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Abstract: This paper investigates the problem for exponential stability of Hopfield neural networks
of neutral type with multiple time-varying delays. Different from the existing results, the states of the
neurons involve multiple time-varying delays and time derivative of states of neurons also include
multiple time-varying delays. The exponential stability of such neutral-type system has not been
received enough attention since it is not easy to construct a suitable Lyapunov-Krasovskii functional
to analyze the exponential stability of this type of neural system. Novel sufficient conditions of the
exponential stability are established by using Lyapunov method and inequality techniques. Compared
with some references, the mathematical expression of the neutral-type system is more general and the
established algebraic conditions are less conservative. Three examples are given to demonstrate the
effectiveness of the theoretical results and compare the established stability conditions to the previous
results.
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1. Introduction

The stability of Hopfield neural networks is a necessary prerequisite in the practical applications
of signal processing [1,2], pattern recognition [3], associative memory [4], nonlinear programming
[5] and optimization [6]. Accordingly, the stability of various delayed Hopfield neural networks has
been received enough attention [7–33]. In particular, the neutral delays have been introduced into the
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model of neural networks and the stability of neutral-type neural networks has become a hot topic
[18–33]. The mathematical model of neutral-type neural networks extends its application domain to a
wider class of practical engineering problems, (for the detailed applications of such neural networks,
the readers may refer to the references [34–36].)

The model of Hopfield neural networks of neutral type considered in this paper is expressed as

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t))) +

n∑
j=1

ei j ẋ j(t − ξi j(t)) + ui, t ≥ 0; (1.1)

xi(t) = ϕi(t), ẋi(t) = φi(t), t ∈ [−max{τ, ξ}, 0], i = 1, · · · , n,

where ξ, τ and ci are positive numbers, ϕi(t) and φi(t) are continuous functions, ξi j(t) and τi j(t) are delay
functions, f j(·) and g j(·) are nonlinear continuous activation functions. These functions satisfy that for
every x, y ∈ R, t ≥ 0 and i, j = 1, · · · , n,

0 ≤ ξi j(t) ≤ ξ, 0 ≤ τi j(t) ≤ τ, ξ̇i j(t) ≤ ξ, τ̇i j(t) ≤ τ; (1.2)

| fi(x) − fi(y)| ≤ li|x − y|, |gi(x) − gi(y)| ≤ mi|x − y|, (1.3)

where ξ, τ, li and mi are some positive numbers. From [37,38], we know that x(t) = (x1(t), · · · , xn(t))T

of (1.1) is continuously differentiable.
The mathematical expression of system (1.1) includes some models studied in existing references.

For example, when τi j(t) = τ j(t) and ξi j(t) = ξ j(t), system (1.1) transforms into the following vector-
matrix form studied [18,20]:

ẋ(t) = −Cx(t) + A f (x(t)) + Bg(x(t − τ(t))) + Eẋ(t − ξ(t)) + u, t ≥ 0, (1.4)

whereA = (ai j)n×n, B = (bi j)n×n,C = diag(c1, · · · , cn), u = (u1, · · · , un)T ,

x(t) = (x1(t), · · · , xn(t))T , ẋ(t − ξ(t)) = (ẋ1(t − ξ1(t)), · · · , ẋn(t − ξn(t)))T ,

f (x(t)) = ( f1(x1(t)), · · · , fn(xn(t)))T , g(x(t − τ(t))) = (g1(x1(t − τ1(t))), · · · , gn(xn(t − τn(t))))T .

When τi j(t) = τi j, f j = g j and ξi j(t) = ξi j (or ξ j), system (1.1) transforms into the following system
studied in [30]:

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) +

n∑
j=1

ei j ẋ j(t − ξi j) + ui, (1.5)

or the following system studied in [29]:

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j)) +

n∑
j=1

ei j ẋ j(t − ξ j) + ui. (1.6)

Different from the systems studied in [18–28], system (1.1) cannot be expressed in the vector-matrix
form due to the existence of multiple delays τi j(t) and ξi j(t). Therefore, it is impossible to obtain the
stability conditions of the linear matrix inequality form for the system with multiple delays [29,31].
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In this case, it is necessary to develop new mathematical techniques and find more suitable Lyapunov-
Krasovskii functional for the stability analysis of system (1.1).

