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1. Introduction

Fractional Differential Equations (FDE) are of immense significance as they are great
contributors to research fields of applied sciences [1]. They have gained substantial
popularity and importance due to their attractive applications in extensive areas of
science and engineering [2, 3]. In addition to this, Impulsive FDE (I-FDE) have also
played an influential role in describing phenomena, particularly in modeling dynamics of
populations subject to abrupt changes [4, 5]. They provide a realistic framework of
modeling systems in fields like control theory, population dynamics, biology, physics,
and medicine [6, 7]. Similarly, Delay Differential Equations (DDE) are significant
because they have the ability to describe processes with retarded time. The importance
of DDE in various sciences like biology, physics, economics, medical science, and social
sciences has been acknowledged [8, 9]. When the above-mentioned classes of equations
come to a single platform, and when they are studied combined, they are then called
Impulsive Delay FDE (ID-FDE). Such type of equations have been getting worthwhile
attention from researchers in the present age. For the theory of ID-FDE and recent
development on this topic, one can see [10–22] and the references therein.
Recently, Khan et al. have defined fractional integral and derivative operators [23].
Unlike other fractional operators, they satisfy properties like continuity, boundedness,
linearity and unify some previously-presented operators into a single form. They are
defined as under:

Definition 1 ( [23]). Let φ be a function that is conformable integrable on the interval
[p, q] ⊆ [0,∞). The left-sided and right-sided Generalized Conformable Fractional
(GCF) integral operators σ

θ Kν
p+ and σ

θ Kν
q− of order ν > 0 with θ ∈ (0, 1], σ ∈ R, and

θ + σ , 0 are defined by:

σ
θ Kν

p+φ(τ) =
1

Γ(ν)

τ∫
p

(
τσ+θ − wσ+θ

σ + θ

)ν−1

φ(w)wσdθw, τ > p, (1.1)

and

σ
θ Kν

q−φ(τ) =
1

Γ(ν)

q∫
τ

(
wσ+θ − τσ+θ

σ + θ

)ν−1

φ(w)wσdθw, q > τ, (1.2)

respectively, and σ
θ K0

p+φ(τ) = σ
θ K0

q−φ(τ) = φ(τ).

The integral
q∫

p
dθw, in the Definition 1, represents the conformable integration defined
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as [24]:
q∫

p

φ(w)dθw :=

q∫
p

φ(w)wθ−1dw. (1.3)

The associated left- and right-sided GCF derivative operators are defined as follows [23]:

Definition 2. Let φ be a function that is conformable integrable on the interval [p, q] ⊆
[0,∞) such that θ ∈ (0, 1], σ ∈ R and θ + σ , 0. The left- and right-sided GCF derivative
operators σ

θ T ν
p+ and σ

θ T ν
q− of order ν ∈ (0, 1) are defined, respectively, by:

σ
θ T ν

p+φ(τ) =
τ−σ

Γ(1 − ν)
Tθ

τ∫
p

(
τσ+θ − wσ+θ

σ + θ

)−ν
φ(w)wσdθw, τ > p, (1.4)

σ
θ T ν

q−φ(τ) =
τ−σ

Γ(1 − ν)
Tθ

q∫
τ

(
τσ+θ − wσ+θ

σ + θ

)−ν
φ(w)wσdθw, q > τ, (1.5)

and σ
θ T 0

p+φ(τ) = σ
θ T 0

q−φ(τ) = φ(τ). Here Tθ represents the θth-order conformable derivative
with respect to τ, and it is defined as in the following definition.

Definition 3 ( [24]). Consider the real-valued function φ defined on the interval [0,∞).
The θth-order conformable derivative Tθ of the function φ, where θ ∈ (0, 1], is defined as:

Tθφ(w) =

lim
ε→0

φ(w+εw1−θ)−φ(w)
ε

, w ∈ (0,∞);

lim
w→0+

Tθφ(w), w = 0.
(1.6)

The relation between ordinary derivative φ′(w) and the conformable derivative Tθφ(w),
is given as follows [24]:

Tθφ(w) = w1−θφ′(w). (1.7)

The conformable operators have gained a considerable attention of many researchers
in a very short span of time. Due to their classical properties, they have been used in
various fields, for example one can see [25–36] and the references therein. The following
Remark 1 highlights that how the GCF operators unify various early-defined operators.
Here, the left-sided operators are only taking into account. A similar methodology can be
carried out also for the right-sided operator.

