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Abstract: In the paper, the authors

1. establish general expressions of series expansions of (arcsin x)` for ` ∈ N;
2. find closed-form formulas for the sequence

B2n,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

1 + (−1)k+1

2
[(2n − k)!!]2

2n − k + 2

)
,

where Bn,k denotes the second kind Bell polynomials;
3. derive series representations of generalized logsine functions.

The series expansions of the powers (arcsin x)` were related with series representations for generalized
logsine functions by Andrei I. Davydychev, Mikhail Yu. Kalmykov, and Alexey Sheplyakov. The
above sequence represented by special values of the second kind Bell polynomials appeared in the
study of Grothendieck’s inequality and completely correlation-preserving functions by Frank Oertel.
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1. Motivations and outline

In [12, Definition 11.2] and [18, p. 134, Theorem A], the second kind Bell polynomials Bn,k for
n ≥ k ≥ 0 are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

`∈Nn−k+1
0

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

( xi

i!

)`i

,

where N0 = {0} ∪ N, the sum is taken over ` = (`1, `2, . . . , `n−k+1) with `i ∈ N0 satisfying
∑n−k+1

i=1 `i = k
and

∑n−k+1
i=1 i`i = n. This kind of polynomials are very important in combinatorics, analysis, and the

like. See the review and survey article [53] and closely related references therein.
In [36, pp. 13–15], when studying Grothendieck’s inequality and completely correlation-preserving

functions, Oertel obtained the interesting identity

2n∑
k=1

(−1)k (2n + k)!
k!

B◦2n,k

(
0,

1
6
, 0,

3
40
, 0,

5
112

, . . . ,
1 + (−1)k+1

2
[(2n − k)!!]2

(2n − k + 2)!

)
= (−1)n

for n ∈ N, where

B◦n,k(x1, x2, . . . , xn−k+1) =
k!
n!

Bn,k(1!x1, 2!x2, . . . , (n − k + 1)!xn−k+1). (1.1)

In [36, p. 15], Oertel wrote that “However, already in this case we don’t know a closed form expression
for the numbers

B◦2n,k

(
0,

1
6
, 0,

3
40
, 0,

5
112

, . . . ,
1 + (−1)k+1

2
[(2n − k)!!]2

(2n − k + 2)!

)
. (1.2)

An even stronger problem appears in the complex case, since already a closed-form formula for the
coefficients of the Taylor series of the inverse of the Haagerup function is still unknown”.

By virtue of the relation (1.1), we see that, to find a closed-form formula for the sequence (1.2), it
suffices to discover a closed-form formula for

B2n,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

1 + (−1)k+1

2
[(2n − k)!!]2

2n − k + 2

)
. (1.3)

In this paper, one of our aims is to derive closed-form formulas for the sequence (1.3). The first main
result can be stated as the following theorem.

Theorem 1.1. For k, n ≥ 0, m ∈ N, and xm ∈ C, we have

B2n+1,k

(
0, x2, 0, x4, . . . ,

1 + (−1)k

2
x2n−k+2

)
= 0. (1.4)

For k, n ∈ N, we have

B2n,2k−1

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . , 0,

[(2n − 2k + 1)!!]2

2n − 2k + 3

)
=

22n

(2k − 1)!

[ k∑
p=1

(−4)p−1

(
2k−1
2p−1

)
(

2n+2p−1
2p−1

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)
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−

k−1∑
p=1

(−1)p−1

(
2k−1

2p

)
(

2n+2p
2p

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1)
]

and

B2n,2k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

[(2n − 2k − 1)!!]2

2n − 2k + 1
, 0

)
=

22n

(2k)!

[ k∑
p=1

(−1)p−1

(
2k
2p

)
(

2n+2p
2p

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1)

−

k∑
p=1

(−4)p−1

(
2k

2p−1

)
(

2n+2p−1
2p−1

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)]
,

where s(n, k), which can be generated by

〈x〉n =

n∑
m=0

s(n,m)xm, (1.5)

denote the first kind Stirling numbers and

T (r; q, j; ρ) = (−1)q

[ r∑
m=q

(−ρ)ms(r,m)
(
m
q

)][ r∑
m= j−q

(−ρ)ms(r,m)
(

m
j − q

)]
. (1.6)

In Section 2, for proving Theorem 1.1, we will establish two general expressions for power series
expansions of (arcsin x)2`−1 and (arcsin x)2` respectively.