On the other hand, the results of [18–33] have only provided the sufficient conditions of global
asymptotic stability and have not considered the exponential stability. Actually, in the stability
analysis of neural networks, exponential stability is a better property than asymptotic stability since it
can converge to the equilibrium point faster and provides information about the decay rate of the
networks. Moreover, the exponential stability property can ensure that whatever transformation
occurs, the network stability of fast storage activity mode remains unchanged by
self-organization [39]. Therefore, the exponential stability analysis of neural networks with multiple
time-varying delays is worth investigating.

In addition, based on our careful review of recently almost all the existing stability results for system
(1.1), we have realized that the research on the exponential stability of system (1.1) has not received
enough attention. These facts have been the main motivations of the current paper to focus on the
exponential stability of system (1.1).

The primary contributions and innovations of this work are summarized as follows: (1) novel
sufficient conditions of exponential stability are established for Hopfield neural networks of neutral
type with multiple time-varying delays; (2) a modified and suitable Lyapunov-Krasovskii functional is
provided to study the exponential stability; (3) novel sufficient conditions of global asymptotical
stability are provided for the systems studied in the existing references; (4) compared with the
existing results, the established conditions are less conservative.

2. Exponential stability

From [18,20], we know that system (1.1) has at least one equilibrium point x∗ = (x∗1, · · · , x
∗
n)T under

the conditions (1.2) and (1.3). By employing the formula yi(t) = xi(t) − x∗i (i = 1, · · · , n), system (1.1)
can be transformed into the following equivalent system

ẏi(t) = −ciyi(t) +

n∑
j=1

ai j f̃ j(y j(t)) +

n∑
j=1

bi j̃g j(y j(t − τi j(t))) +

n∑
j=1

ei jẏ j(t − ξi j(t)), (2.1)

where

f̃ j(y j(t)) = f j(y j(t) + x∗j) − f j(x∗j), g̃ j(y j(t − τi j(t))) = g j(y j(t − τi j(t)) + x∗j) − g j(x∗j).

Similarly, system (1.5) can be transformed into the following equivalent system

ẏi(t) = −ciyi(t) +

n∑
j=1

ai j f̃ j(y j(t)) +

n∑
j=1

bi j f̃ j(y j(t − τi j)) +

n∑
j=1

ei jẏ j(t − ξi j). (2.2)

It is obvious that if the origin of system (2.1) is exponentially stable, then the equilibrium point of
system (1.1) is also exponentially stable. Meanwhile, the origin of system (2.1) and the equilibrium
point of system (1.1) are also globally asymptotically stable. Now, we state the main stability result
for system (2.1).
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Theorem 1. Suppose that there exist some positive numbers γ, p1, p2, · · · , pn such that
γ < 1,max{ξ̄, τ̄} < 1 − γ,

γpici −

n∑
j=1

p j(li|a ji|γ + mi|b ji|) > 0, piγ −

n∑
j=1

p j|e ji| > 0, i = 1, 2, · · · , n.

Then the origin of system (2.1) is exponentially stable.
Proof. Let

h1(z) = 1 − eξzξ − eξzγ, h2(z) = 1 − eτzτ − γ,

h3(z) = γpici − zpiγ − z
n∑

j=1

p j|e ji| −

n∑
j=1

p j(li|a ji|γ + mi|b ji|eτz).

Then, ḣi(z) < 0, hi(+∞) < 0, i = 1, 2, 3, and

h1(0) = 1 − ξ − γ > 0, h2(0) = 1 − τ − γ > 0,

h3(0) = γpici −

n∑
j=1

p j(li|a ji|γ + mi|b ji|) > 0.

