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Abstract: The B-spline curves have been grasped tremendous achievements inside the widely
identified field of Computer Aided Geometric Design (CAGD). In CAGD, spline functions have been
used for the designing of various objects. In this paper, new Quadratic Trigonometric B-spline (QTBS)
functions with two shape parameters are introduced. The proposed QTBS functions inherit the basic
properties of classical B-spline and have been proved in this paper. The proposed scheme associated
with two shape parameters where the classical B-spline functions do not have. The QTBS has been used
for designing of different parts of airplane like winglet, airfoil, turbo-machinery blades and vertical
stabilizer. The designed part can be controlled or changed using free parameters. The effect of shape
parameters is also expressed.
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1. Introduction

It has been a fascinating task/exercise for the designers, researcher, as well as for the air craft
manufacturers to advance the geometrical techniques of airplane designing. Different splines have been
used in the designing of airplane models and the purpose behind this designing is to generate flexible
and realistic shapes. Splines are used for airplane modeling due to numerically stability, accuracy
and consistency. It also attracted the aircraft designers because of easy control and editing the shape
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of geometrical models [1]. Different optimization techniques are brought into practice to develop
designing problems in order to improve the geometry of the required designing and to reduce the time
and cost [2]. In curve modeling, we deal with trigonometric Bez’ier-like [3–7], Q-Bez’ier [8], H-
Bez’ier [9], Ball Bez’ier-like [10], S-λ Bezier-like [11], classical Bez’ier, B-spline and NURBS curves
etc.

Recently, Kulfan [12] introduced an algorithm for surface fitting using splines that fulfils some
specific boundary conditions in which knots are generated automatically but one shape parameter is
compulsory which provides the closeness and smoothness to fit a curve. The assignment to improve
the geometry of the curves motivated to the many researchers. Reconstruction of curves and images is
a compelling area in geometrical modeling [13]. The scheme of image reconstruction is employed in
the field of medical. It is an amazing acquirement of fractured parts [14]. An effort has been brought
by Henderson [15] to describe the effect of canard on the aerodynamic characteristics of a designed
model. Winglet yield an airplane fuel efficiency and cruising range. It decreases the aerodynamic drag.
This quality reduces the consumption of fuel and drag efficiency [16]. Various technologies [17] came
into practice to improve performance and geometry of structure of airplane. An attempt is introduced
to decrease induced drag. The process timing if winglet has been reduced with the association of CAD.
It focused on decreasing design time while designing is at initial process see [18]. A scheme has been
proposed using B-spline collocation method based on cubic B-spline functions [19]. A new type of
cubic B-spline functions with one shape parameter has been presented [20] and this work is extended
to rational cubic B-spline curves for geometrical modeling of the curves [21].The QT curves have been
designed using one free parameters and this work is extended to cubic curves see for more details [22,
23].

Lin and Reutskiy [24] used cubic B-spline for the numerical solution of 3D-steady state convection-
diffusion reaction problems. Non-linear generalized telegraph equation in irregular domain has been
solved numerically using B-spline by [25]. The novel B-spline method has proposed by [26] for the
modeling of transport problems in anisotropic inhomogeneous media. Hu et al. [27] proposed a novel
model based on Bezier for surface modeling. Hu et al. [28] proposed generalized quartic H-Bezier
curve for the construction of developable surfaces. Shape adjustable generalized Bezier surface is
proposed by [29].

This paper presents a distinct QTBS basis functions with two shape parameters. The proposed
QTBS functions in addition of two shape parameters have all the characteristics of simple B-spline
like convex hull, positivity, local support, continuity and partition of unity and proved in section 2.

The proposed QTBS curves yield tight envelop in the geometrical modeling which is a demanding
feature in shape designing. It generates more suitable and elastic curves for shape designing. The
presence of shape parameters enables the designer to control the shape of the curve easily. The
proposed scheme approximates the curves in a batter way as it saves cost and time.

