|dr j|

1 − τ
)L j +

n̂∑
j=1

| fr j|L j

1 − τ

]
[w′r(t)]

2 < 0. (3.6)
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Substituting (3.6) into (3.5) yields

K′(t) ≤ k̂
(
Î2
r −

[
c0 + 2c1t + 3c2t2 + · · · + (k̂ + 1)ck̂t

k̂
])
− k̂β0. (3.7)

Integrating (3.7) over [0, t] yields

K(t) ≤ K(0) − k̂β0t + k̂t
[
Î2
r −

[
c0 + c1t + c2t2 + · · · + ck̂t

k̂
]
. (3.8)

Let
F(t) = −Î2

r +
[
c0 + c1t + c2t2 + · · · + cn̂tn̂

]
, t ≥ 0.

Then
F(0) = c0 − Î2

r < 0, lim
t→∞

F(t) = +∞ > 0.

So there exists a point t1 > 0 such that F(t1) = 0. Letting

−Î2
r +

[
c0 + c1t + c2t2 + · · · + cn̂tn̂

]
= (t − t1)[bn̂−1tn̂−1 + bn̂−2tn̂−2 +

· · · + b1t + b0], (3.9)

one has 

bn̂−1 = cn̂,

bn̂−2 − t1bn̂−1 = cn̂−1,

bn̂−3 − t1bn̂−2 = cn̂−2,

· · · · · · · · · · · · · · · · · · · · · ,

b1 − b2t1 = c2,

b0 − b1t1 = c1,

−t1b0 = c0 − Î2
r .

As a result 

bn̂−1 = cn̂ > 0,
bn̂−2 = cn̂−1 + t1bn̂−1 > 0,
bn̂−3 = cn̂−2 + t1bn̂−2 > 0,
· · · · · · · · · · · · · · · · · ·

b1 = c2 + t1b2 > 0,
b0 = c1 + b1t1 > 0,

c0 − Î2
r = −t1b0 < 0.

(3.10)

Since bi > 0, i = 0, 1, · · · , bn̂−1, by (3.9) and (3.10), it follows that the equation

−Î2
r +

[
c0 + c1t + c2t2 + · · · + cn̂tn̂

]
= 0,

namely the equation
(t − t1)[bn̂−1tn̂−1 + bn̂−2tn̂−2 + · · · + b1t + b0] = 0

has only positive real root t = t1 and when t ≥ t1

−Î2
r +

[
c0 + c1t + c2t2 + · · · + cn̂tn̂

]
AIMS Mathematics Volume 6, Issue 8, 8173–8190.
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= (t − t1)[bn̂−1tn̂−1 + bn̂−2tn̂−2 + · · · + b1t + b0] > 0.

That is when t ≥ t1

−k̂t
{
− Î2

r +
[
c0 + c1t + c2t2 + · · · + cn̂tn̂

]
= −(t − t1)[bn̂−1tn̂−1 + bn̂−2tn̂−2 + · · · + b1t + b0]

}
< 0. (3.11)

Because when t ≥ t2 =
K(0)
k̂β0

K(0) − k̂β0t < 0, (3.12)

Then letting t∗ = max{t1, t2}, it follows that when t ≥ t∗, the following two inequalities hold:

−k̂t
{
− Î2

r +
[
c0 + c1t + c2t2 + · · · + cn̂tn̂

]
= (t − t1)[bn̂−1tn̂−1 + bn̂−2tn̂−2 + · · · + b1t + b0]

}
< 0 (3.13)

and

K(0) − k̂β0t < 0. (3.14)

Substituting (3.13) into (3.14) into (3.8), it follows that when t ≥ t∗

0 ≤ K(t) ≤ 0.

Consequently, lim
t→t∗

K1(t) = 0,K1(t) = 0, t ≥ t∗.
Namely, lim

t→t∗
|ur(t) + xr(t)| = 0, |ur(t) + xr(t)| = 0, t ≥ t∗. This finishes the proof of Theorem 3.1.

Theorem 3.2. Assume that Assumption 1 holds. Then the master system (2.1) and the slave system
(2.2) can reach the finite-time anti-synchronization under the controller (3.2) when the following
inequalities hold:
(l1) (

1 − ar +

n̂∑
j=1

| fr j|

1 − τ
L j

)2
< 4β3(|Îr| − β5)

(l2) [
br +

n̂∑
j=1

Lr(|c jr| +
|d jr|

1 − τ
)
]2
< 4β2(|Îr| − β4),

where, the finite-time T ∗ =
β1a+
√
β2

1a2+4β1b
−2β1

.

Proof. Introduce a Lyapunov functional as follows:

M(t) = M1(t) + M2(t),

where

M1(t) =

n̂∑
r=1

[|wr(t)| + |w′r(t)|],
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M2(t) =
1

1 − τ

n̂∑
r=1

n̂∑
j=1

L j

(
|dr j|

∫ t

t−τ(t)
|w j(s)|ds + | fr j|

∫ t

t−τ(t)
|w′j(s)|ds

)
.

