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Abstract: A network structure with n vertices and m edges is practically represented by a graph with
n vertices and m edges. The graph with k fixed target vertices is called a k-terminal graph. This article
studies the locally most reliable simple sparse three-terminal graphs, in which each edge survives
independently with probability p. For p close to 0 or 1, the locally most reliable three-terminal graphs
with n vertices and m edges are determined, where n ≥ 5 and 9 ≤ m ≤ 4n − 10. Finally, we prove that
there is no uniformly most reliable three-terminal graph for n ≥ 5, 11 < m ≤ 3n − 5 and m ≡ 2(mod3)
and for n ≥ 7, 3n− 5 < m ≤ 4n− 10. This research provides helpful guidance for constructing a highly
reliable network with three target vertices.
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1. Introduction

Network reliability is an important topic in network research, network performance analysis, and
combinatorial mathematics. And researchers usually use graph theoretic models to study it
extensively. The network reliability can be separated into three types of models: edges are perfectly
reliable while vertices survive independently with a fixed probability [9, 12]; vertices are perfectly
reliable while edges survive independently with a fixed probability [3, 11, 16]; and vertices and edges
survive independently of each other with some fixed probabilities [6, 8]. There are two aspects on the
network reliability: reliability analysis and reliability design. The purpose of reliability analysis is to

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021439


7519

compute the reliability or unreliability polynomial of a given graph [7, 19, 23, 24]. The purpose of
reliability design is to find the graphs with the maximum reliability polynomial or the minimum
unreliability polynomial among graphs with the same number of vertices and
edges [1–3, 8, 10, 11, 14, 16]. In addition, according to the number of vertices which are connected in
the graph, these models can be divided into two main research categories: k-terminal reliability (the
probability that k specified target vertices in a given graph are connected) [2, 7, 13, 15, 17, 23, 24]; and
all-terminal reliability (the probability that the entire graph is connected) [1,3,8–11,14,16,19,21,22].

In practice, the network is required to run normally even if some edges are fail. If each edge of
the network survives independently with a fixed probability, the network with the largest connected
probability of target vertices is defined as the most reliable graph. There are more results about the
most reliable graphs for all-terminal graphs, seeing [1,3,10,14,21]. However, there are a few studies on
reliability analysis of k-terminal networks, which calculate the reliability polynomials of graphs [7,23,
24]. And there are even fewer results on the reliability design of k-terminal networks. In 2018, Betrand
et al. [2] gave some important results about the most reliable two-terminal graph, and determined
several locally most reliable two-terminal graphs when the vertices are perfectly reliable and the edges
survive independently with probability 0 ≤ p ≤ 1. And they also proved that there is no uniformly
most reliable two-terminal simple graph in some graph families. It is natural to consider the following
problems.

Problem. Do the three-terminal graphs have locally most reliable graph or uniformly most reliable
graph as two-terminal graphs? How does one construct locally most reliable three-terminal graphs with
given number of vertices and edges? Is the locally most reliable three-terminal graph also uniformly
most reliable?

With these questions, this research extends the study from the two-terminal graphs to three-terminal
graphs, studies the locally most reliable three-terminal simple sparse graphs (graphs with edges less
than or equal to a constant multiple of the number of vertices) and considers whether the locally most
reliable graph is also the uniformly most reliable graph. The structure of this paper is organized as
follows. Fundamental definitions and notations are given in Section 2. In Section 3, some locally most
reliable graphs are determined for three-terminal graphs with n vertices and m edges, where n ≥ 5 and
9 < m ≤ 4n − 10. Some locally most reliable graphs are further evaluated that they are not uniformly
most reliable graphs, when 11 < m ≤ 3n − 5 and m ≡ 2(mod3) or 3n − 5 < m ≤ 4n − 10. Section 4
summarizes the results of this research.

2. Basic concepts and notations

Some basic notation is list here. For integers a, b and r, the notation a ≡ r(modb) indicates that the
reminder of a divided by b is r, and b a

bc is the largest integer not greater than a
b . In this paper, we will

only consider simple graphs in which there are no multiple edges and loops. In a graph G, the degree of
the vertex v is the number of edges incident with v, denoted by d(v). The complete graph on n vertices
is denoted by Kn, and K1,n denotes the simple graph on n + 1 vertices with one vertex of degree n and n
vertices of degree 1. The union of graphs G and H is the graph with vertex set V(G) ∪ V(H) and edge
set E(G) ∪ E(H), which is denoted by G ∪ H. If l is a positive integer, then l · G denotes the disjoint
union of l copies G. The join of G and H, which is denoted by G ∨ H, has vertex set V(G) ∪ V(H)
and edge set E(G) ∪ E(H) ∪ {uv|u ∈ G, v ∈ H}. Suppose u and v are two vertices in G, G ∪ {uv} is the
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graph obtained by adding an edge between u and v to G, and G − {uv} is the graph obtained by deleting
the edge between u and v from graph G. For notation and terminology not defined in this paper we
follow [4].