For test purpose open and close curves have been designed and the effect of shape parameters has
also been checked. Different components of jet transport like airfoil, winglet, turbo machinery blade
and vertical blades have been designed using proposed scheme.
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2. Quadratic Trigonometric polynomial basis functions

Suppose a0 < a1 < a2 < a3 < ... < an+3 be the knots, the shape parameters vi,ai ∈ R, and
∆ai = ai+1 − a1, βi = aiai+1ai, the QTBS polynomial basis functions are defined by

Ci (a) =


gi (ui (a)) , a ∈ [ai, ai+1) ,
1 − fi+1 (ui+1 (a)) − gi+1 (ui+1 (a)) a ∈ [ai+1, ai+2)

fi+2 (ui+2 (a)) , a ∈ [ai+2, ai+3)
0, Otherwise

(2.1)

where,
fi (u) = γi

(
1 − (1 + νi−1) sin u + νi−1sin2u

)
− βi−1cos2u,

gi (u) = ωi

(
1 − (1 + νi) cos u + νicos2u

)
+ βisin2u,

γi =
∆ai

∆ai−1 + ∆ai
,

wi =
∆ai

∆ai + ∆ai+1
,

u (a) =
π

2
a − ai

∆ai
,

Remark 2.1. If we use νi = νi+1 = βi = βi+1 = 0, then the basis function Ci (a) will convert into linear
trigonometric basis functions. Figure 1 shows the graphical behavior of the QTBS basis function.

Figure 1. Trigonometric basis functions.

3. Geometric properties of the QTBS functions

In this section, some geometric properties of the proposed basis functions are discussed.

3.1. Positivity

If−1 < νi, νi+1 ≤ 1, βi ≥ −min{γi+2,
1
2ωi (1 − νi) and βi+1 ≤ min{ 12γi+2 (1 − νi+1) , ωi}, then Ci (a) > 0,

for all ai < a < ai+3.

Proof. See Appendix 1. �
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3.2. Local support

Ci (a) = 0, for a0 < a < ai+3, ai+3 < a < an+3.

3.3. Piecewise polynomial

The QTBS are the piecewise polynomial functions as defined in section 2.

3.4. Partition of unity∑k
i=1 Ci(u) = 1, a ∈[a2, an+1)

Proof. See Appendix 2. �

3.5. Continuity

The basis functions satisfy the continuity property at knot points. The QTBS Ci(a) has C1 continuity.

Proof. See Appendix 3. �

Remark 3.1. It is important that we can only discuss the continuity of the basis function at knot points,
continuity cannot be discussed at first and last point as it is obvious.

4. Quadratic Trigonometric B-spline curve

For the points pi (i = 0, 1, 2,..., n) in R2 or R3 and A = (u0, u1, u2, ..., un+3). The

S (u) =

n∑
i=0

Ci (u) pi (4.1)

is known as QTBS polynomial curve with shape parameters.

4.1. Continuity between two uurve segments

If ui,ui+1(2 ≤ i ≤ n), the representation of the curve segment S(u) can be written as:

S (u) = Ci−2(u)pi−2 + Ci−1(u)pi−1 + Ci(u)pi (4.2)

Moreover, {
S (ui) = (γi− βi−1)pi−2 + (ωi−1+ βi−1)pi−1

S ′ (ui) =
π(1−vi−1)
2(ui−1+ui)

(pi−1− pi−2) (4.3)

4.2. Construction of the curve

Proposed scheme has been used to construct different curve segments in this section which can
be depicted in Figure 2. After constructing the different curve segments using proposed scheme. It
has been used to construct the open curve as shown in Figure 3. Figure 4 represents the effect of
shape parameters. The curve changes its behavior as we change the shape parameters. To check the
applicability of proposed scheme we have also constructed the closed curve as shown Figure 5.
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(a) One segment curve (b) Two segments curve

(c) Three segments curve (d) Four segments curve

(e) Five segments curve

Figure 2. Curve designing using QTBS
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Figure 3. Open curve using proposed QTBS.

Figure 4. Open curve with different values of shape parameter using QTBS.

Figure 5. Closed curve.

4.3. Shape of the curve

The curve designing can be controlled in two ways i.e

1. Using more control points
2. By shape parameters

AIMS Mathematics Volume 6, Issue 7, 7669–7683.
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4.3.1. Using more control points

In this section, the QTBS curve has been designed by different control points like in Figure 6(a) we
used 4 control points. By adding the number of control points the curve changed its behavior as shown
in Figure 6(b).

(a) Curve with 4 control points (b) Curve with 6 control point

Figure 6. Construction of curves using QTBS

4.3.2. Effect of shape parameter

Curve can also be controlled by shape parameters. Different values of shape parameters ν and β are
tabulated in Table 1 have been used for the construction of Quadratic trigonometric B-spline curve as
shown in the Figures 7 and 8. It is observed that by assigning different vales of shape parameters both
open and closed curves change its behavior.

Figure 7. Open curve with different values of shape parameter.
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Figure 8. Closed curve with different values of shape parameter.