Remark 1. (1) The following well-known Katugampula fractional derivative operator is
obtained when θ = 1 is put in the Definition 2 [37]:

σ
1 T ν

p+φ(τ) =
τ−σ

Γ(1 − ν)
T1

τ∫
p

(
τσ+1 − wσ+1

σ + 1

)−ν
φ(w)wσdw, τ > p. (1.8)
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(2) For σ = 0 in the Definition 2, the New Riemann-Liouville type conformable fractional
derivative operator is obtained as given below [23]:

0
θT

ν
p+φ(τ) =

1
Γ(1 − ν)

Tθ

τ∫
p

(
τθ − wθ

θ

)ν−1

φ(w)dθw, τ > p. (1.9)

(3) Using the definition of conformable integral given in the Eq (1.3) and the L’Hospital
rule, it is straightforward that when θ → 0 in Eq (1.9), we get the Hadamard fractional
derivative operator as under [23]:

0
0+T ν

p+φ(τ) =
1

Γ(1 − ν)
T0+

τ∫
p

(
log

τ

w

)ν−1
φ(w)

dw
w
, τ > p. (1.10)

(4) For θ = 1 in Eq (1.9), the well-known Riemann-Liouville fractional derivative operator
is obtained as under [23]:

0
1T ν

p+φ(τ) =
1

Γ(1 − ν)
T1

τ∫
p

(τ − w)ν−1 φ(w)dw, τ > p. (1.11)

(5) For the case ν = 1, σ = 0 in Definition 2, we get the conformable fractional
derivatives. And when θ = ν = 1, σ = 0 we get ordinary derivatives [23].

The inverse property of the newly introduced GCF derivative operators is given below,
which will be used in the proofs of our results.

Theorem 1 ( [23]). Let σ ∈ R, θ ∈ (0, 1] such that σ + θ , 0 and ν ∈ (0, 1). For any
continuous function φ : [p, q] ⊆ [0,∞)→ R, in the domain of σθ Kν

p+ and σ
θ Kν

q− we have:

σ
θ T ν

p+
σ
θ Kν

p+φ(r) = φ(r), (1.12)

Similarly

σ
θ T ν

q−
σ
θ Kν

q−φ(r) = φ(r). (1.13)

One of the fundamental theorems in mathematical analysis, in the theory of double
integrals, is Fubini’s theorem. This theorem allows the order of integration to be changed
in certain iterated integrals. This is stated as follows [38]:
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Theorem 2 (Fubini’s Theorem). Let φ : S ⊆ R2 → R is a continuous function on
S := [p1, q1] × [p2, q2]. Then

q1∫
p1

q2∫
p2

φ(r, s)drds =

q2∫
p2

q1∫
p1

φ(r, s)dsdr, (1.14)

where s ∈ [p1, q1], r ∈ [p2, q2].

The scope and novelty of the present paper is that it addresses a new class of
generalized fractional impulsive delay differential equations. This class is defined using
newly introduced GCF operators which are the generalizations of fractional operators of
the types Katugampola, Riemann-Lioville, Hadamard, Riemann-Lioville’s type,
conformable and ordinary or classical operators [23]. That is, while considering the
generalized problem containing GCF operators, we work with various
(above-mentioned) operators at the same time. Therefore, the paper combines various
previously defined operators (or work) into a single form and is expected to provide a
unique platform for the researchers working with different operators in this field.
Moreover, since researchers commonly face the problem of choosing a convenient
approach or a suitable operator to solve a problem, thus this kind of study, in which one
can work with several operators at a time, is helpful in this regard.

2. Main results

In the present work, we start by stating the GCFDE with delay and impulse terms as
under: 

σ
θ T ν

τ+
k
φ(τ) = f (τ, φτ) , k = 0, 1, 2, ...m, τ ∈ ℵ′;

∆φ(τk) = Ik (φ(τk)) , k = 1, 2, 3...m;
φ(τ) = ψ(τ), τ ∈ [−ω, 0],

(2.1)

where σ
θ T ν

τ+
k

is the GCF derivative of order ν ∈ (0, 1), θ ∈ (0, 1] and σ ∈ R where σ+θ , 0,
ω is a non-negative real number and 0 = τ0 < τ1 < τ2... < τm+1 = T. Also f : ℵ′ ×R→ R
(i.e f ∈ C(ℵ′ × R,R)), where ℵ′ := [0, T] \ {τ1, τ2, ...τm}. Moreover, we fix ℵ0 = [τ0, τ1]
and ℵk = (τk, τk] for k = 1, 2, 3...m. Further, Ik : R → R, ∆φ(τk) = φ(τ+

k ) − φ(τ−k ), where
φ(τ−k ) and φ(τ+

k ) denotes the left and right hand limits of the function φ at the point τk

respectively such that φ(τk) = φ(τ−k ). If φ : [−ω, T] → R, then for any τ ∈ ℵ := [0, T],
define φτ by φτ(η) = φ(τ + η), where η ∈ [−ω, 0]. Also ψ : [−ω, 0] → R is such that
ψ(0) = 0.

Also we define BC(A) = {φ : A := [−ω, T]→ R}, it is easy to show that BC(A) is a
Banach space with the norm defined by ||φ(τ)|| = sup

τ∈A

|φ(τ)|.
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A motivation to study the system in Eq (2.1), as compare to other systems in the
literature, is that it contains fractional operators having such properties which are not
satisfied by those obtained earlier [24]. These operators are simple, friendly (while
dealing with them) and have properties analogous to ordinary derivative and integral
operators [23]. Moreover, there are some classes of differential equations which cannot
be solved easily using previous definitions of fractional derivatives. An example of such
type of equation has been given by Khalil et. al., in the paper [24]. Therefore, to
establish results related to the solution of such type of problems, we have chosen a
generalized problem in the form of Eq (2.1), which covers equations of the type given
in [24] as well others in the literature.