A three-terminal graph is an undirected and simple graph G = (V(G), E(G)) with three specified
target vertices r, s and t in V(G). Using Gn,m denotes the set of all three-terminal graphs on n vertices
and m edges. The probability that three specified target vertices r, s, t of a graph G ∈ Gn,m remain
connected when each of its edges survives independently with probability p is called the three-terminal
reliability (or the three-terminal reliability polynomial) of G. The rst-subgraph of G is the subgraph of
G such that r, s, t are connected with each other. Let Ni(G) (simply Ni) be the number of rst-subgraphs
with i edges of graph G, then the three-terminal reliability polynomial of the graph G ∈ Gn,m can be
defined as

R3(G; p) =

m∑
i=2

Ni pi(1 − p)m−i.

For some three-terminal graphs with small number of vertices and edges, we can compute the
reliability polynomial directly by definition. However, for a three-terminal graph with many vertices
and edges, the number of rst-subgraphs with i edges is very large, which possibly leads to the loss
or repetition of some rst-subgraphs in the process of finding rst-subgraphs. So, it is very difficult
to determine the coefficients of the reliability polynomial by the definition. In order to obtain the
reliability polynomial, it is necessary to use the Factorization approach as indicated in the following
lemma.

Lemma 2.1. ( [18]) For any edge e in a three-terminal graph G ∈ Gn,m, the following factorization
holds:

R3(G; p) = pR3(G · e; p) + (1 − p)R3(G − e; p),

where G · e is the graph obtained by contracting the endpoints of edge e in G and G − e is the graph
obtained by deleting the edge e from G.

Example 1. Figure 1 depicts two special three-terminal graphs in G7,14 with three target vertices r, s, t.
Each edge of these graphs survives independently with probability p. By definition, we have

R3(G1; p) =
14∑
i=2

Ni(G1)pi(1 − p)14−i, R3(G2; p) =
14∑
i=2

Ni(G2)pi(1 − p)14−i.

By calculation, we get

R3(G1; p)−R3(G2; p) = 52p14−490p13 +2039p12−4898p11 +7433p10−7288p9 +4463p8−1464p7 +

63p6 + 122p5 − 34p4 + 2p3.

Figure 2 gives a plot of R3(G1; p) − R3(G2; p). Clearly, G1 is more reliable than G2 for p → 0 (the
value of p sufficiently close to 0) and for p → 1 (the value of p sufficiently close to 1). In fact, by
Theorems 3.3 and 3.4, it is easy to see that when n = 7 and m = 14, G1 � B7,7 and G1 is the locally
most reliable graph in G7,14 for p → 0 and for p → 1. However, when p is in the range (0.1, 0.65), G2

is more reliable than G1. Thus, there is no uniformly most reliable graph in G7,14.
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Figure 1. Two special three-terminal graphs in G7,14 with three target vertices r, s, t.
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Figure 2. A plot of R3(G1; p) − R3(G2; p).

According to the definitions of the locally most reliable all-terminal graph [1] and the uniformly
most reliable two-terminal graph [2], we defined the locally most reliable graph and the uniformly
most reliable graph for three terminal graphs.
Definition 2.1. For p0 = 0 (or 1), if there is an ε > 0 such that R3(G; p) ≥ R3(H; p) for all H ∈ Gn,m

and for all p ∈ [0, 1]∩ (p0−ε, p0 +ε), then G is the locally most reliable graph in Gn,m for p→ 0 (or for
p → 1). In particular, a graph G is the uniformly most reliable graph in Gn,m, if R3(G; p) ≥ R3(H; p)
for all H ∈ Gn,m and all 0 ≤ p ≤ 1.

3. Reliability of graphs with 9 ≤ m ≤ 4n − 10 edges

In this section, we determine some locally most reliable graphs in Gn,m for 9 ≤ m ≤ 4n − 10. Then
we also consider whether these locally most reliable graphs are the uniformly most reliable graphs.
An rst-subgraph with i edges is minimal if it does not contain any rst-subgraphs with edges number
less than i, otherwise it is non-minimal. An rst-cutset is a set of edges, whose removal makes at least
two target vertices disconnected. And the rst-edge connectivity of G is the smallest size of an rst-
cutset, denoted by λ(rst) or simply λ. It is difficult to find the exact cases that three target vertices
are connected, which is NP-complete [20]. Therefore, we determine the most reliable graph by the
following lemma.
Lemma 3.1.( [1]) Let G,H ∈ Gn,m, the three-terminal reliability polynomial of G and H is

R3(G; p) =
m∑

i=2
Ni(G)pi(1 − p)m−i and R3(H; p) =

m∑
i=2

Ni(H)pi(1 − p)m−i, respectively.
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Suppose there exist integers k and l, such that Ni(G) = Ni(H) for 2 ≤ i < k or for l < i ≤ m. Then
(1) If Nk(G) > Nk(H), then R3(G; p) > R3(H; p) for p→ 0,
(2) If Nl(G) > Nl(H), then R3(G; p) > R3(H; p) for p→ 1.
From Lemma 3.1, we see that if G ∈ Gn,m is the locally most reliable graph for p→ 0, then it must

contain the triangle rst and N3 is the largest among graphs containing the triangle rst in Gn,m. It is not
hard to see that Ni =

(
m
i

)
for m − λ + 1 ≤ i ≤ m and Nm−λ =

(
m
λ

)
− a, where a is the number of the

rst-cutsets of size λ. Then for p → 1, if G is the locally most reliable graph in Gn,m, then it must have
the largest rst-edge connectivity λ, the number of rst-cutsets of size λ attains the minimum value.