Table 1. Behavior of the curve with different values of shape parameters.

Sr. no. value of ν value of β
1 0.1 0.225
2 0.2 0.200
3 0.3 0.175
4 0.4 0.150
5 0.5 0.125
6 0.6 0.100
7 0.7 0.075
8 0.8 0.050
9 0.9 0.025

4.4. Geometrical modeling using QTBS curves

To test the proposed scheme we have constructed the different models like flowers and vase as
shown in Figure 9. When the curve S (a) is generated in the interval[a2, an+1], we are free from the
choice of first and last two knot. These can be adjusted to the given boundary behavior of the curve.
The choice of knot vector for open trigonometric curve is A = (a0 =a1 = a2 , an , an+1 = an+2=an+3 ).

(a) Close petals (b) Open petals (c) Vase

Figure 9. Designing of different objects using QTBS curves.
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5. Implementation of the proposed method

In this section, we have constructed different parts of an airplane i.e. airfoil, winglet and vertical
stabilizer.

5.1. Winglet

In aircraft industry winglets have become one of the distinguish fuel saving technology and their
use keep increasing. Winglets also increase the operating efficiency of airplane.

Here the winglet of an airplane has been designed see Figure 10. In the designing of the winglet
different values of shape parameters which they have been tabulated in Table 2, makes the designing
more appropriate and smooth.

(a) Designing of Winglet (b) 3D image of Winglet

Figure 10. Winglet of airplane.

Table 2. Different values of shape parameters.
Sr. no 1 2 3 4 5 6 7 8
ν 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
β 0.2425 0.245 0.2425 0.24 0.2375 0.235 0.2325 0.23
Sr. no 9 10 11 12 13 14 15 16
ν 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
β 0.2275 0.225 0.2225 0.22 0.2175 0.215 0.2125 0.21

6. Airfoils

They are used for the description of cross sectional structure of airplane when passed through a fluid
such as aerodynamic force. Airfoils are employed on planes wings to provide elevate. Here, an airfoil
has been constructed using QTBS applying various valued of two shape parameter ν and β as shown
in Table 2. The 2D designing is shown in Figure 11(a) where in Figure 11(b) presents the 3D image of
airfoil.

7. Turbomachinery blade

Turbomachinery blade has been designed using QTBS curves as shown in Figure 12.
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(a) Designing of airfoil (b) 3D image of airfoil

Figure 11. Airfoil of airplane.

(a) Designing of
turbomachinery
blade

(b) 3D image of
turbomachinery blade

Figure 12. Airfoil of airplane.

8. Vertical blade/Stabilizer

The most important function of vertical blade/stabilizer is to maintain the aircraft in straight position
and to balance level flight of aircraft. It also keeps the stability of airplane about its vertical axis. Here,
the designing of a vertical stabilizer has been constructed using QTBS curves with the association of
two shape parameters ν and β as shown in Figure 13. The 2D and 3D designed vertical blades are
shown in Figure 13(a) and 13(b), respectively.

(a) Designing of vertical blades (b) 3D image of vertical blades

Figure 13. Vertical blade of airplane.
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9. Approximate to the quadratic NURBS curves

For a∈ [ai, ai+1], and u = π
2

a−ai
∆ai

, the QTBS can be rewrite as:

S i (u) = Pi−1 + ( fi (u) + gi (u))
(

fi (u)Pi−2 + gi (u)Pi

fi (u) + gi(u)
− Pi−1

)
. (9.1)

According to this, the NURBS curve can be approximated as:

Ti (v) = Pi−1 + (bi0 (v) + bi2 (v))
(

bi0 (v) Pi−2 + bi2 (v) pi

bi0 (v) + bi2 (v)
− Pi−1

)
, (9.2)

where, bi0(v) = αi2γi(1 − v) 2 /α(v), bi0(v) = αiωi(v)2 /α(v), α(v) = αi−2γi(1 − v)2 + αiωi(v)2 + αi−1 (1 −
γi)(1 − v)2 + 2(1 − v)v + (1 − ωi)v2 , and αi−1, αi−2, α − i are weight numbers. The boundaries of the
curve are:  Ti (0) =

(
ai−2γi Pi−2+αi−1ωi−1 Pi−1

αi−1γi+1+αiωi

)
,

Ti (1) =
(

ai−1γi+ Pi−1+αiωi Pi
αi−1γi+1+αiωi

)
.