Calculating the derivatives of M1(t) along the solution of system (2.3), one has based on the
Assumption 1:

M′
1(t)

=

n̂∑
r=1

(
sign[w′r(t)]w

′′
r (t) + sign[wr(t)]w′r(t)

)
=

n̂∑
r=1

{
sign[w′r(t)]

(
− arw′r(t) − brwr(t) +

n̂∑
j=1

cr j[ f j(u j(t)) + f j(x j(t))] +

n̂∑
j=1

dr j ×

[ f j(u j(qt)) + f j(x j(qt))] +

n̂∑
j=1

fr j[ f j(u′j(qt)) + f j(x′j(qt))] + 2Îr + vr(t)
)

+ sign[wr(t)]

×w′r(t)
}

≤

n̂∑
r=1

{
(1 − ar)|w′r(t)| + br|wr(t)| +

n̂∑
j=1

|cr j|| f j(u j(t)) + f j(−[−x j(t)])| +
n̂∑

j=1

|dr j|

×| f j(u j(qt)) + f j(−[−x j(qt)])| +
n̂∑

j=1

| fr j|| f j(u′j(qt)) + f j(−[−x′j(qt)])| + 2|Îr| − β1

+
b − a

(t + a)2 + β2w2
r (t) + β3[w′r(t)]

2
}

≤

n̂∑
r=1

{
(1 − ar)|w′r(t)| + br|wr(t)| +

n̂∑
j=1

|cr j|L j|w j(t)| +
n̂∑

j=1

|dr j||w j(qt)|L j +

n̂∑
j=1

| fr j| ×

|w′j(qt)|L j + 2|Îr| − β1 +
b − a

(t + a)2 + β2w2
r (t) + β3[w′r(t)]

2 − β4 − β5

]
. (3.15)

On the other hand, we have

M′
2(t)

=
1

1 − τ

n̂∑
r=1

n̂∑
j=1

L j

(
|dr j||w j(t)| − (1 − τ′(t))|dr j||w j(qt)| + | fr j||w′j(t)| − (1 − τ′(t)) ×

| fr j||w′j(qt)|
)

≤
1

1 − τ

n̂∑
r=1

n̂∑
j=1

L j

(
|dr j||w j(t)| − (1 − τ)|dr j||w j(qt)| + | fr j||w′j(t)| − (1 − τ)| fr j| ×

|w′j(qt)|
)
. (3.16)

In view of (3.15) and (3.16), one has

M′(t)
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≤

n̂∑
r=1

{
(1 − ar)|w′r(t)| + br|wr(t)| +

n̂∑
j=1

L j[|cr j| +
|dr j|

1 − τ
]|w j(t)| +

n̂∑
j=1

| fr j|

1 − τ
L j|w′j(t)|

+2|Îr| − β1 +
b − a

(t + a)2 + β2w2
r (t) + β3[w′r(t)]

2 − β4 − β5

}

=

n̂∑
r=1

{
β2|wr(t)|2 +

[
br +

n̂∑
j=1

Lr(|c jr| +
|d jr|

1 − τ
)
]
|wr(t)| + (|Îr| − β4) + β3|w′r(t)|

2 + (1 − ar

+

n̂∑
j=1

| fr j|

1 − τ
L j)|w′r(t)| + (|Îr| − β5) − β1 +

b − a
(t + a)2

}
(3.17)

In view of (l1) and (l2), according Lemma 2.1, one has

β2|wr(t)|2 +
[
br +

n̂∑
j=1

Lr(|c jr| +
|d jr|

1 − τ
)
]
|wr(t)| + (|Îr| − β4) < 0 (3.18)

and

β3|w′r(t)|
2 + (1 − ar +

n̂∑
j=1

| fr j|

1 − τ
L j)|w′r(t)| + (|Îr| − β5) < 0. (3.19)

Substituting (3.18) and (3.19) into (3.17) yields

M′(t) ≤ β1 +
b

(t + a)2 . (3.20)

Integrating (3.20) over [0, t] yields

M(t) ≤ M(0) + β1t + b
∫ t

0

ds
(s + a)2

= M(0) + β1t −
b

t + a
+

b
a

≤ β1t −
b

t + a
. (3.21)

Letting β1t − b
t+a ≤ 0, then −β1t2 − β1t + b > 0. Consequently

t ≥ T ∗ =
β1a +

√
β2

1a2 + 4β1b

−2β1
.

Thus when t ≥
β1a+
√
β2

1a2+4β1b
−2β1

, we have by (3.21)

0 ≤ M(t) ≤ 0.
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Namely,

lim
t→T ∗
|ur(t) + xr(t)| = 0, |ur(t) − xr(t)| = 0, t ≥ T ∗.