We first introduce some important graphs which will be used below.
Let n ≥ 4 and 0 ≤ l ≤ n − 4 be integers. The three-terminal graph with n vertices, which is drawn

as Figure 3, is denoted by An,l, where the vertex set V(An,l) is {r = v1, s = v2, t = v3, v4, · · · , vn} and the
edge set E(An,l) contains the following 3n − 6 + l edges:

rs, rt, st,
viv j where i ∈ {1, 2, 3}, 4 ≤ j ≤ n,
v4v j where 5 ≤ j ≤ l + 4.

· · ·· · ·

v1 = r

v2 = s v3 = t

v4 v5 vl+4 vl+5vl+3 vn

Figure 3. Graph An,l.

Let n ≥ 4 and 4 ≤ w ≤ n be integers. The three-terminal graph with n vertices, which is drawn as
Figure 4, is denoted by Bn,w, where the vertex set V(Bn,w) is {r = v1,s = v2,t = v3,v4,· · · ,vw,· · · ,vn} and
the edge set E(Bn,w) contains the following 3w − 7 edges:

rs, rt, st,
viv j where i ∈ {1, 2, 3}, 4 ≤ j ≤ w − 1,
vivw where i ∈ {1, 2}.

v1 = r

v2 = s v3 = t

· · ·v4 v5 · · · vnvw−1 vw

Figure 4. Graph Bn,w, where the vertex vw is associated with the target vertex set {v1, v2}.
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Theorem 3.1. Let n ≥ 5 and 9 ≤ m ≤ 3n − 5 be integers and m ≡ 0 or 1(mod3). Then the graph

Abm
3 c+2,m−3bm

3 c
∪ (n − b

m
3
c − 2) · K1

is the locally most reliable graph in Gn,m for p→ 0.
Proof. Assume that n and m satisfy the given conditions and let G be the locally most reliable graph in
Gn,m for p→ 0. By Lemma 3.1, we see that G must contain the triangle rst and N3 is the largest among
graphs containing the triangle rst in Gn,m.

According to the rst-subgraph containing the edge number of triangle rst, the rst-subgraph with 3
edges are consisted of the following four cases:

Case 1. All of three edges are from the triangle rst, saying rs, rt, st.
Case 2. Two of three edges are from the triangle rst and another edge not in the triangle, saying

rs, st, viv j, where 1 ≤ i ≤ n, 4 ≤ j , i ≤ n.
Case 3. One of three edges is from the triangle rst and other two edges are not in the triangle, saying

rvi, vis, rt, where 4 ≤ i ≤ n.
Case 4. None of three edges is from the triangle rst, then they are vir, vis, vit, where 4 ≤ i ≤ n.
Note that the number of the rst-subgraphs in Cases 1 and 2 is 1 and 3(m − 3), respectively. N3

attains the maximum value if and only if the number of the rst-subgraphs of both Case 3 and Case 4
attains maximum value. By calculation, if the number of the rst-subgraphs in Case 4 attains maximum
value, then E(G) must contain bm−3

3 c = bm
3 c − 1 edge sets {vir, vis, vit} (4 ≤ i ≤ bm

3 c+ 2). Since m ≡ 0 or
1(mod3), the number of the rst-subgraphs in Case 3 attains the maximum value, while it is maximum
in Case 4. Therefore we get the following.

If m ≡ 0(mod3), then E(G) = {rs, rt, st} ∪ {viv j|1 ≤ i ≤ 3, 4 ≤ j ≤ m
3 + 2}, and G is A m

3 +2,0 ∪

(n − m
3 − 2) · K1.

If m ≡ 1(mod3), the edge set of G is consisted of the triangle rst, m−4
3 edge subsets as {vir, vis, vit}

(4 ≤ i ≤ m+5
3 ), and the remaining edge either joining one target vertex and one non-target vertex or

connecting two non-target vertices. For convenience, the remaining edge is denoted by e. If 9 ≤ m ≤
3n − 11, then the degrees of non-target vertices in G − e are 3 or 0. There are four possible joining
types for e. The first type is to connect two non-target vertices of degree 3, without losing generality
setting e = v4v5, and the final graph is denoted by G1. The second type is to join one non-target vertex
of degree 3 and the other non-target vertex of degree 0, without losing generality setting e = v4v m+8

3
,

and the final graph is denoted by G2. The third type is to connect two non-target vertices of degree
0, without losing generality setting e = v m+8

3
v m+11

3
, and the final graph is denoted by G3. The fourth

type is to join one target vertex and one non-target vertex of degree 0, without losing generality setting
e = rv(m+8)/3, and the final graph is denoted by G4. By calculation, N4(G1) > N4(Gi) for i ∈ {2, 3, 4}.
By Lemma 3.1, E(G) = E(G1) = {rs, rt, st, v4v5} ∪ {viv j|1 ≤ i ≤ 3, 4 ≤ j ≤ m+5

3 }, which implies that
G � A m+5

3 ,1 ∪ (n − m+5
3 ) · K1. If 3n − 11 < m ≤ 3n − 8, then there are n − 4 non-target vertices of degree

3 and only one non-target vertex of degree 0 in G − e. There are three possible types for e and the final
graph is in {G1,G2,G4}. By calculation and comparison, we can see that G � A m+5

3 ,1 ∪ (n − m+5
3 ) · K1.