In Section 3, with the aid of general expressions for power series expansions of the functions
(arcsin x)2`−1 and (arcsin x)2` established in Section 2, we will prove Theorem 1.1 in details.

In Section 4, basing on arguments in [20, p. 308] and [28, Section 2.4] and utilizing general
expressions for power series expansions of (arcsin x)2`−1 and (arcsin x)2` established in Section 2, we
will derive series representations of generalized logsine functions which were originally introduced
in [34] and have been investigating actively, deeply, and systematically by
mathematicians [9, 10, 14–17, 29–31, 37, 38, 57] and physicists [3, 19, 20, 28].

Finally, in Section 5, we will list several remarks on our main results and related stuffs.

2. Power series expansions for the powers of the arcsine function

To prove Theorem 1.1, we need to establish the following general expressions of the power series
expansions of (arcsin x)` for ` ∈ N.

Theorem 2.1. For ` ∈ N and |x| < 1, the functions (arcsin x)` can be expanded into power series

(arcsin x)2`−1 = (−4)`−1
∞∑

n=0

4n

(2n)!

[2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)] x2n+2`−1(
2n+2`−1

2`−1

) (2.1)
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or

(arcsin x)2` = (−1)`−1
∞∑

n=0

4n

(2n)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

x2n+2`(
2n+2`

2`

) , (2.2)

where s(n, k) denotes the first kind Stirling numbers generated in (1.5) and T (r; q, j; ρ) is defined
by (1.6).

Proof. In [4, pp. 262–263, Proposition 15], [7, p. 3], [20, p. 308], and [28, pp. 49–50], it was stated
that the generating expression for the series expansion of (arcsin x)n with n ∈ N is

exp(t arcsin x) =

∞∑
`=0

b`(t)x`

`!
,

where b0(t) = 1, b1(t) = t, and

b2`(t) =

`−1∏
k=0

[
t2 + (2k)2], b2`+1(t) = t

∏̀
k=1

[
t2 + (2k − 1)2]

for ` ∈ N. This means that, when writing

b`(t) =
∑̀
k=0

β`,ktk, ` ≥ 0,

where β0,0 = 1, β2`,0 = 0, β2`,2k+1 = 0, and β2`−1,2k = 0 for k ≥ 0 and ` ≥ 1, we have

∞∑
`=0

(arcsin x)`
t`

`!
=

∞∑
`=0

x`

`!

∑̀
k=0

β`,ktk =

∞∑
k=0

∞∑
`=k

x`

`!
β`,ktk =

∞∑
`=0

[ ∞∑
m=`

βm,`
xm

m!

]
t`.

Equating coefficients of t` gives

(arcsin x)` = `!
∞∑

m=`

βm,`
xm

m!
= `!

∞∑
n=0

βn+`,`

xn+`

(n + `)!
, ` ∈ N. (2.3)

It is not difficult to see that

b2`(t) = 4`−1t2
(
1 −

it
2

)
`−1

(
1 +

it
2

)
`−1

and b2`+1(t) = 4`t
(1
2
−

it
2

)
`

(1
2

+
it
2

)
`
,

where i =
√
−1 is the imaginary unit and

(z)n =

n−1∏
`=0

(z + `) =

z(z + 1) · · · (z + n − 1), n ≥ 1
1, n = 0

is called the rising factorial of z ∈ C, while

〈z〉n =

n−1∏
`=0

(z − `) =

z(z − 1) · · · (z − n + 1), n ≥ 1
1, n = 0

(2.4)

AIMS Mathematics Volume 6, Issue 7, 7494–7517.



7498

is called the falling factorial of z ∈ C. Making use of the relation

(−z)n = (−1)n〈z〉n or 〈−z〉n = (−1)n(z)n

in [52, p. 167], we acquire

b2`(t) = 4`−1t2
〈 it

2
− 1

〉
`−1

〈
−

it
2
− 1

〉
`−1

and b2`+1(t) = 4`t
〈 it

2
−

1
2

〉
`

〈
−

it
2
−

1
2

〉
`
.