To establish our main results, first we need to prove the following lemma.

Lemma 1. Let φ : [p, q] ⊆ [0,∞) → R be a conformable integrable function. Then for
0 < ν < 1, θ ∈ (0, 1], σ ∈ R such that σ + θ , 0, we have:

σ
θ Kν

p+
σ
θ T ν

p+φ(r) = φ(r) − φ(p), r ∈ [p, q]. (2.2)

Similarly

σ
θ Kν

q−
σ
θ T ν

q−φ(r) = φ(q) − φ(r), r ∈ [p, q]. (2.3)

Proof. First using definition of the integral operator σ
θ Kν

p+ (Eq (1.1)), then of the
derivative operator σ

θ T ν
p+ (Eq (1.4)), and then definition of conformable derivative and

integral operators (Eq (1.7) and Eq (1.3)) in sequence, we have:

σ
θ Kν

p+
σ
θ T ν

p+φ(r)

=
1

Γ(ν)

r∫
p

(
rσ+θ − wσ+θ

σ + θ

)ν−1
σ
θ T ν

p+φ(w)wσdθw

=
1

Γ(1 − ν)Γ(ν)

r∫
p

(
rσ+θ − wσ+θ

σ + θ

)ν−1

Tθ

w∫
p

(
wσ+θ − sσ+θ

σ + θ

)−ν
φ(s)sσdθsdθw

=
1

Γ(1 − ν)Γ(ν)

r∫
p

(
rσ+θ − wσ+θ

σ + θ

)ν−1 d
dw

w∫
p

(
wσ+θ − sσ+θ

σ + θ

)−ν
φ(s)sσ+θ−1dsdw

=
σ + θ

Γ(1 − ν)Γ(ν)

r∫
p

(
rσ+θ − wσ+θ

)ν−1
I(w) dw, (2.4)
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where

I(w) =
d

dw

w∫
p

(
wσ+θ − sσ+θ

)−ν
sσ+θ−1φ(s)ds.

To find the value of I(w), Let du
ds = u′(s) = sσ+θ−1

(
wσ+θ − sσ+θ

)−ν
, v(s) = φ(s). Using

integration by parts formula, we get:

w∫
p

u′(s)v(s)ds = −u(p)v(p) −

w∫
p

u(s)v′(s)ds

= −u(p)v(p) +

w∫
p

(
wσ+θ − sσ+θ

)−ν+1

(σ + θ)(−ν + 1)
φ′(s)ds.

(2.5)

This means that:

I(w) =
d

dw

w∫
p

u′(s)v(s)ds =
d

dw

w∫
p

(
wσ+θ − sσ+θ

)−ν+1

(σ + θ)(−ν + 1)
φ′(s)ds. (2.6)

Thanks to Lebnitz rule of differentiating integral:

∂

∂w

w∫
p

φ(w, s)ds = φ(w,w) +

w∫
p

∂

∂w
φ(w, s)ds.

We have from Eq (2.6):

I(w) =

w∫
p

(
wσ+θ − sσ+θ

)−ν
wσ+θ−1φ′(s)ds. (2.7)

Putting value of I(w) in Eq (2.4), we get:

σ
θ Kν

p+
σ
θ T ν

p+φ(r)

=
σ + θ

Γ(1 − ν)Γ(ν)

r∫
p

w∫
p

(
rσ+θ − wσ+θ

)ν−1 (
wσ+θ − sσ+θ

)−ν
wσ+θ−1φ′(s)ds dw.

(2.8)
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Switching the order of integration (using Fubini’s Theorem) and changing variables to
u by defining wσ+θ = sσ+θ + (rσ+θ − sσ+θ)u, we have:

σ
θ Kν

p+
σ
θ T ν

p+φ(r) =
1

Γ(1 − ν)Γ(ν)

r∫
p

1∫
0

u−ν (1 − u)ν−1 φ′(s)dudθs

=

r∫
p

φ′(s)ds

= φ(r) − φ(p), (2.9)

where in the last step fundamental theorem of calculus has been used and in the second
last step definition of Euler Beta function B and its relation with Gamma function have
been used as under:

1∫
0

u−ν (1 − u)ν−1 du = B(ν, 1 − ν) = Γ(ν)Γ(1 − ν). (2.10)

The proof of the Eq (2.3) is same to the procedure developed for the proof of Eq (2.2).
It can easily be obtained by first applying the definition of σθ Kν

q− and then of σθ T ν
q− . The rest

of the process is same as above. This completes our proof. �

To proceed further, we need to prove another lemma, which transforms our proposed
generalized problem to an integral equation as under:

Lemma 2. Let f ∈ C(ℵ′,R) and σ
θ T ν

τ+
k
φ(τ) denotes the νth-order GCF derivative of the

function φ ∈ BC(A). Then φ is a solution of the problem:
σ
θ T ν

τ+
k
φ(τ) = f (τ), k = 0, 1, 2, ...m, τ ∈ ℵ′;

∆φ(τk) = Ik (φ(τk)) , k = 1, 2, 3...m;
φ(τ) = ψ(τ), τ ∈ [−ω, 0],

(2.11)

if and only if φ satisfies the following integral equation:

φ(τ) =



ψ(τ), τ ∈ [−ω, 0];

1
Γ(ν)

τ∫
τk

( τ
σ+θ−wσ+θ

σ+θ
)ν−1 f (w)wσdθw +

k∑
j=1

I j

(
φ(τ j)

)
+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

( τ
σ+θ
i+1 −wσ+θ

σ+θ
)ν−1 f (w)wσdθw, τ ∈ ℵk, k = 0, 1, 2, ...m.

(2.12)
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Proof. Firstly, suppose that φ satisfies Eq (2.11). Then for τ ∈ [−ω, 0] the result follows
directly. For k = 0, we have from Eq (2.11) (taking into account τ0 = 0) that:

σ
θ T ν

0+φ(τ) = f (τ), τ ∈ ℵ0 = [τ0, τ1]. (2.13)

Now applying the operator σ
θ Kν

0+ from the left to both sides of the Eq (2.13) and using
Eq (2.2) (keeping in mind that φ(0) = 0) we have:

φ(τ) =
1

Γ(ν)

τ∫
0

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw, τ ∈ ℵ0, (2.14)

which is Eq (2.12) for k = 0.
Now when k = 1 in Eq (2.11), we have I1 (φ(τ1)) = φ(τ+

1 ) − φ(τ−1 ), using Eq (2.14) and
also we know that φ(τ1) = φ(τ−1 ), thus:

φ(τ+
1 ) = I1 (φ(τ1)) +

1
Γ(ν)

τ1∫
0

(
τσ+θ

1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw. (2.15)

Also we have
σ
θ T ν

τ+
1
φ(τ) = f (τ), τ ∈ (τ1, τ2]. (2.16)

Applying the operator σθ Kν
τ+

1
to both sides of the Eq (2.16), using Eq (2.2) and then putting

values from Eq (2.15), we get for τ ∈ ℵ1 = (τ1, τ2]:

φ(τ) =φ(τ+
1 ) +

1
Γ(ν)

τ∫
τ1

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw

=I1 (φ(τ1)) +
1

Γ(ν)

τ1∫
0

(
τσ+θ

1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw

+
1

Γ(ν)

τ∫
τ1

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw,

(2.17)

which is Eq (2.12) for k = 1.
Similarly for k = 2, we have from Eq (2.11), φ(τ+

2 ) = φ(τ−2 ) + I2 (φ(τ2)) = φ(τ2) +
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I2 (φ(τ2)). Using Eq (2.17):

φ(τ+
2 ) =φ(τ2) + I2 (φ(τ2))

=I1 (φ(τ1)) +
1

Γ(ν)

τ1∫
0

(
τσ+θ

1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw

+
1

Γ(ν)

τ2∫
τ1

(
τσ+θ

2 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw + I2 (φ(τ2))

=

2∑
j=1

I j

(
φ(τ j)

)
+

1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw.

(2.18)

Also from Eq (2.11):
σ
θ T ν

τ+
2
φ(τ) = f (τ), τ ∈ (τ2, τ3]. (2.19)

Applying the operator σ
θ Kν

τ+
2

to both sides of the Eq (2.19), using Eq (2.2) and then
using Eq (2.18) we have for τ ∈ ℵ2 = (τ2, τ3]:

φ(τ) =σ
θ Kν

τ+
2

f (τ) + φ(τ+
2 )

=
1

Γ(ν)

τ∫
τ2

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw +

2∑
j=1

I j

(
φ(τ j)

)

+

1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw,

(2.20)

which is Eq (2.12) for k = 2.
Continuing in the same way, the solution φ(τ) for τ ∈ ℵk, k = 0, 1, 2, 3...m, can be

generally written as:

φ(τ) =
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw +

k∑
j=1

I j

(
φ(τ j)

)

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw.

(2.21)

Conversely, if φ satisfies Eq (2.12), the proof is easy and it can be obtained by direct
computations. Suppose for τ ∈ [−ω, 0], once again the result follows directly. Now we
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check for τ ∈ ℵk. For this when k = 0, the Eq (2.12) implies that for τ ∈ ℵ0 = [τ0, τ1]:

φ(τ) =
1

Γ(ν)

τ∫
τ0=0

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw

=σ
θ Kν

τ+
0

f (τ).