If 3n − 8 < m ≤ 3n − 5, then the degrees of all non-target vertices in G − e are equal to 3. Then
e is only one type to connect two non-target vertices of degree 3, which means that G � G1. So,
G � A m+5

3 ,1 ∪ (n − m+5
3 ) · K1.

From the above argument, we see that Abm
3 c+2,m−3bm

3 c
∪ (n − bm

3 c − 2) · K1 is the locally most reliable
graph in Gn,m for p→ 0. �
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Theorem 3.2. Let n ≥ 5 and 9 ≤ m ≤ 3n − 5 be integers and m ≡ 0 or 1(mod3). Then the graph

Abm
3 c+2,m−3bm

3 c
∪ (n − b

m
3
c − 2) · K1

is the locally most reliable graph in Gn,m for p→ 1.
Proof. Let A = Abm

3 c+2,m−3bm
3 c
∪ (n − bm

3 c − 2) · K1. Let G ∈ Gn,m be the locally most reliable graph
for p → 1. Then by Lemma 3.1, G must have the largest rst-edge connectivity λ, and the number of
rst-cutsets of size λ attains the minimum value among graphs with the largest λ.

Obviously, λ ≤ min{d(r), d(s), d(t)} ≤ bm
3 c+1. If {rs, rt, st}∪{viv j|1 ≤ i ≤ 3, 4 ≤ j ≤ bm

3 c+2} ⊆ E(G),
then min{d(r), d(s), d(t)} = bm

3 c + 1. Let C be the minimal rst-cutset of G, then there must exist a
component containing just one target vertex and k1 (0 ≤ k1 ≤ n−3) non-target vertices ui(1 ≤ i ≤ k1) in
G−C, where u1, u2, · · · , uk ∈ {vi|4 ≤ i ≤ bm

3 c+2}, and without loss of generality, setting this target vertex
as r. Then the number of edges in C is at least bm

3 c+1−k+2k = bm
3 c+1+k ≥ bm

3 c+1. Thus λ ≥ bm
3 c+1.

Hence, λ can arrive at the maximum value bm
3 c+1 if {rs, rt, st}∪{viv j|1 ≤ i ≤ 3, 4 ≤ j ≤ bm

3 c+2} ⊆ E(G).
Then λ = bm

3 c + 1.
If m ≡ 0(mod3), then λ is m

3 + 1, d(r) = d(s) = d(t) = m
3 + 1, r, s and t are adjacent with each

other. If there is a non-target vertex v ∈ V(G) with d(v) , 0 or 3, then we have either λ(G) < m
3 + 1, or

Nm−( m
3 +1)(G) <

(
m
λ

)
− 3. For each non-target vertex v ∈ V(G), if d(v) = 0 or 3, then Nm−λ(G) =

(
m
λ

)
− 3.

Since G is the locally most reliable graph, by Lemma 3.1, Nm−λ must be maximum, then the degree of
each non-target vertex is either 0 or 3. Thus, G is A.

If m ≡ 1(mod3), then λ is m+2
3 , and {rs, rt, st} ∩ E(G) ≥ 2. When {rs, rt, st} ∩ E(G) = 3, similarly,

we can find that there are four graphs with λ = m+2
3 and Nm−λ =

(
m
λ

)
− 3, which are A, A∪ {rvn} − {v4v5},

A ∪ {v4vn} − {v4v5}, A ∪ {vn−1vn} − {v4v5}, where the second and third graphs only occur when m ≤
3n − 8 and the last only occurs when m ≤ 3n − 11. By calculation, the values of Nm−λ−1 of these four
graphs is

(
m
λ+1

)
− 3m + 12,

(
m
λ+1

)
− 3m + 6,

(
m
λ+1

)
− 3m + 6 and

(
m
λ+1

)
− 3m + 6, respectively. Obviously,(

m
λ+1

)
− 3m + 12 >

(
m
λ+1

)
− 3m + 6, by Lemma 3.1, G is A. When {rs, rt, st} ∩ E(G) = 2, similarly, by

calculation, we find that for all graphs with λ = m+2
3 , there is Nm−λ <

(
m
λ

)
− 3. Therefore, by Lemma

3.1, if m ≡ 1(mod3), then {rs, rt, st} ∩ E(G) = 3 and G is A.
Therefore, the graph Abm

3 c+2,m−3bm
3 c
∪ (n − bm

3 c − 2) · K1 is the locally most reliable graph in Gn,m for
p→ 1. �

Theorems 3.1 and 3.2 show that when n ≥ 5, 9 ≤ m ≤ 3n − 5 and m ≡ 0 or 1(mod3), Abm
3 c+2,m−3bm

3 c

∪(n−bm
3 c−2)·K1 is the locally most reliable graph inGn,m for both p→ 0 and p→ 1. If m ≡ 2( mod 3),

we have the following theorems, whose proofs are similar to the proofs of Theorems 3.1 and 3.2.
Theorem 3.3. Let n ≥ 5 and 9 ≤ m ≤ 3n − 5 be integers and m ≡ 2(mod3). Then the graph

Bn,bm
3 c+3 ∪ (n − b

m
3
c − 3) · K1

is the locally most reliable graph in Gn,m for p→ 0.
Theorem 3.4. Let n ≥ 5 and 9 ≤ m ≤ 3n − 5 be integers and m ≡ 2(mod3). Then the graph