Utilizing the relation (1.5) in [59, p. 19, (1.26)], we obtain

b2`(t) = 4`−1t2
`−1∑
m=0

s(` − 1,m)
2m (it − 2)m

`−1∑
m=0

(−1)m s(` − 1,m)
2m (it + 2)m

= 4`−1t2
`−1∑
m=0

s(` − 1,m)
2m

m∑
k=0

(
m
k

)
iktk(−2)m−k

`−1∑
m=0

(−1)m s(` − 1,m)
2m

m∑
k=0

(
m
k

)
iktk2m−k

= 4`−1t2
`−1∑
m=0

(−1)ms(` − 1,m)
m∑

k=0

(−1)k

2k

(
m
k

)
iktk

`−1∑
m=0

(−1)ms(` − 1,m)
m∑

k=0

1
2k

(
m
k

)
iktk

= 4`−1t2
`−1∑
k=0

[ `−1∑
m=k

(−1)m+k s(` − 1,m)
2k

(
m
k

)]
iktk

`−1∑
k=0

[ `−1∑
m=k

(−1)m s(` − 1,m)
2k

(
m
k

)]
iktk

= 4`−1t2
2(`−1)∑

k=0

k∑
q=0

[ `−1∑
m=q

(−1)m+q s(` − 1,m)
2q

(
m
q

) `−1∑
m=k−q

(−1)m s(` − 1,m)
2k−q

(
m

k − q

)]
iktk

= 4`−1t2
2(`−1)∑

k=0

1
2k

k∑
q=0

[ `−1∑
m=q

(−1)m+qs(` − 1,m)
(
m
q

) `−1∑
m=k−q

(−1)ms(` − 1,m)
(

m
k − q

)]
iktk

= 4`−1
2(`−1)∑

k=0

ik

2k

[ k∑
q=0

( `−1∑
m=q

(−1)ms(` − 1,m)
(
m
q

)) `−1∑
m=k−q

(−1)ms(` − 1,m)
(

m
k − q

)]
tk+2

= 4`−1
2(`−1)∑

k=0

ik

2k

[ k∑
q=0

T (` − 1; q, k; 1)
]
tk+2

and

b2`+1(t) = 4`t
∑̀
m=0

s(`,m)
2m (it − 1)m

∑̀
m=0

(−1)m s(`,m)
2m (it + 1)m

= 4`t
∑̀
m=0

s(`,m)
2m

m∑
k=0

(−1)m−k

(
m
k

)
iktk

∑̀
m=0

(−1)m s(`,m)
2m

m∑
k=0

(
m
k

)
iktk

= 4`t
∑̀
k=0

[∑̀
m=k

(−1)m s(`,m)
2m

(
m
k

)]
(−i)ktk

∑̀
k=0

[∑̀
m=k

(−1)m s(`,m)
2m

(
m
k

)]
iktk

= 4`
2∑̀

k=0

ik

[ k∑
q=0

(−1)q

(∑̀
m=q

(−1)m s(`,m)
2m

(
m
q

)) ∑̀
m=k−q

(−1)m s(`,m)
2m

(
m

k − q

)]
tk+1
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= 4`
2∑̀

k=0

ik

[ k∑
q=0

T
(
`; q, k;

1
2

)]
tk+1.

This means that
2∑̀

k=0

β2`,ktk =

2(`−1)∑
k=−2

β2`,k+2tk+2 =

2(`−1)∑
k=0

β2`,k+2tk+2 = 4`−1
2(`−1)∑

k=0

ik

2k

[ k∑
q=0

T (` − 1; q, k; 1)
]
tk+2

and
2`+1∑
k=0

β2`+1,ktk =

2∑̀
k=−1

β2`+1,k+1tk+1 =

2∑̀
k=0

β2`+1,k+1tk+1 = 4`
2∑̀

k=0

ik

[ k∑
q=0

T
(
`; q, k;

1
2

)]
tk+1.

Further equating coefficients of tk+2 and tk+1 respectively arrives at

β2`,k+2 = 4`−1 ik

2k

k∑
q=0

T (` − 1; q, k; 1) and β2`+1,k+1 = 4`ik
k∑

q=0

T
(
`; q, k;

1
2

)
for k ≥ 0.

Replacing ` by 2` − 1 for ` ∈ N in (2.3) leads to

(arcsin x)2`−1 = (2` − 1)!
∞∑

n=0

βn+2`−1,2`−1
xn+2`−1

(n + 2` − 1)!

= (2` − 1)!
∞∑

n=0

β2n+2`−1,2`−1
x2n+2`−1

(2n + 2` − 1)!