Therefore, there exist some positive numbers λ1, λ2 and λ3 such that h1(λ1) = h2(λ2) = h3(λ3) = 0,
which implies that there must exist a positive number λ ∈ (0,min{λ1, λ2, λ3}) such that

1 − eλξξ − eλξγ > 0, 1 − eλττ − γ > 0, (2.3)

γpici − λpiγ − λ

n∑
j=1

p j|e ji| −

n∑
j=1

p j(li|a ji|γ + mi|b ji|eλτ) > 0. (2.4)

We construct the following Lyapunov-Krasovskii functional [40]

V(t) = eλ(t+ξ)
n∑

i=1

[piγ −

n∑
j=1

p j|e ji|sgn(yi(t))sgn(ẏi(t))]|yi(t)| +
n∑

i=1

n∑
j=1

pi|ei j|

∫ t

t−ξi j(t)
eλ(s+ξ)|ẏ j(s)|ds

+eλξ
n∑

i=1

n∑
j=1

pi|bi j|m j

∫ t

t−τi j(t)
eλ(s+τ)|y j(s)|ds, (2.5)

and derive

min
1≤i≤n
{piγ −

n∑
j=1

p j|e ji|}eλ(t+ξ)‖y(t)‖1 ≤ eλ(t+ξ)
n∑

i=1

[piγ −

n∑
j=1

p j|e ji|]|yi(t)| (2.6)

≤ eλ(t+ξ)
n∑

i=1

[piγ −

n∑
j=1

p j|e ji|sgn(yi(t))sgn(ẏi(t))]|yi(t)| ≤ V(t),

V(0) = eλξ
n∑

i=1

[piγ −

n∑
j=1

p j|e ji|sgn(yi(0))sgn(ẏi(0))]|yi(0)|
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+eλξ
n∑

i=1

n∑
j=1

pi|ei j|

∫ 0

−ξi j(0)
eλs|ẏ j(s)|ds + eλ(ξ+τ)

n∑
i=1

n∑
j=1

pi|bi j|m j

∫ 0

−τi j(0)
eλs|y j(s)|ds

≤ eλξ max
1≤i≤n
{piγ +

n∑
j=1

p j|e ji|}‖y(0)‖1 + eλξ
n∑

i=1

n∑
j=1

pi|ei j|

∫ 0

−ξ

|ẏ j(s)|ds

+eλ(ξ+τ)
n∑

i=1

n∑
j=1

pi|bi j|m j

∫ 0

−τ

|y j(s)|ds. (2.7)

Taking the right upper Dini derivative of the first term and the time derivatives of the all other terms
in the Lyapunov-Krasovskii functional V(t) along the trajectories of system (2.1), we derive

V̇(t) = λeλ(t+ξ)
n∑

i=1

[piγ −

n∑
j=1

p j|e ji|sgn(yi(t))sgn(ẏi(t))]|yi(t)|

+eλt
n∑

i=1

eλξ[piγ −

n∑
j=1

p j|e ji|sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+eλ(t+ξ)
n∑

i=1

n∑
j=1

pi|ei j||ẏ j(t)| −
n∑

i=1

n∑
j=1

(1 − ξ̇i j(t))eλ(t−ξi j(t)+ξ) pi|ei j||ẏ j(t − ξi j(t))|

+eλξ
n∑

i=1

n∑
j=1

pi|bi j|m j

(
eλ(t+τ)|y j(t)| − (1 − τ̇i j(t))eλ(t−τi j(t)+τ)|y j(t − τi j(t))|

)
≤ λeλ(t+ξ)

n∑
i=1

(piγ +

n∑
j=1

p j|e ji|)|yi(t)| + eλt
n∑

i=1

{
eλξpiγsgn(yi(t))ẏi(t)

−eλξ
n∑

j=1

p j|e ji|(sgn(yi(t)))2|ẏi(t)| + eλξ
n∑

j=1

p j|e ji||ẏi(t)|
}

+

n∑
i=1

n∑
j=1

(ξ̇i j(t)eλ(t−ξi j(t)+ξ) − eλ(t−ξi j(t)+ξ))pi|ei j||ẏ j(t − ξi j(t))|

+eλξ
n∑

i=1

n∑
j=1

pi|bi j|m j

(
eλ(t+τ)|y j(t)| + [τ̇i j(t)eλ(t−τi j(t)+τ) − eλ(t−τi j(t)+τ)]|y j(t − τi j(t))|

)
≤ λeλ(t+ξ)

n∑
i=1

(piγ +

n∑
j=1

p j|e ji|)|yi(t)| + eλt
n∑

i=1

{
eλξpiγsgn(yi(t))ẏi(t)