Bn,bm
3 c+3 ∪ (n − b

m
3
c − 3) · K1

is the locally most reliable graph in Gn,m for p→ 1.
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Theorems 3.3 and 3.4 show that when n ≥ 5, 9 ≤ m ≤ 3n − 5 and m ≡ 2(mod3), Bn,bm
3 c+3 ∪(n −

bm
3 c − 3) · K1 is the locally most reliable graph in Gn,m for both p → 0 and p → 1. Is it the uniformly

most reliable graph for 11 < m ≤ 3n − 5 (n ≥ 5)? In order to solve this problem, we need to compute
the reliability polynomials of some three-terminal graphs.
Lemma 3.2. Let n ≥ 4 be an integer. Then

R3(An,0; p) = 1 − (4p6 − 18p5 + 30p4 − 20p3 + 6p − 2)(1 − 3p2 + 2p3)n−4 − 3(1 − p)2(1 − 2p2 + p3)n−3.

Proof. The vertices in An,0 are labeled same as Figure 3. By Lemma 2.1, we can calculate a recurrence
relation for the three-terminal probability polynomial of An,0.

R3(An,0; p) = p3R3(G1; p) + p3(1− p)R3(G2; p) + p2(1− p)2R3(G3; p) + p3(1− p)R3(G4; p) + p2(1−
p)2R3(G5; p) + p(1 − p)2R3(G6; p) + p3(1 − p)R3(G7; p) + p2(1 − p)2R3(G8; p) + p(1 − p)2R3(G9; p) +

p(1− p)2R3(G10; p)+ (1− p)3R3(G11; p), where the forms and reliability polynomials of Gi (1 ≤ i ≤ 11)
are shown in Table 1.

Table 1. Reliability polynomials of graphs for R3(An,0; p).

Graph Gi Reliability polynomial of Gi

G1 = An,0 · v1vn · v1v2 · v1v3 1
G2 = An,0 · v1vn · v1v2 − v1v3 · v2v3 1
G3 = An,0 · v1vn · v1v2 − v1v3 − v2v3 1 − (1 − p)(1 − 2p2 + p3)n−4

G4 = An,0 · v1vn − v1v2 · v1v3 · v2v3 1
G5 = An,0 · v1vn − v1v2 · v1v3 − v2v3 1 − (1 − p)(1 − 2p2 + p3)n−4

G6 = An,0 · v1vn − v1v2 − v1v3 R3(An−1,0; p)
G7 = An,0 − v1vn · v2vn · v2v3 · v1v2 1
G8 = An,0 − v1vn · v2vn · v2v3 − v1v2 1 − (1 − p)(1 − 2p2 + p3)n−4

G9 = An,0 − v1vn · v2vn − v2v3 R3(An−1,0; p)
G10 = An,0 − v1vn − v2vn · v3vn R3(An−1,0; p)
G11 = An,0 − v1vn − v2vn − v3vn R3(An−1,0; p)

By Table 1, we have R3(An,0; p) = (1 + 2p)(1 − p)2R3(An−1,0; p) + p3(4 − 3p) + 3p2(1 − p)2[1 − (1 −
p)(1 − 2p2 + p3)n−4].

Calculating the linear non-homogeneous recurrence relation, we have

R3(An,0; p) = (1 + 2p)n−4(1 − p)2n−8R3(A4,0; p) +
1 − (1 + 2p)n−4(1 − p)2n−8

1 − (1 + 2p)(1 − p)2 (3p2 − 2p3)

− 3p2(1 − p)3
1 −

(
(1 + 2p)(1 − p)2/1 − 2p2 + p3

)n−4

1 −
[
(1 + 2p)(1 − p)2/1 − 2p2 + p3]

= (−4p6 + 15p5 − 18p4 + 5p3 + 3p2)(1 − 3p2 + 2p3)n−4 + [1 − (1 − 3p2 + 2p3)n−4]

− 3(1 − p)2(1 − 2p2 + p3)n−3
[
1 −

(
1 − (3p2 + 2p3)/(1 − 2p2 + p3)

)n−4
]

= 1 − (4p6 − 18p5 + 30p4 − 20p3 + 6p − 2)(1 − 3p2 + 2p3)n−4 − 3(1 − p)2(1 − 2p2 + p3)n−3.

The proof is completed. �
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Similarly as Lemma 3.2, we can get Lemmas 3.3 and 3.4.
Lemma 3.3. Let n ≥ 6 and 4 ≤ w ≤ n be integers. Then

R3(Bn,w; p) = p3 + p2(1 − p)[1 − (1 − p)(1 − 2p2 + p3)w−4] + (p + 1)(1 − p)Aw−1,0.

Lemma 3.4. Let n ≥ 6 be an integer. Then
R3(An,2; p) = 3p10−24p9 +80p8−138p7 +120p6−30p5−28p4 +18p3− (18p12−159p11 +603p10−

1272p9 + 1602p8 − 1173p7 + 399p6 + 42p5 − 78p4 + 18p3)(1 − 2p2 + p3)n−6 − (3p10 − 24p9 + 81p8 −

150p7 + 165p6 − 108p5 + 39p4 − 6p3)An−3,0 + (p8 − 12p7 + 45p6 − 80p5 + 75p4 − 36p3 + 7p2)An−2,0 +

(2p5 − 8p4 + 12p3 − 8p2 + 2p)An−1,0 + (p2 − 2p + 1)An,0.