(2.22)

Applying the operator σ
θ T ν

τ+
0

to both sides of Eq (2.22) using Eq (1.12) we have:

σ
θ T ν

τ+
0
φ(τ) = f (τ), τ ∈ [τ0, τ1]. (2.23)

Similarly when k = 1, we have from Eq (2.12):

φ(τ) =
1

Γ(ν)

τ∫
τ1

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w)wσdθw + I1(φ(τ1))

+
1

Γ(ν)

τ1∫
τ0

(
τσ+θ

1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw, τ ∈ (τ1, τ2].

(2.24)

Applying the operator σ
θ T ν

τ+
1

to both sides of Eq (2.24) using the Eq (1.12) we have:

σ
θ T ν

τ+
1
φ(τ) = f (τ), τ ∈ (τ1, τ2]. (2.25)

Since φ(τ+
1 ) denotes right hand limit of the function φ at the point τ1, thus from the Eq

(2.24), we get:

φ(τ+
1 ) = I1(φ(τ1)) +

1
Γ(ν)

τ1∫
τ0

(
τσ+θ

1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw. (2.26)

Also for τ = τ1, we can write from Eq (2.22):

φ(τ−1 ) = φ(τ1) =
1

Γ(ν)

τ1∫
τ0=0

(
τσ+θ

1 − wσ+θ

σ + θ

)ν−1

f (w)wσdθw. (2.27)

Combining Eq (2.27) and Eq (2.26):

I1(φ(τ1)) = φ(τ+
1 ) − φ(τ−1 ). (2.28)

Similarly for k = 2, 3, 4...m, the procedure is same as above. This completes the proof. �
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2.1. Existence and Uniqueness of the Solution

We set S 0 = {z/z ∈ C(ℵ,R), z(0) = 0}. For each z ∈ S 0, we define the function z by:

z(τ) =

z(τ), τ ∈ ℵ;
0, τ ∈ [−ω, 0].

(2.29)

If φ is a solution of Eq (2.1), then φ(.) can be decomposed as φ(τ) = z(τ) + g(τ) for
τ ∈ [−ω, T], which implies that φτ = zτ + gτ, for τ ∈ [0, T], where:

g(τ) =

0, τ ∈ ℵ;
ψ(τ), τ ∈ [−ω, 0].

(2.30)

Therefore taking into account the above Lemma 2 and the definition of φτ, we may say
that the problem in Eq (2.1) can be transformed into the following fixed point operator,
Θ = S 0 → R,

Θz(τ) =
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, zw + gw)wσdθw +

k∑
j=1

I j

(
z(τ j)

)

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w, zw + gw)wσdθw,

(2.31)

where τ ∈ ℵk, k = 0, 1, 2, 3...m.
In the following theorem we prove our main result.

Theorem 3. Consider the functions f : ℵ×R→ R and Ik : R→ R, and let the following
conditions hold:
(1) There exists a continuous function, h : [0, T]→ R+, such that

| f (τ, aτ) − f (τ, bτ)| ≤ h(τ) sup
w∈[0,τ]

|a(w) − b(w)|, a, b ∈ R, τ ∈ [0, T]. (2.32)

(2) There exists a constant Mk > 0, such that

|Ik(a) − Ik(b)| ≤ Mk|a − b|, k = 1, 2...m;
m+1∑
i=1

Tν(σ+θ)hi

(σ + θ)νΓ(ν + 1)
+

m∑
j=1

M j < 1, hk = sup
τ∈[0,T]

h(τ).
(2.33)

(3) There exists a constant L > 0, such that | f (τ, gτ)| ≤ L, where g is defined as in Eq.
(2.30).

Then there exist a unique solution of the Eq (2.1) in the set S 0.
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Proof. Using the method of successive approximations, we define a sequence of functions
zn : [0, T]→ R, n = 0, 1, 2... as follows:

z0(τ) = 0, zn(τ) = Θzn−1(τ). (2.34)

Since z0(τ) = 0, we can say from Eq (2.29) that z0(w) = z0(w) = 0, w ∈ ℵ = [0, T], then
we have:

|z1(τ) − z0(τ)| =|Θz0(τ) − z0(τ)|

≤
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

| f (w, g(w))|wσdθw +

k∑
j=1

|I j (0) |

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

| f (w, g(w))|wσdθw

≤
L(τσ+θ − τσ+θ

k )ν

(σ + θ)νΓ(ν + 1)
+

k∑
i=1

L(τσ+θ
i − τσ+θ

i−1 )ν

(σ + θ)νΓ(ν + 1)
+

k∑
j=1

|I j (0) |

≤

k+1∑
i=1

L(τσ+θ
i − τσ+θ

i−1 )ν

(σ + θ)νΓ(ν + 1)
+

k∑
j=1

|I j (0) | := Θ0.