−eλξ
n∑

j=1

p j|e ji|(sgn(yi(t)))2|ẏi(t)| + eλξ
n∑

j=1

p j|e ji||ẏi(t)|
}

+

n∑
i=1

n∑
j=1

(ξ̄eλ(t+ξ) − eλt)pi|ei j||ẏ j(t − ξi j(t))|

+eλξ
n∑

i=1

n∑
j=1

pi|bi j|m j

(
eλ(t+τ)|y j(t)| + (τ̄eλ(t+τ) − eλt)|y j(t − τi j(t))|

)
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= λeλ(t+ξ)
n∑

i=1

(piγ +

n∑
j=1

p j|e ji|)|yi(t)| + eλt
n∑

i=1

{
eλξpiγsgn(yi(t))ẏi(t)

−eλξ
n∑

j=1

p j|e ji|(sgn(yi(t)))2|ẏi(t)| + eλξ
n∑

j=1

p j|e ji||ẏi(t)|
}

+eλt(ξeλξ − 1)
n∑

i=1

n∑
j=1

pi|ei j||ẏ j(t − ξi j(t))|

+eλξ
n∑

i=1

n∑
j=1

pi|bi j|m j

(
eλ(t+τ)|y j(t)| + (τeλτ − 1)eλt|y j(t − τi j(t))|

)
. (2.8)

It is noted that for yi(t) , 0,

eλξpiγsgn(yi(t))ẏi(t) − eλξ
n∑

j=1

p j|e ji|(sgn(yi(t)))2|ẏi(t)| + eλξ
n∑

j=1

p j|e ji||ẏi(t)|

= eλξpiγsgn(yi(t))ẏi(t)

= eλξ
{
− γpisgn(yi(t))ciyi(t) + γpisgn(yi(t))

n∑
j=1

ai j f̃ j(y j(t))

+γpisgn(yi(t))
n∑

j=1

bi j̃g j(y j(t − τi j(t))) + γpisgn(yi(t))
n∑

j=1

ei jẏ j(t − ξi j(t))
}

≤ eλξ
{
− γpisgn(yi(t))ciyi(t) + |γpisgn(yi(t))

n∑
j=1

ai j f̃ j(y j(t))|

+|γpisgn(yi(t))
n∑

j=1

bi j̃g j(y j(t − τi j(t)))| + |γpisgn(yi(t))
n∑

j=1

ei jẏ j(t − ξi j(t))|
}

≤ eλξ
{
− γpici|yi(t)| + γpi

n∑
j=1

|ai j|l j|y j(t)| + γpi

n∑
j=1

|bi j|m j|y j(t − τi j(t))|
}

+eλξγpi

n∑
j=1

|ei j||ẏ j(t − ξi j(t))|,

and for yi(t) = 0,

eλξpiγsgn(yi(t))ẏi(t) − eλξ
n∑

j=1

p j|e ji|(sgn(yi(t)))2|ẏi(t)| + eλξ
n∑

j=1

p j|e ji||ẏi(t)|

= eλξ
n∑

j=1

p j|e ji||ẏi(t)|

= eλξ
{
−

n∑
j=1

p j|e ji|sgn(ẏi(t))ciyi(t) +

n∑
j=1

p j|e ji|sgn(ẏi(t))
n∑

j=1

ai j f̃ j(y j(t))

+

n∑
j=1

p j|e ji|sgn(ẏi(t))
n∑

j=1

bi j̃g j(y j(t − τi j(t))) +

n∑
j=1

p j|e ji|sgn(ẏi(t))
n∑

j=1

ei jẏ j(t − ξi j(t))
}
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≤ eλξ
{
− γpici|yi(t)| + |