With the above lemmas, we can get Theorem 3.5.
Theorem 3.5. Let n ≥ 5 and 11 < m ≤ 3n − 5 be integers and m ≡ 2(mod3). Then the graph
Abm

3 c+2,2 ∪ (n − bm
3 c − 2) · K1 is more reliable than Bn,bm

3 c+3 ∪ (n − bm
3 c − 3) · K1 in Gn,m for p = 1/2.

Proof. For the convenience, let w = bm
3 c + 3. By Lemma 3.2, we have

R3(An,0; 1/2) = 1 + (1/2)n−1 − (3/4) · (5/8)n−3.

By Lemmas 3.3 and 3.4 and R3(An,0; 1/2), we have

R3(Bn,w; 1/2) =
1
4
−

1
16
· (5/8)w−4 +

3
4

R3(Aw−1,0; 1/2) = 1 − (5/8)w−3 +
3
4
· (1/2)w−2,

R3(Aw−1,2; 1/2) =
643

1024
−

3
64
· (5/8)w−7 +

9
1024

R3(Aw−4,0; 1/2) +
3

256
R3(Aw−3,0; 1/2)

+
1

16
R3(Aw−2,0; 1/2) +

1
4

R3(Aw−1,0; 1/2)

= 1 −
579

4096
· (5/8)w−7 +

83
1024

· (1/2)w−5.

Thus, R3(Aw−1,2; 1/2) − R3(Bn,w; 1/2) = 1
4096

[
46 · (5/8)w−7 − 13 · (1/2)w−7

]
.

Since 46 · (5/8)w−7 > 46 · (1/2)w−7 > 13 · (1/2)w−7 (w = bm
3 c + 3 ≥ 7),

R3(Aw−1,2; 1/2) − R3(Bn,w; 1/2) > 0, which means, R3(Aw−1,2; 1/2) > R3(Bn,w; 1/2).
The proof is completed. �
As a straightforward consequence of Theorems 3.3 or 3.4 and 3.5, we obtain the following result.

Theorem 3.6. Let n and m be integers. If n ≥ 5, 11 < m ≤ 3n − 5 and m ≡ 2(mod3), then there is no
uniformly most reliable graph in Gn,m.

Now, the existence of uniformly most reliable graph with edges less than 3n − 5 is solved partly.
How about the same question for a little more edges?
Lemma 3.5.( [5]) Let n ≥ 1 and 0 ≤ m ≤ n − 1 be integers.

If m , 3, then the unique simple graph on n vertices and m edges with the maximum number of
paths of length 2 is K1,m ∪ (n − m − 1) · K1.

If m = 3, there are two simple graphs with the maximum number of paths of length 2 : K3∪(n−3)·K1

and K1,3 ∪ (n − 4) · K1.
Theorem 3.7. Let n ≥ 7 and 3n − 5 < m ≤ 4n − 10 be integers. Then the graph An,m−3n+6 is the locally
most reliable graph in Gn,m for p→ 0.
Proof. Let G ∈ Gn,m be the locally most reliable graph for p → 0. By Lemma 3.1 and the proof of
Theorem 3.1, it is easy to see that G must contain the triangle rst and n − 3 edge sets {rvi, svi, tvi}
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(4 ≤ i ≤ n). Thus, we need to determine the remaining l = m − 3n + 6 edges between non-target
vertices. For convenience, using Ĝ denotes the subgraph of G induced by all the non-target vertices,
then E(Ĝ) = l. Since the different structures of Ĝ may lead different Ni when i ≥ 4, we begin with N4,
which is the number of rst-subgraphs with 4 edges.

The rst-subgraphs with 4 edges of G can be divided into two cases. Some of them is minimal and
others is non-minimal. There are three forms of the minimal rst-subgraph with 4 edges, which are
{svi, vit, sv j, v jr}, {svi, viv j, v jt, sr}, and {svi, viv j, v jt, v jr} (4 ≤ i, j ≤ n, i , j). The number of these three
edge sets is 6

(
n−3

2

)
, 12l and 6l, respectively. We can see that the number of the minimal rst-subgraphs

with 4 edges is affected by l, regardless of the structure of Ĝ.

The non-minimal rst-subgraph with 4 edges of G include the following cases:

C1: the minimal rst-subgraph with 2 edges,

C2: the minimal rst-subgraph with 3 edges but no minimal rst-subgraph with 2 edges.

By calculation, the number of the non-minimal rst-subgraphs with 4 edges in C1 and C2 is 3
(

m−3
2

)
+

(m − 3) and (n − 3)(m − 3) + 6(n − 3)(m − 6), respectively. Then the number of the non-minimal
rst-subgraphs with 4 edges is a constant for given n and m.

Therefore, whatever the structure of Ĝ is, N4 is a constant for given n and m. Then we need to
consider N5, which is the number of rst-subgraphs with 5 edges.

The rst-subgraphs with 5 edges of G can be divided into two cases. Some of them is minimal and
others is non-minimal. The non-minimal rst-subgraph with 5 edges of G include the following cases:

D1: the minimal rst-subgraph with 2 edges,

D2: the minimal rst-subgraph with 3 edges but no minimal rst-subgraph with 2 edges,

D3: the minimal rst-subgraph with 4 edges but no minimal rst-subgraph with less than 4 edges.