(2.35)

Moreover

|zn(τ) − zn−1(τ)|
=|Θzn−1(τ) − Θzn−2(τ)|

≤
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

| f (w, (zn−1)w + gw) − f (w, (zn−2)w + gw)|wσdθw

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

| f (w, (zn−1)w + gw) − f (w, (zn−2)w + gw)|wσdθw

+

k∑
j=1

|I j (zn−1) (τ j) − I j (zn−2) (τ j)|
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≤
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

h(w) sup
x∈[0,w]

|zn−1(x) − zn−2(x)|wσdθw

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

h(w) sup
x∈[0,w]

|zn−1(x) − zn−2(x)|wσdθw

+

k∑
j=1

|I j (zn−1) (τ j) − I j (zn−2) (τ j)|

≤

 hk(τσ+θ − τσ+θ
k )ν

(σ + θ)νΓ(ν + 1)
+

k∑
i=1

hi(τσ+θ
i − τσ+θ

i−1 )ν

(σ + θ)νΓ(ν + 1)
+

k∑
j=1

M j

 ||zn−1 − zn−2||

≤

m+1∑
i=1

Tν(σ+θ)hi

(σ + θ)νΓ(ν + 1)
+

m∑
j=1

M j

 ||zn−1 − zn−2||

:=Θ1||zn−1 − zn−2||,

(2.36)

which shows that ||zn − zn−1|| ≤ Θ1||zn−1 − zn−2||, with Θ1 < 1. It can be seen that for any
0 < n < t, we have:

||zt − zn|| ≤ ||zn+1 − zn|| + ||zn+2 − zn+1|| + ||zn+3 − zn+2||... + ||zt − zt−1||

≤
(
Θn

1 + Θn+1
1 + Θn+2

1 ... + Θt−1
1

)
||z1 − z0||

=
Θn

1

1 − Θ1
||z1 − z0||.

(2.37)

For large values of n, t, when n→ ∞, then from above inequality Eq (2.37), it is clear
that ||zt − zn|| → 0. This implies that zn is a cauchy sequence in the Banach space BC(ℵ).
By definition of the Banach space, since it is a complete normed linear space, where every
cauchy sequence converges to a limit in it (in our case say z) so ||zn − z|| → 0, as n → ∞.
Which shows that zn(τ) is uniformly convergent to z(τ).

Next we will show that z(τ) is a solution of the Eq (2.1). Keeping the Eq (2.29) and
Eq (2.30) in mind, we proceed:
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∣∣∣∣ 1
Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, (zn)w + gw)wσdθw

−
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, zw + gw)wσdθw
∣∣∣∣

≤
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

| f (w, (zn)w + gw) − f (w, zw + gw)|wσdθw

≤
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

h(w) sup
x∈[0,w]

|zn(x) − z(x)|wσdθw

=
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

h(w) sup
x∈[0,w]

|zn(x) − z(x)|wσdθw.

(2.38)

Since zn(τ) → z(τ), as n → ∞. By definition of convergence, for any ε > 0, there
exists a sufficiently large number p0 > 0, such that for n > p0, we have

|zn(x) − z(x)| < min
{

(σ + θ)νΓ(ν + 1)ε
m∑

i=0
hiT

(σ+θ)ν
,

ε
m∑

j=1
M j

}
. (2.39)

Therefore, using Eq (2.38) we get:

∣∣∣∣ 1
Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, ((zn)w + gw)wσdθw

−
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, zw + gw)wσdθw
∣∣∣∣ < ε.

(2.40)
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And also

∣∣∣∣ k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w, ((zn)w + gw)wσdθw

−

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w, zw + gw)wσdθw
∣∣∣∣

≤

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

| f (w, (zn)w + gw) − f (w, zw + gw)|wσdθw

≤

k−1∑
i=0

h(τi)
(τ(σ+θ)ν

i − τ(σ+θ)ν
i−1 )

Γ(ν + 1)(σ + θ)ν
sup

x∈[0,w]
|zn(x) − z(x)|dθw < ε.

(2.41)

Also

∣∣∣∣ k∑
j=1

I j(zn(τ j)) −
k∑

j=1

I j(z(τ j))
∣∣∣∣ ≤ k∑

j=1

M j|zn(τ j) − z(τ j)|

=

k∑
j=1

M j|zn(τ j) − z(τ j)| < ε.

(2.42)

In consequence, we can see that for a sufficiently large number n > p0:

|z(τ) − Θz(τ)|
≤|z(τ) − zn+1(τ)| + |zn+1(τ) − Θzn(τ)| + |Θzn(τ) − Θz(τ)|

≤|z(τ) − zn+1(τ)| +

∣∣∣∣∣∣zn+1(τ) −
[ 1
Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, ((zn)w + gw)wσdθw

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w, ((zn)w + gw)wσdθw +

k∑
j=1

I j(zn(τ j))
]∣∣∣∣∣∣

(2.43)
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+

∣∣∣∣∣∣ 1
Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, ((zn)w + gw)wσdθw

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w, ((zn)w + gw)wσdθw

+

k∑
j=1

I j(zn(τ j)) −
[

1
Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

f (w, ((z)w + gw)wσdθw

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

f (w, ((z)w + gw)wσdθw +

k∑
j=1

I j(z(τ j))
]∣∣∣∣∣∣

(2.44)

using Eq. (2.40), Eq (2.41) and Eq (2.42) we get that |z(τ) − Θz(τ)| → 0. This shows that
z(τ) is the solution of Eq (2.1).