n∑
j=1

p j|e ji|sgn(ẏi(t))
n∑

j=1

ai j f̃ j(y j(t))|

+|

n∑
j=1

p j|e ji|sgn(ẏi(t))
n∑

j=1

bi j̃g j(y j(t − τi j(t)))| + |
n∑

j=1

p j|e ji|sgn(ẏi(t))
n∑

j=1

ei jẏ j(t − ξi j(t))|
}

≤ eλξ
{
− γpici|yi(t)| +

n∑
j=1

p j|e ji|

n∑
j=1

|ai j|l j|y j(t)| +
n∑

j=1

p j|e ji|

n∑
j=1

|bi j|m j|y j(t − τi j(t))|
}

+eλξ
n∑

j=1

p j|e ji|

n∑
j=1

|ei j||ẏ j(t − ξi j(t))|

≤ eλξ
{
− γpici|yi(t)| + γpi

n∑
j=1

|ai j|l j|y j(t)| + γpi

n∑
j=1

|bi j|m j|y j(t − τi j(t))|
}

+eλξγpi

n∑
j=1

|ei j||ẏ j(t − ξi j(t))|,

where we use
∑n

j=1 p j|e ji| < piγ, and
∑n

j=1 p j|e ji|sgn(ẏi(t))ciyi(t) = γpici|yi(t)| = 0 when yi(t) = 0.
Therefore, for every yi(t) ∈ R, we have

eλξpiγsgn(yi(t))ẏi(t) − eλξ
n∑

j=1

p j|e ji|(sgn(yi(t)))2|ẏi(t)| + eλξ
n∑

j=1

p j|e ji||ẏi(t)|

≤ eλξ
{
− γpici|yi(t)| + γpi

n∑
j=1

|ai j|l j|y j(t)| + γpi

n∑
j=1

|bi j|m j|y j(t − τi j(t))|
}

+eλξγpi

n∑
j=1

|ei j||ẏ j(t − ξi j(t))|. (2.9)

Then, from (2.3), (2.4), (2.8) and (2.9), we have

V̇(t) ≤ λeλ(t+ξ)
n∑

i=1

(piγ +

n∑
j=1

p j|e ji|)|yi(t)| + eλt
n∑

i=1

{
eλξ

(
− γpici|yi(t)| + γpi

n∑
j=1

|ai j|l j|y j(t)|

+γpi

n∑
j=1

|bi j|m j|y j(t − τi j(t))|
)

+ (eλξγ + eλξξ − 1)pi

n∑
j=1

|ei j||ẏ j(t − ξi j(t))|
}

+eλξ
n∑

i=1

n∑
j=1

pi|bi j|m j

(
eλ(t+τ)|y j(t)| + (τeλτ − 1)eλt|y j(t − τi j(t))|

)
= −eλ(t+ξ)

n∑
i=1

(
γpici − λpiγ − λ

n∑
j=1

p j|e ji| −

n∑
j=1

p j(li|a ji|γ + mi|b ji|eλτ)
)
|yi(t)|

−eλt(1 − eλξξ − eλξγ)
n∑

i=1

n∑
j=1

pi|ei j||ẏ j(t − ξi j(t))|
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−(1 − eλττ − γ)eλ(t+ξ)
n∑

i=1

n∑
j=1

pi|bi j|m j|y j(t − τi j(t))| ≤ 0. (2.10)

Finally, (2.6), (2.7) and (2.10) imply that there must exist a number δ > 1 such that

‖y(t)‖1 ≤ δe−λt(‖ϕ‖1 + ‖φ‖1), t ≥ 0,

where
‖ϕ‖1 = sup

t∈[−max{τ, ξ}, 0]
‖ϕ(t)‖1, ‖φ‖1 = sup

t∈[−max{τ, ξ}, 0]
‖φ(t)‖1.

Generally speaking, it is not easy to find the values of the positive constants p1, · · · , pn. Therefore,
it is necessary to give a result without involving the constants p1, · · · , pn. The following result is a
special case of Theorem 1 for p1 = · · · = pn, which is easier to validate.
Theorem 2. Suppose that there exists a positive number γ such that

max{ξ̄, τ̄} < 1 − γ,
n∑

j=1

|e ji| < γ < 1, γci −

n∑
j=1

(li|a ji|γ + mi|b ji|) > 0, i = 1, 2, · · · , n.

Then the equilibrium point of system (1.1) is globally asymptotically stable, even exponentially
stable.
Remark 1. Theorem 1 and Theorem 2 give novel sufficient conditions of global asymptotical stability
for the systems studied in [18,20,29,30] since these systems are some special cases of system (1.1).