By calculation, the number of the non-minimal rst-subgraphs with 5 edges in D1, D2 and D3 is
3
(

m−3
3

)
+

(
m−3

2

)
, 7(n−3)

(
m−6

2

)
+3(n−3)(m−6)−12

(
n−3

2

)
and 18l(m−10)+6l+6(m−9)

(
n−3

2

)
, respectively.

Then the number of the non-minimal rst-subgraphs with 5 edges is a constant for given n and m.

There are four forms of the minimal rst-subgraph with 5 edges, which are {svi, viv j, v jr, rvk, vkt},
{svi, viv j, v jvk, vkt, rt}, {svi, viv j, v jr, v jvk, vkt}, and {rvi, svi, viv j, v jvk, vkt} (4 ≤ i, j, k ≤ n, i , j , k).
By calculation, the number of the first edge set is 12l(n − 5), which is affected by l, regardless of the
structure of Ĝ. But the number of other three cases affected by the number of P3 in Ĝ. By Lemma
3.5, if l , 3 and l ≤ n − 4, then the number of P3 in Ĝ is maximum if Ĝ is K1,l ∪ (n − l − 4) · K1, and
G is K3 ∨ (K1,l ∪ (n − l − 4) · K1). If l = 3, the number of P3 in Ĝ is maximum only if Ĝ is either
K3∪ (n− 6) ·K1 or K1,3∪ (n− 7) ·K1, and G is either K3∨ (K3∪ (n− 6) ·K1) or K3∨ (K1,3∪ (n− 7) ·K1).
Then by Lemma 3.1, we need to compare N6(K3∨ (K3∪ (n− 6) ·K1)) and N6(K3∨ (K1,3∪ (n− 7) ·K1)).
According to the calculation method of N4 and N5, we can get that the difference of coefficient N6s of
the front two graphs is −72. Then for p→ 0, G is K3 ∨ (K1,3 ∪ (n − 7) · K1).

From the above argument, we conclude that the graph An,m−3n+6 is the locally most reliable graph in
Gn,m for p→ 0. �

Now, two classes of graphs are given, which will be used in the following theorems.

Let n ≥ 4 and 0 ≤ l ≤ b n−3
2 c be integers. The three-terminal graph with n vertices, which is drawn

as Figure 5, is denoted by Cn,l, where the vertex set V(Cn,l) is {r = v1, s = v2, t = v3, v4, · · · , vn} and the
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edge set E(Cn,l) contains the following 3n − 9 + l edges:
rs, rt, st,
viv j where i ∈ {1, 2, 3}, 4 ≤ j ≤ n,
v2iv2i+1 where 2 ≤ i ≤ l + 1.

Let n ≥ 4 and 0 ≤ l ≤ n − 4 be integers. The three-terminal graph with n vertices, which is drawn
as Figure 5, is denoted by C′n,l, where the vertex set V(C′n,l) is {r = v1, s = v2, t = v3, v4, · · · , vn} and the
edge set E(C′n,l) contains the following 3n − 9 + l edges:

rs, rt, st,
viv j where i ∈ {1, 2, 3}, 4 ≤ j ≤ n,
v jv j+1 where 4 ≤ j ≤ l + 3.

· · ·· · ·

v1 = r

v2 = s v3 = t

v4 v5 vl+4vl+3 vnv6 v7· · ·· · ·

v1 = r

v2 = s v3 = t

v4 v5 v2l+3v2l+2 vnv6 v7

Cn,l C ′
n,l

Figure 5. Graph Cn,l (left) and Graph C′n,l (right).

Theorem 3.8. Let n ≥ 7 and 3n − 5 < m ≤ 3n − 6 + b n−3
2 c be integers. Then the graph Cn,m−3n+6 is the

unique locally most reliable graph in Gn,m for p→ 1.
Proof. Let G ∈ Gn,m be the unique locally most reliable graph for p → 1. Then by Lemma 3.1, the
value of the rst-edge connectivity λ of G must be as large as possible.

let C be the minimal rst-cutset of G, then there must exist a component containing just one target
vertex and k (0 ≤ k ≤ n − 3) non-target vertices ui (1 ≤ i ≤ k) in G − C, without loss of generality,
setting this target vertex as r. Clearly, λ ≤ min{d(r), d(s), d(t)} ≤ n − 1. If d(r) = d(s) = d(t) = n − 1,
then |C| ≥ d(r) − k + 2k = d(r) + k ≥ n − 1. Hence, λ can arrive at the maximum value n − 1 if and
only if d(r) = d(s) = d(t) = n − 1. Then, G contains the triangle rst and n − 3 edge sets as {rvi, svi, tvi}

(4 ≤ i ≤ n). These 3n − 6 edges are confirmed, we also need to determine the remaining m − 3n + 6
edges connecting non-target vertices.

By Lemma 3.1, we need to compare the number of rst-subgraph with m − n + 1 edges, which
is denoted as Nm−n+1, of graphs with λ = n − 1. Continue to calculate the minimal rst-cutset of G,

|C| = d(r) − k +
k∑

i=1
[d(ui) − 1] − 2m′ = n − 2k − 2m′ − 1 +

k∑
i=1

d(ui), where m′ is the number of edges

between these k non-target vertices. It is clear to see that
k∑

i=1
d(ui) ≥ 3k + 2m′, thus |C| ≥ n + k − 1.