Now we show that the solution is unique. On contrary suppose that there exists two
solutions z1 and z2 of Eq (2.1). Then

|z1(τ) − z2(τ)| ≤
1

Γ(ν)

τ∫
τk

(
τσ+θ − wσ+θ

σ + θ

)ν−1

h(w) sup
x∈[0,w]

|z1(x) − z2(x)|wσdθw

+

k−1∑
i=0

1
Γ(ν)

τi+1∫
τi

(
τσ+θ

i+1 − wσ+θ

σ + θ

)ν−1

h(w) sup
x∈[0,w]

|z1(x) − z2(x)|wσdθw

+

k∑
j=1

I j|z1(τ j) − z2(τ j)|

≤

 v+1∑
p=1

hpT ν(σ+θ)

(σ + θ)νΓ(ν + 1)
+

v∑
q=1

Mq

 ||z1 − z2||.

(2.45)

Using the condition 2 in the theorem hypothesis, the uniqueness of the solution of Eq
(2.1) follows immediately, which completes the proof. �

3. Illustrative examples

To illustrate the obtained results, some examples are presented in this section.

AIMS Mathematics Volume 6, Issue 8, 8149–8172.



8166

Example 1. A particular GCF differential equation with delay and impulse is considered
as follows: 

1
1T

1
2
τ+

k
φ(τ) = 1

(10+τ)2
|φτ |

(1+|φτ |)
, τ ∈ [0, 2], τ , 3

4 , k = 0, 1;

∆φ( 3
4 ) =

|φ( 3
4 )|

12+|φ( 3
4 )|

;

φ(τ) = ψ(τ) = e−τ−1
2 , τ ∈ [−ω, 0],

(3.1)

where ω is a non-negative constant. Here, σ = 1, θ = 1, ν = 1
2 , τ0 = 0, τ1 = 3

4 , τ2 = T =

2, f (τ, φτ) =
|φτ |

(10+τ)2(1+|φτ |)
and I(φ) =

|φ|

12+|φ|
are fixed in Eq (2.1). Moreover φτ(s) = φ(τ+ s),

for s ∈ [−ω, 0], τ ∈ [0, 2], φ ∈ [0,∞).
To check whether a unique solution of the problem in Eq (3.1) exists or not, we have

to verify all the three conditions of the Theorem 3. We consider:

| f (τ, aτ) − f (τ, bτ)| =
1

(10 + τ)2

∣∣∣∣ |aτ|1 + |aτ|
−
|bτ|

1 + |bτ|

∣∣∣∣
≤
|aτ − bτ|
(10 + τ)2

≤h(τ) sup
w∈[0,τ]

|a(w) − b(w)|,

(3.2)

where h(τ) = 1
(10+τ)2 , which shows that the condition 1 of Theorem 3 is satisfied.

Also we have:
|I(a) − I(b)| =

12|a − b|
(12 + a)(12 + b)

≤
1
12
|a − b|, a, b > 0,

(3.3)

where M1 = 1
12 , also from above h1 = sup

τ∈[0,2]
h(τ) = sup

τ∈[0,2]

1
(10+τ)2 = 1

100 . Now we can see by

putting values of all the parameters that:

m+1∑
i=1

hiT
ν(σ+θ)

(σ + θ)νΓ(ν + 1)
+

m∑
i=1

Mi < 1, (3.4)

which shows that the condition 2 of Theorem 3 is also satisfied.
Finally:

f (τ, φτ) =
|φτ|

(10 + τ)2(1 + |φτ|)
≤

1
(10 + τ)2 ≤

1
100

, τ ∈ [0, 2]. (3.5)

So the condition 3 of Theorem 3 is also satisfied.
Now using the Theorem 3, it is concluded that the solution of the Eq (3.1) exists and

it is unique.
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Example 2. Consider the following ID-FDE containing GCF derivative operator of order
2
3 , with the parameters σ = 100, θ = 50.

100
50 T

2
3

k+φ(τ) = e−τ
(50+|φτ |)(9+eτ) , τ ∈ [0, 1], τ , 1

2 ;

∆φ( 1
2 ) =

|φ( 1
2 )|

300+|φ( 1
2 )|

;

φ(τ) = ψ(τ) = e−τ−1
2 , τ ∈ [−ω, 0].