= (2` − 1)!
∞∑

n=0

[
4n+`−1i2(`−1)

2(`−1)∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)] x2n+2`−1

(2n + 2` − 1)!

= (−1)`−14`−1(2` − 1)!
∞∑

n=0

[
4n

2(`−1)∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)] x2n+2`−1

(2n + 2` − 1)!

= (−4)`−1
∞∑

n=0

4n

(2n)!

[2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)] x2n+2`−1(
2n+2`−1

2`−1

) .
Replacing ` by 2` for ` ∈ N in (2.3) leads to

(arcsin x)2` = (2`)!
∞∑

n=0

βn+2`,2`
xn+2`

(n + 2`)!

= (2`)!
∞∑

n=0

β2n+2`,2`
x2n+2`

(2n + 2`)!

= (−1)`−1(2`)!
∞∑

n=0

[
4n

2(`−1)∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

x2n+2`

(2n + 2`)!

= (−1)`−1
∞∑

n=0

4n

(2n)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

x2n+2`(
2n+2`

2`

) .
The proof of Theorem 2.1 is complete. �
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3. Proof of Theorem 1.1

We now start out to prove Theorem 1.1.
In the last line of [18, p. 133], there exists the formula

1
k!

( ∞∑
m=1

xm
tm

m!

)k

=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
(3.1)

for k ≥ 0. When taking x2m−1 = 0 for m ∈ N, the left hand side of the formula (3.1) is even in
t ∈ (−∞,∞) for all k ≥ 0. Therefore, the formula (1.4) is valid.

Ones know that the power series expansion

arcsin t =

∞∑
`=0

[(2` − 1)!!]2

(2` + 1)!
t2`+1, |t| < 1 (3.2)

is valid, where (−1)!! = 1. This implies that

B2n,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

1 + (−1)k+1

2
[(2n − k)!!]2

2n − k + 2

)
= B2n,k

( (arcsin t)′′|t=0

2
,

(arcsin t)′′′|t=0

3
,

(arcsin t)(4)|t=0

4
, . . . ,

(arcsin t)(2n−k+2)|t=0

2n − k + 2

)
.

Employing the formula

Bn,k

( x2

2
,

x3

3
, . . . ,

xn−k+2

n − k + 2

)
=

n!
(n + k)!

Bn+k,k(0, x2, x3, . . . , xn+1)

in [18, p. 136], we derive

B2n,k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

1 + (−1)k+1

2
[(2n − k)!!]2

2n − k + 2

)
=

(2n)!
(2n + k)!

B2n+k,k
(
0, (arcsin t)′′|t=0, (arcsin t)′′′|t=0, . . . , (arcsin t)(2n+1)|t=0

)
.

Making use of the formula (3.1) yields

∞∑
n=0

Bn+k,k(x1, x2, . . . , xn+1)
k!n!

(n + k)!
tn+k

n!
=

( ∞∑
m=1

xm
tm

m!

)k

,

∞∑
n=0

Bn+k,k(x1, x2, . . . , xn+1)(
n+k

k

) tn+k

n!
=

( ∞∑
m=1

xm
tm

m!

)k

,

Bn+k,k(x1, x2, . . . , xn+1) =

(
n + k

k

)
lim
t→0

dn

d tn

[ ∞∑
m=0

xm+1
tm

(m + 1)!

]k

,

B2n+k,k(x1, x2, . . . , x2n+1) =

(
2n + k

k

)
lim
t→0

d2n

d t2n

[ ∞∑
m=0

xm+1
tm

(m + 1)!

]k

.
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Setting x1 = 0 and xm = (arcsin t)(m)|t=0 for m ≥ 2 gives

d2n

d t2n

[ ∞∑
m=0

xm+1
tm

(m + 1)!

]k

=
d2n

d t2n

[
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

]k

=
d2n

d t2n

(arcsin t − t
t

)k

=
d2n

d t2n

k∑
p=0

(−1)k−p

(
k
p

)(arcsin t
t

)p

=

k∑
p=1

(−1)k−p

(
k
p

)
d2n

d t2n

(arcsin t
t

)p

.