Then, we can get that the component of k + 1 vertices generated by deleting the minimal rst-cutset of
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size n − 1 contains only the target vertex. Thus, we have Nm−n+1 =
(

m
n−1

)
− 3, which is a constant for

given n and m. By Lemma 3.1, we need to consider Nm−n.
The component of k + 1 vertices generated by deleting the minimal rst-cutset of size n contains one

target vertex and one non-target vertex of degree 3. Thus, we have Nm−n =
(

m
n

)
− 3

(
m−n+1

1

)
− 3

(
a
1

)
, where

a is the number of non-target vertices with degree 3. Since Cn,m−3n+6 has the fewest non-target vertices
with degree 3 in graphs with λ = n − 1, Nm−n(Cn,m−3n+6) gets the maximum value.

Therefore, Cn,m−3n+6 is the locally most reliable graph in Gn,m for p→ 1. �
Theorem 3.9. Let n ≥ 7 and 3n − 6 + bn−3

2 c < m ≤ 4n − 10 be integers. Then the graph C′n,m−3n+6 is
more reliable than An,m−3n+6 in Gn,m for p→ 1.
Proof. For convenience, let l = m − 3n + 6. In An,l, there are n − 4 − l vertices of degree 3, l vertices of
degree 4, a vertex of degree l + 3 and 3 target vertices of degree n − 1. And C′n,l has n − 4 − l vertices
of degree 3, 2 vertices of degree 4, l − 1 vertices of degree 5 and 3 target vertices of degree n − 1. The
rst-edge connectivity λ of An,l and C′n,l are the same, where λ = n − 1.

It is easy to calculate that
Nm− j(An,l) = Nm− j(C′n,l) =

(
m
j

)
(0 ≤ j ≤ n − 2);

Nm−λ(An,l) = Nm−λ(C′n,l) =
(

m
λ

)
− 3;

Nm−λ−1(An,l) = Nm−n(An,l) = Nm−λ−1(C′n,l) =
(

m
n

)
− 3(m − l − 3);

and

Nm−λ−2(An,l) = Nm−n−1(An,l)

=

(
m

n + 1

)
− 3

(
n − 4 − l

2

)
− 3

(
m − n + 1

2

)
− 3(n − 4 − l)(m − n − 1) − 3l;

Nm−λ−2(C′n,l) = Nm−n−1(C′n,l)

=

(
m

n + 1

)
− 3

(
n − 4 − l

2

)
− 3

(
m − n + 1

2

)
− 3(n − 4 − l)(m − n − 1) − 6.

Since l = m − 3n + 6 ≥ 3, Nm−λ−2(C′n,l) > Nm−λ−2(An,l).
By the Lemma 3.1, C′n,m−3n+6 is more reliable than An,m−3n+6 in Gn,m for p→ 1. �
We give the locally most reliable graph in Gn,m with 3n− 5 < m ≤ 3n− 6 + b n−3

2 c (n ≥ 7) for p→ 1,
as shown in Theorem 3.8. If 3n − 6 + b n−3

2 c < m ≤ 4n − 10 (n ≥ 7), we construct a graph with m edges
that is more reliable than An,m−3n+6 for p→ 1, as shown in Theorem 3.9. Thus, we obtain the following
result.
Theorem 3.10. Let n and m be integers. If n ≥ 7 and 3n− 5 < m ≤ 4n− 10, then there is no uniformly
most reliable graph in Gn,m.

4. Conclusions

This research focuses on characterizing the locally most reliable graph for three-terminal spare
graphs. There is rare literature on the locally most reliable graph for three-terminal graphs. Based on
the results of this research, the following conclusions can be drawn.

If 9 ≤ m ≤ 3n − 5 (n ≥ 5) and m ≡ 2(mod3), the locally most reliable graph for p → 0 and
p→ 1 are determined with theoretical proofs. It is also proved that there is no uniformly most reliable
three-terminal graph when 11 < m ≤ 3n − 5 (n ≥ 5) and m ≡ 2(mod3).
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The locally most reliable graph in Gn,m for p → 0 is determined with proofs when 3n − 5 < m ≤
4n − 10 (n ≥ 7). The locally most reliable graph in Gn,m for p → 1 for 3n − 5 < m ≤ 3n − 6 + bn−3

2 c

(n ≥ 7) is also determined with proofs. Additionally, it is proved that there is no uniformly most
reliable three-terminal graph when 3n − 5 < m ≤ 4n − 10 (n ≥ 7).

If 9 ≤ m ≤ 3n − 5 (n ≥ 5) and m ≡ 0 or 1(mod3), as shown in Theorems 3.1 and 3.2, the locally
most reliable graphs for p → 0 is also locally most reliable for p → 1. However, it is still unknown
whether the locally most reliable graph is the uniformly most reliable graph for 9 ≤ m ≤ 3n−5 (n ≥ 5)
and m ≡ 0 or 1(mod3) for all 0 ≤ p ≤ 1.

The results of the research can be useful for designing highly reliable networks which have three
target vertices. The findings of this research provide guiding significance for determining the locally
most reliable graphs for general k-terminal networks.
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