(9.3)

10. Conclusions

In this paper, we have constructed QTBS with two shape parameters. Our proposed scheme
satisfies all the basic properties and has been proved. The proposed quadratic trigonometric B-spline
is more suitable for designing due to the presence of shape parameters than ordinary quadratic
B-spline. With the use of shape parameters we obtain more flexible curve which is according to a
designing technology. It is an important feature in the construction of curves that it should be
controlled easily and within the convex hull. The proposed QTBS can control the modeling of the
geometric curves in a decorous manner because it can construct more appropriate and flexible curves.
It is numerically stable. It is also useful from economical point of view as it reduces computational
cost as compare to inserting more control points. Different parts of an airplane have been designed
using proposed technique.

Acknowledgement

This research is supported by the Ministry of Higher Education Malaysia through Fundamental
Research Grant Scheme (FRGS/1/2020/STG06/USM/03/1) and School of Mathematical Sciences,
Universiti Sains Malaysia. The authors are very grateful to the anonymous referees for their valuable
suggestions.

Conflicts of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

AIMS Mathematics Volume 6, Issue 7, 7669–7683.



7680

References

1. B. Kulfan, J. Bussoletti, Fundamental parameteric geometry representations for aircraft component
shapes, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, The
modeling and simulation frontier for multidisciplinary design optimization, Portsmouth, Virginia,
2006.

2. J. J. Maisonneuve, D. P. Hills, P. Morelle, C. Fleury, A. J. G. Schoofs, A shape optimisation
tool for multi-disciplinary industrial design, In: Computational methods in applied sciences 96:
proceedings of the 2nd ECCOMAS conference, Paris, France, 1996, 516–522.

3. U. Bashir, M. Abbas, M. N. H. Awang, J. M. Ali, A class of quasi-quintic trigonometric Bézier
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Appendix 1

Proof. For a ∈ (ai, ai+1) , u = a−ai
2∆ai
∈

(
0, π2

)
, c1 (a) = gi (u) , we have ωi + βi − ωi (1 − νi cos u) +

(ωiνi − βi) > 0 and ωi + βi − ωi (1 − νi cos u) + cos2u (ωiνi − βi) > 0, for a ∈ (ai+1, ai+2) , u = a−ai
2∆ai+1

∈(
0, π2

)
, ci (a) = 1 − fi+1 (u) − gi+1 (u) .

when u = 0,
ci (a) = 1 − yi+1 + βi

= ωi + βi > 0

when a ∈ (ai, ai+1), let, ξi+1 = max {γi+1 + ωi+1} ,

fi+1 (u) + gi+1 (u) < ξi+1[
{
1 − (1 − νi) sin u + νisin2u

}
+ {1 − (1 − νi+1) cos u + νicos2u}

AIMS Mathematics Volume 6, Issue 7, 7669–7683.
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= ξi+1 − βicos2u + βisin2u

= ξi+1 − βi + (βi + βi + 1)sin2u.

Since βi ≥ −min {γi+2, ωi} , βi+1 ≤ min{γi+2, ωi}, we have yi+1 − βi ≤ 1, yi+1 ≤ 1.
Thus, fi+1 (u) + gi+1 (u) < 1 and Ci (a) > 0. For a ∈ (ai+2, ai+3) , u = a−ai

2∆ai+2
∈

(
0, π2

)
, c1 (a) = fi+2(u) and

fi+2 (u) < γi+2

{
1 − (1 − νi+1) sin u + νi+1sin2u

}
− βi+1cos2u,

βi+2 ≤ γi+2 (1 − νi+1) c < γi+1,

γi+2 − βi+1 − (γi+2 + γi+2νi+1) sin u + (γi+2νi+1 + βi+1) sin2u > 0.

Thus, we can say−1 < νi ≤ 1, i = 0, 1, . . . , n + 1,

βi ≥ −min
{
γi+1,

1
2
ωi (1 − νi)

}
, i = 0, 1, 2, . . . , n

βi ≥ −min
{

1
2
γi+1 (1 − νi) , ωi+1

}
, i = 0, 1, 2, . . . , n + 1

Hence, for all ci(u) > 0, fora ∈ (ai+2, ai+3) , i = 0, 1, 2, . . . , n �

Appendix 2

Proof. The QTBS basis functions (2.1) can also be written as:
Ci−2 (a) = f (ui (a)),

Ci−1 (a) = 1 − f (ui (a)) − g (ui (a))
Ci (a) = g (ui (a))

Let Ck (a) = 0, k , i − 2, i − 1, i
Thus,

∑n
i=0 Ci (a) =Ci−2 (a) + Ci−1 (a) + Ci (a).