For system (1.5) or (1.6), Theorem 1 and Theorem 2 give the following results.
Corollary 1. Suppose that there exist some positive numbers γ, p1, p2, · · · , pn such that γ < 1,

γpici −

n∑
j=1

p jli(|a ji|γ + |b ji|) > 0, piγ −

n∑
j=1

p j|e ji| > 0, i = 1, 2, · · · , n.

Then the equilibrium point of system (1.5) (or (1.6)) is globally asymptotically stable, even
exponentially stable.
Corollary 2. Suppose that there exists a positive number γ such that γ < 1,

γci −

n∑
j=1

li(|a ji|γ + |b ji|) > 0, γ −
n∑

j=1

|e ji| > 0, i = 1, 2, · · · , n.

Then the equilibrium point of system (1.5) (or (1.6)) is globally asymptotically stable, even
exponentially stable.
Remark 2. It is noted that γpici −

∑n
j=1 p jli(|a ji|γ + |b ji|) > 0 and 0 < γ < 1 can deduce that pici −∑n

j=1 p jli(|a ji| + |b ji|) > 0. Therefore, the conditions of Corollary 2 are less conservative than those of
the result in [29].
Remark 3. For system (1.5), the conditions of Theorem 1 in [30] are as follows:

αi = c2
i − l2

i

n∑
j=1

|

n∑
k=1

akiak j| − l2
i

n∑
j=1

n∑
k=1

(|a ji||b jk| + |b ji||a jk| + |b ji||b jk|)
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−l2
i

n∑
j=1

n∑
k=1

c j|e jk|(|a ji| + |b ji|) −
n∑

j=1

n∑
k=1

c j|e ji|(|a jk| + |b jk|)

−

n∑
j=1

c2
i |ei j| −

n∑
j=1

c2
j |e ji| > 0,

and 1−
∑n

j=1 |e ji| > 0, i = 1, · · · , n. Example 2 demonstrates the above conditions are not satisfied while
the conditions of Corollary 1 and Corollary 2 can be satisfied.
Remark 4. Global asymptotical stability of a more general class of multiple delayed neutral type
neural network model has been studied in [31, 32]. The results of [31, 32] can be particularized for
system (2.2) as follows:

i) The sufficient conditions of global asymptotical stability are given in [31]:

σi = 2ci −

n∑
j=1

(l j|ai j| + li|a ji|) −
n∑

j=1

(l j|bi j| + li|b ji|) −
n∑

j=1

(|ei j| + |e ji|)

−

n∑
j=1

n∑
k=1

(li|aki||ek j| + li|bki||ek j|) −
n∑

j=1

n∑
k=1

(lk|a jk||e ji| + lk|b jk||e ji|) > 0,

and 1 −
∑n

j=1 |e ji| > 0, i = 1, · · · , n.
ii) The sufficient conditions of global asymptotical stability are given in [32]:

εi = c2
i −

n∑
j=1

|

n∑
k=1

akiak j| −

n∑
j=1

n∑
k=1

(|a ji||b jk|

+|a ji||e jk| + |b ji||a jk| + |b ji||e jk| + |b ji||b jk|) > 0,

εi j =
1
n
−

n∑
k=1

(|e ji||e jk| + |a jk||e ji| + |b jk||e ji|) > 0, i, j = 1, · · · , n.

Example 3 demonstrates the above conditions are not satisfied while the conditions of Corollary 1 and
Corollary 2 can be satisfied.
Example 1. Consider system (1.1) with the following conditions:

A =


1 −1 1 −1
−1 1 1 −1
1 1 1 1
1 −1 −1 −1

 , B =


1 1 −1 1
−1 −1 1 −1
1 1 1 1
−1 −1 −1 1

 , E =


0.1 −0.1 −0.1 −0.1
−0.1 0.1 0.1 0.1
0.1 −0.1 0.1 −0.1
−0.1 −0.1 −0.1 0.1

 ,
c1 = c2 = c3 = 9, c4 = 8, fi(x) = tanh(x), gi(x) = 0.5tanh(x), ξii(t) = 0.1sint + 0.1, τii(t) = 0.1cost +

0.1; ξi j(t) = 0.1cost + 0.1, τi j(t) = 0.1sint + 0.1, i , j; i, j = 1, 2, 3, 4.
We calculate ξ̄ = τ̄ = 0.1, li = 1,mi = 0.5,

∑4
j=1 |e ji| = 0.4 and

ciγ −

4∑
j=1

(li|a ji|γ + mi|b ji|) =

5γ − 2, i = 1, 2, 3;
4γ − 2, i = 4.
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It is clear that when γ ∈ (0.5, 0.9), Theorem 2 holds.
Now we choose γ = 0.424 and require that

γpici −

4∑
j=1

p j(li|a ji|γ + mi|b ji|) = 0.01, i = 1, 2, 3, 4.