The proof of Theorem 3.2 is finished.
Remark 1. In [19–21, 23–25], the integral inequality is used to study the finite-time synchronization
(anti-synchronization), in [29], the finite-time stability theory is used to study the finite-time
synchronization, but in our paper, without applying above study approaches, the quadratic inequality
of one variable is used to study the finite-time anti-synchronization for the master inertial neural
networks and the slave inertial neural networks. Hence, our approach of finite-time synchronization
for master-slave neural networks is different from these in the existing papers.
Remark 2. In our paper, by designing different controllers from those in existing papers
[16–17,19–21, 23–25, 28–31], namely, by designing the polynomial and fractional controllers, two
novel criteria ensuring the finite-time anti-synchronization for the master system (2.1) and the slave
system (2.2) are established. Hence, our results on the finite-time synchronization for the master-slave
neural networks are novel.
Remark 3. It is true that the controller (3.1) contain many parameters (k̂ + 2 parameters), but (3.1) is
only designed in theory. In practice, when we take k̂ = 2, then the controller (3.1) only contain 5
parameters. By designing these 5 parameters, we can establish the sufficient condition of the
finite-time anti-synchronization for system (2.1) and system (2.2) by putting more large ξ1 and more
small γr − br(see (m1) and (m2) in Theorem 3.1).
Remark 4. In many papers which studied the stability and synchronization of inertial neural
networks, the results were obtained on the stability and synchronization for discussed inertial neural
networks by transforming the discussed inertial neural networks described with a second order
differential equations into the new system described with first order differential equations. Thus to
show the stability or synchronization, a Lyapunov functional of wi(t) has to be constructed. In this
paper, since without transforming the discussed inertial neural networks described with a second
order differential equations into the new system described with first order differential equations, to
finish showing the finite-time anti-synchronization, a Lyapunov functional of wi(t) and w′i(t) is
constructed in each Theorem. By constructing such Lyapunov functionals, without transforming
processing and complicated computation, the more concise and easily verified criteria on the
finite-time anti-synchronization are acquired.

4. Numerical test

Letting x′r(t) = yr(t), ur(t) = zr(t), then the delayed inertial neural networks (2.1) and (2.2) reduce to
respectively the master system


x′r(t) = yr(t)

y′r(t) = −aryr(t) − br xr(t) +
2∑

j=1

[
cr j f j(x j(t)) + dr j f j(x j(t − τ(t)))

+ fr j f j(y j(t − τ(t))) + Îr

] (4.1)
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and the slave system
u′r(t) = zr(t)

z′r(t) = −arzr(t) − brur(t) +
2∑

j=1

[
cr j f j(u j(t)) + dr j f j(u j(t − τ(t)))

+ fr j f j(z j(t − τ(t))) + vr(t) + Îr

]
,

(4.2)

Example 1. Consider the neural networks (4.1) and (4.2) with following controllers:

vr(t) = −[w′r(t)]
−1

[
ξ1w2

r (t) + β0 + c0 + 2c1t + 3c2t2 + 4c3t3 + · · · + (k̂ + 1)ck̂t
k̂
]

(4.3)

where r = 2, β0 = 1.5, ξ1 = 10, a1 = 25, a2 = 30, b1 = 2.1, b2 = 0.8, γ1 = 2, γ2 = 1, c0 = 1, c1 =

0.5, c2 = 0.3, c3 = 0.1, c4 = 0.2, c5 = 1, c6 = 0.35, c7 = 0.4, c8 = 0.2, c9 = 0.25, c10 = 0.15, k̂ = 10, Î1 =

7, Î2 = 5, with c0 − Î2
r < 0, τ(t) = 0.2t + 1, τ = 0.4, 0.2 = τ′(t) < τ < 1, fr(x) = 0.2x,(

c11 c12

c21 c22

)
=

(
2 3
1 2

)
,

(
d11 d12

d21 d22

)
=

(
1 2
3 1

)
,

(
f11 f12

f21 f22

)
=

(
4 1
2 3

)
.

Therefore L1 = L2 = 0.2,

10 = ξ1 > 0.5
n̂∑

j=1

(|c1 j| +
|d1 j|

1 − τ
)L1 = 1,

10 = ξ1 > 0.5
n̂∑

j=1

(|c2 j| +
|d2 j|

1 − τ
)L2 = 0.9667,

0.01 = (γ1 − b1)2 < 4
[
1 − a1 + 0.5

n̂∑
j=1

(|c1 j| +
|d1 j|

1 − τ
)L j +

n̂∑
j=1

| f1 j|L j

1 − τ

]
×

[
0.5

n̂∑
j=1

(|c1 j| +
|d1 j|

1 − τ
)L1 − ξ1

]
= 798.