Hence,
∑n

i=0 C (a) = 1 �

Appendix 3

Continuity at first knot

Proof. {
Ci(a−?+1) = ωi + βi,

Ci(a−?+1) = 1 + λi.

L.H.S continuity, consider Ci (a) = g (ui (a)) . Putting values, we have

g (ui (a)) =

 ωi

(
1 − (1 + v) cos (u) + vcos2 (u)

)
+ βisin2u

ωi(1 − (1 + v) cos
(
π

2
a−ai
∆ai

)
+ vcos2

(
π

2
a−ai
∆ai

)
) + βisin2

(
π

2
a−ai
∆ai

)
Replacing a by ai+1, we have

Ci
(
a−i+1

)
= ωi 1 − (1 + ν) cos

(
π

2
ai + 1 − ai

∆ai

)
+ ν cos2

(
π

2
a − ai

∆ai

)
+ βisin2

(
π

2
a − ai

∆ai

)
AIMS Mathematics Volume 6, Issue 7, 7669–7683.
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= ωi 1 − (1 + ν) cos
(
π

2
∆ai

∆ai

)
+ ν cos2

(
π

2
∆ai

∆ai

)
+ βi sin2

(
π

2
∆ai

∆ai

)
= ωi 1 − (1 + ν) cos

(
π

2
∆ai

∆ai

)
+ ν cos2

(
π

2
∆ai

∆ai

)
+ βi sin2

(
π

2
∆ai

∆ai

)
= ωi + βi

Hence, proved.
R.H.S continuity, consider Ci(a+

i+1) = 1 − γi, let 1 − f (ui+1(a)) − g(ui+1(a)), putting value of ui+1, we
have

1 − f (ui+1(a)) − g(ui+1(a)) = 1 − {γi+1{1 − (1 − ν)sin(π2
a−ai+1
∆ai+1

) +νsin2(π2
a−ai+1
∆ai+1

)} − βi cos2 (π2
a−ai+1
∆ai+1

)}
− {ωi+1{1 − (1 − ν) cos(π2

a−ai+1
∆ai+1

) ν cos2 (π2
a−ai+1
∆ai+1

)} + βi+1 sin(π2
a−ai+1
∆ai+1

)}. Replacing a by ai+1, we obtain
1 − f(ui+1(a)) − g(ui+1(a)) =1 − {γi+1{1 − (1 − ν) sin(π2

ai+1−ai+1
∆ai+1

) + νsin2(π2
ai+1−ai+1
∆ai+1

) − βi

cos2(π2
ai+1−ai+1
∆ai+1

)}−{ωi+1 1−(1−ν)cos (π2
ai+1−ai+1
∆ai+1

) +νcos2(π2
ai+1−ai+1
∆ai+1

)}+βi+1sin (π2
ai+1−ai+1
∆ai+1

)}.

After some simplification,
1 − f (ui+1(a)) − g(ui+1(a)) =1 − {γi+1{1 − (1 − ν) sin (0) + νsin2 (0)} − βicos2 (0)}
− {ωi+1{1 − (1 − ν) cos(0) + νcos2(0)} − βi+1sin2 (0)},
= 1 − {γi+1{1 + 0 + 0} − βi} − {ωi+1{1 − 1 + ν − ν} − 0}.

Thus,
Ci (a+

i+1) = 1 − γi+1 + βi.

Similarly, {
ci (a−i+2) = 1 − ωi+1 − βi+1,

ci (a+
i+2) = γi+2 − βi+1,

and 
c′i

(
a−i+1

)
= π

2
(1+v)
∆ai

ωi, c′i
(
a+

i+1

)
= π

2
(1+v)
∆ai

γi+1,

c′i
(
a−i+2

)
= π

2
(1+v)
∆ai+1

ωi+1, c′i
(
a+

i+2

)
= π

2
(1+v)
∆ai+2

γi+2,

γ j+1 = 1 −ω j+1 ,γ j+1/∆a j+1 = ωi/∆ai , 0 ≤ i ≤ n + 1.

Thus, we obtain the following results c(k)
i

(
a−i+1

)
= c(k)

i

(
a+

i+1

)
,

c(k)
i

(
a−i+2

)
= c(k)

i

(
a+

i+2

)
,

for k = 0, 1

If ν = 0, then our QTBS basis functions will become the linear trigonometric basis functions. �
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