Then, we calculate p1 = p2 = p3 = 2.2222, p4 = 2.5000, and

piγ −

4∑
j=1

p j|e ji| = 0.424pi − 0.1
4∑

j=1

p j =

0.025552, i = 1, 2, 3;
0.14334, i = 4.

Thus, all conditions of Theorem 1 are satisfied.
If we choose γ = 0.423 and still require that

γpici −

4∑
j=1

p j(li|a ji|γ + mi|b ji|) = 0.01, i = 1, 2, 3, 4.

Then pi < 0, i = 1, 2, 3, 4. Therefore, when γ ∈ [0.424, 0.9), the system (1.1) in this example is globally
asymptotically stable, even exponentially stable.
Example 2. Consider system (1.5) with the conditions: c1 = c2 = c3 = 9, c4 = 8.5, fi(x) = tanh(x), ξii =

0.2, τii = 0.1; ξi j = 0.3, τi j = 0.4, i , j; i, j = 1, 2, 3, 4, the matrices A, B, E are the same as in Example
1.

Then, we calculate li = 1,
∑4

j=1 |e ji| = 0.4 and

ciγ −

4∑
j=1

li(|a ji|γ + |b ji|) =

5γ − 4, i = 1, 2, 3;
4.5γ − 4, i = 4.

It is clear that when γ ∈ (8/9, 1), Corollary 2 holds.
Now we choose γ = 0.85 and require that

γpici −

4∑
j=1

p jli(|a ji|γ + |b ji|) = 0.01, i = 1, 2, 3, 4.

Then, we calculate p1 = p2 = p3 = 0.0708, p4 = 0.0750, and

piγ −

4∑
j=1

p j|e ji| = 0.85pi − 0.1
4∑

j=1

p j =

0.03144, i = 1, 2, 3;
0.03501, i = 4.

Thus, all conditions of Corollary 1 are satisfied.
On the other hand, we calculate

α1 = 81 −
4∑

j=1

|

4∑
k=1

ak1ak j| − 3 × 4 × 4 − 35.5 × 4 × 0.2 − 35.5 × 4 × 0.2

−81 × 0.4 − 315.25 × 0.1 < 0,

AIMS Mathematics Volume 6, Issue 8, 8030–8043.



8040

which shows the conditions of Theorem 1 in [30] are not satisfied. Therefore, Theorem 1 in [30] is
invalid for the system (1.5) in this example.
Example 3. Consider system (2.2) with all parameters and functions are the same as in Example 2.
Then, we calculate li = 1,

∑4
j=1 |e ji| = 0.4,

εi j =
1
4
− 0.21 × 4 = −0.59 < 0,

σ1 = 2 × 9 − 2 × 4 − 2 × 4 − 0.2 × 4 − 0.2 × 42 − 0.2 × 42 = −5.2 < 0.

Therefore, the sufficient conditions of the results in [31,32] are not satisfied. Meanwhile, all conditions
of Corollary 1 and Corollary 2 are staisfied for system (2.2) since system (1.5) is equivalent to system
(2.2).

3. Conclusions

This paper has investigated the exponential stability of neutral-type Hopfield neural networks
involving multiple time-varying delays. Different from some existing results, linear matrix inequality
approach cannot be used to determine the stability conditions of such networks since the networks
studied here can not be expressed in vector-matrix form. By using a modified and suitable
Lyapunov-Krasovskii functional and inequality techniques, novel algebraic conditions are established
to ensure the exponential stability and the global asymptotic stability of neutral-type Hopfield neural
networks involving multiple time-varying delays. Compared with some references, the networks
studied here is more general and the established conditions are less conservative. Three examples are
given to demonstrate the effectiveness of the theoretical results and compare the established stability
conditions to the previous results.
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