0.04 = (γ2 − b2)2 < 4
[
1 − a2 + 0.5

n̂∑
j=1

(|c2 j| +
|d2 j|

1 − τ
)L j +

n̂∑
j=1

| f2 j|L j

1 − τ

]
×

[
0.5

n̂∑
j=1

(|c2 j| +
|d2 j|

1 − τ
)L2 − ξ1

]
= 982.8267.

The all conditions are satisfied. Based on Theorem 3.1, the system (4.1) and system (4.2) are finite-
time anti-synchronization. In the existing papers, the controllers designed are not related to the time
variable t, hence, the result in the example cannot verified with these theorems in the existing papers
[18–29].
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Letting x1(0)=−1.12, x2(0)=−2.1, y1(0)=50, y2(0)=50, u1(0)=1, u2(0)=2, z1(0)=−45, z2(0)=−45,
then the finite-time anti-synchronization diagrams can be seen in Figures 1–3.
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Figure 1. Curves of the xr(t), yr(t).
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Figure 3. Curves of the wr(t), er(t).

Example 2. Consider the master system (4.1) and the slave system (4.2) with controllers (3.2) as
follows :

vr(t) = sign[w′r(t)]
[ b
(t + a)2 + β1 + β2w2

r (t) + β3[w′r(t)]
2 − β4 − β5

]
, (4.4)
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where r = 2, β1 = −2, β2 = −10, β3 = −8, β4 = 5, β5 = 7.5, a1 = 1, a2 = 1.2, b1 = 0.2, b2 = 0.3,
a = 1, b = −30, Î1 = 1, Î2 = 1.5, with 5 = β4 > Îr, 7.5 = β5 > Îr,

τ(t) = 0.3t, τ = 0.5, 0.3 = τ′(t) < τ < 1, fr(x) = −0.1x.

(
c11 c12

c21 c22

)
=

(
0.3 0.1
0.2 0.4

)
,

(
d11 d12

d21 d22

)
=

(
0.2 0.3
0.1 0.1

)
,

(
f11 f12

f21 f22

)
=

(
0.4 0.2
0.3 0.2

)
.

Therefore L1 = L2 = 0.1,

0.0144 =
(
1 − a1 +

n̂∑
j=1

| f1 j|

1 − τ
L j

)2
< 4β3(Î1 − β5) = 208

0.0100 =
(
1 − a2 +

n̂∑
j=1

| f2 j|

1 − τ
L j

)2
< 4β3(Î2 − β5) = 192

0.5776 =
[
b1 +

n̂∑
j=1

L1(|c j1| +
|d j1|

1 − τ
)
]2
< 4β2(|Î1| − β4) = 160

0.7744 =
[
b2 +

n̂∑
j=1

L2(|c j2| +
|d j2|

1 − τ
)
]2
< 4β2(|Î2| − β4) = 140.

Let w1(s) = u1(s)+x1(s) = s−1+2s+1 = 3s,w2(s) = u2(s)+x2(s) = 2s−3+s+3 = 3s,w′j(s) = (3s)′ =

3,w j(0) = 0, x1(0) = 1, x2(0) = 3, y1(0) = 1, y2(0) = 2, u1(0) = −1, u2(0) = −3, z1(0) = 1, z2(0) = −1.
Then

M(0) =

n̂∑
r=1

(|wr(0)| + |w′r(0)|) +
1

1 − τ

n̂∑
r=1

n̂∑
j=1

L j

(
|dr j|

∫ 0

−τ(0)
|w′j(s)|ds + | fr j|

∫ 0

−τ(0)
|w′j(s)|ds

)
= 6,

so −30 = b < −aM(0) = −6. By Theorem 3.2, the system (4.1) and system (4.2) are finite-time anti-
synchronization. Since the controllers of time variable t are designed, while in the existing papers [17,
23–27], the controllers related to the time variable t were not designed, thus the results in the example
cannot be verified with the theorems in [19, 25–29].

The finite-time anti-synchronization diagrams can be seen in Figures 4–6.
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Figure 4. Curves of the xr(t), yr(t).
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5. Conclusions

This paper discusses the finite-time anti-synchronization for the master-slave delayed inertial neural
networks. Without making the variable transformation, the inertial system was analyzed directly. By
making use of the quadratic inequality of one variable under the fractional and polynomial controllers,
two novel sufficient conditions are obtained to ensure the finite-time anti-synchronization between
the master system and the slave system. Applying the quadratic inequality of one variable and the
fractional and polynomial controllers of the time variable t, our results obtained are more concise
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and easily verified and more objective and practical than these in the existing papers [16–31]. Our
future works are using the more quadratic inequality to discuss the finite-time anti-synchronization for
the master-slave delayed inertial neural networks, there are many problems in this field that deserve
further study.
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