(3.6)

To check whether there exist a unique solution for the equation (3.6), we proceed as
follows. Since the Eq (3.6) is a special case of the Eq (2.1) with f (τ, φ) = e−τ

(9+eτ)(50+|φτ |)
, for

τ ∈ [0, 1], τ , 1
2 , also I(φ) =

|φ|

300+|φ|
, and ψ(τ) = e−τ−1

2 , for τ ∈ [−ω, 0]. All we have to do
is to verify the three conditions of Theorem 3. To check this, we first consider:

| f (τ, aτ) − f (τ, bτ)| ≤
e−τ|aτ − bτ|

9 + eτ
≤ h(τ) sup

w∈[0,τ]
|a(w) − b(w)|, (3.7)

where h(τ) = e−τ
9+eτ , and h = sup

τ∈[0,1]
h(τ) = 1

10 , which shows that the condition 1 of Theorem

3 is satisfied.
Also we have:

|I(a) − I(b)| =
300|a − b|

(300 + a)(300 + b)

≤
1

300
|a − b|, a, b > 0, (3.8)

where:

v+1∑
p=1

hpT
ν(σ+θ)

(σ + θ)νΓ(ν + 1)
+

v∑
q=1

Mq =
1

300(150)
2
3 Γ(5

3 )
+

1
300

< 1. (3.9)

Thus the condition 2 of Theorem 3 also holds true.
Finally:

f (τ, φτ) =
e−τ

(50 + |φτ|)(9 + eτ)
≤

e−τ

9 + eτ
≤

1
10
, (3.10)

where τ ∈ [0, 1]. So the condition 3 of Theorem 3 is also satisfied.
Thus using Theorem 3, it is established that solution of the Eq (3.6) exists and it will

be unique.
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Example 3. Consider another ID-FDE containing GCF derivative operator of order 3
7 ,

with the parameters σ = 2, θ = 5.
2
5T

3
7

k+φ(τ) =
τ(τ2− 1

8 )2

100

(
1

5+|φτ |
+ 1

2 cos τ

)
, τ ∈ [0, 2], τ , 3

2 ;

∆φ( 3
2 ) = 1

4 arctan φ( 3
2 );

φ(τ) = ψ(τ) = e
3√τ − e

3√τ
3 , τ ∈ [−ω, 0].

(3.11)

To verify existence of a unique solution for the Eq (3.11), we proceed as follows.
Since the Eq (3.11) is a special case of the Eq (2.1) with f (τ, φ) =

τ(τ2− 1
8 )2

100

(
1

5+|φτ |
+ 1

2 cos τ

)
,

for τ ∈ [0, 2], τ , 3
2 , also I(φ) = 1

4 arctan φ(3
2 ), and ψ(τ) = e

3√τ − e
3√τ
3 , for τ ∈ [−ω, 0]. We

have to verify the three conditions of Theorem 3. To check this, we first consider:

| f (τ, aτ) − f (τ, bτ)| ≤
τ(τ2 − 1

8 )2

100
|aτ − bτ|

≤ h(τ) sup
w∈[0,τ]

|a(w) − b(w)|, (3.12)

where h(τ) =
τ(τ2− 1

8 )2

100 , and h = sup
τ∈[0,2]

h(τ) = 961
3200 , which shows that the condition 1 of

Theorem 3 is satisfied.
Also we have:

|I(a) − I(b)| =
1
4
| arctan a − arctan b|

=
1
4

∣∣∣∣ arctan
(

a − b
1 + ab

) ∣∣∣∣
≤

π

8
|a − b|, a, b > 0, (3.13)

where:
v+1∑
p=1

hpT
ν(σ+θ)

(σ + θ)νΓ(ν + 1)
+

v∑
q=1

Mq =
961π

3200 × (150)
2
3 Γ( 5

3 )
+
π

8
< 1. (3.14)

Thus the condition 2 of Theorem 3 also holds true.
Finally:

f (τ, φτ) = f (τ, φ) =
τ(τ2 − 1

8 )2

100

(
1

5 + |φτ|
+

1
2 cos τ

)
<
τ(τ2 − 1

8 )2

100
≤

961
3200

, (3.15)

where τ ∈ [0, 2]. So the condition 3 of Theorem 3 is also satisfied.
Hence in the light of Theorem 3, it can be claimed that solution of the Eq (3.11) will

exist and it will be unique.
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4. Conclusions

A new generalized class of ID-FDE has been constructed successfully. A sufficient
criterion for the existence and uniqueness of the solution of this type of systems have
been developed. The results have been supported by the successive approximation
method. All the results have been given in terms of newly introduced GCF operators. To
illustrate the obtained results, some particular examples have been presented. The
present attempt also allows direct applications of the obtained results to FDE of the types
Katugampola, Riemann-Liovilles, Hadamard, New Riemann-Lioville’s, conformable
and ordinary differential equations, which can be considered as special cases of our
established results.

Since there exist many fractional derivative and integral operators, which have been
defined with the passage of time. Each operator satisfies some useful properties and also
has some flaws. In most of the cases there arises a confusion regarding selection of a
suitable fractional operator for solving a given mathematical problem. In this context,
there is a need for such operators that combine most of the previously defined operators
into a single form. In this regard, GCF operators nicely fulfill this criterion using which
one can work with multiple number of operators at the same time.
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