Accordingly, we obtain

lim
t→0

d2n

d t2n

[
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

]2k−1

=

2k−1∑
p=1

(−1)2k−p−1
(
2k − 1

p

)
lim
t→0

d2n

d t2n

(arcsin t
t

)p

=

k∑
p=1

(
2k − 1
2p − 1

)
lim
t→0

d2n

d t2n

(arcsin t
t

)2p−1

−

k−1∑
p=1

(
2k − 1

2p

)
lim
t→0

d2n

d t2n

(arcsin t
t

)2p

and

lim
t→0

d2n

d t2n

[
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

]2k

=

2k∑
p=1

(−1)2k−p

(
2k
p

)
lim
t→0

d2n

d t2n

(arcsin t
t

)p

=

k∑
p=1

(
2k
2p

)
lim
t→0

d2n

d t2n

(arcsin t
t

)2p

−

k∑
p=1

(
2k

2p − 1

)
lim
t→0

d2n

d t2n

(arcsin t
t

)2p−1

.

From the power series expansions (2.1) and (2.2) in Theorem 2.1, it follows that

lim
t→0

d2n

d t2n

(arcsin t
t

)2p−1

= (−1)p−14p−1(2p − 1)!

× lim
t→0

d2n

d t2n

∞∑
j=0

[
4 j

2p−2∑
q=0

T
(

j + p − 1; q, 2p − 2;
1
2

)] t2 j

(2 j + 2p − 1)!

= (−1)p−1 4n+p−1(
2n+2p−1

2n

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)
and

lim
t→0

d2n

d t2n

(arcsin t
t

)2p

= (−1)p−1(2p)! lim
t→0

d2n

d t2n

∞∑
j=0

[
4 j

2p−2∑
q=0

T ( j + p − 1; q, 2p − 2; 1)
]

t2 j

(2 j + 2p)!

= (−1)p−1 4n(
2n+2p

2n

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1).
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Therefore, we arrive at

lim
t→0

d2n

d t2n

[
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

]2k−1

= 4n
k∑

p=1

(−4)p−1

(
2k−1
2p−1

)
(

2n+2p−1
2p−1

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)

− 4n
k−1∑
p=1

(−1)p−1

(
2k−1

2p

)
(

2n+2p
2p

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1)

and

lim
t→0

d2n

d t2n

[
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

]2k

= 4n
k∑

p=1

(−1)p−1

(
2k
2p

)
(

2n+2p
2p

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1)

− 4n
k∑

p=1

(−4)p−1

(
2k

2p−1

)
(

2n+2p−1
2p−1

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)
.

Consequently, we acquire

B2n,2k−1

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . , 0,

[(2n − 2k + 1)!!]2

2n − 2k + 3

)
=

(2n)!
(2n + 2k − 1)!

B2n+2k−1,2k−1
(
0, (arcsin t)′′|t=0, (arcsin t)′′′|t=0, . . . , (arcsin t)(2n+1)|t=0

)
=

(2n)!
(2n + 2k − 1)!

(
2n + 2k − 1

2k − 1

)
lim
t→0

d2n

d t2n

(
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

)2k−1

=
1

(2k − 1)!

[
4n

k∑
p=1

(−4)p−1

(
2k−1
2p−1

)
(

2n+2p−1
2p−1

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)

− 4n
k−1∑
p=0

(−1)p−1

(
2k−1

2p

)
(

2n+2p
2p

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1)
]

and

B2n,2k

(
0,

1
3
, 0,

9
5
, 0,

225
7
, . . . ,

[(2n − 2k − 1)!!]2

2n − 2k + 1
, 0

)
=

(2n)!
(2n + 2k)!

B2n+2k,2k
(
0, (arcsin t)′′|t=0, (arcsin t)′′′|t=0, . . . , (arcsin t)(2n+1)|t=0

)
=

(2n)!
(2n + 2k)!

(
2n + 2k

2k

)
lim
t→0

d2n

d t2n

(
1
t

∞∑
m=2

(arcsin t)(m)|t=0
tm

m!

)2k

=
1

(2k)!

[
4n

k∑
p=1

(−1)p−1

(
2k
2p

)
(

2n+2p
2p

) 2p−2∑
q=0

T (n + p − 1; q, 2p − 2; 1)

− 4n
k∑

p=1

(−4)p−1

(
2k

2p−1

)
(

2n+2p−1
2p−1

) 2p−2∑
q=0

T
(
n + p − 1; q, 2p − 2;

1
2

)]
.

The proof of Theorem 1.1 is complete.
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4. Series representation of generalized logsine functions

The logsine function

Ls j(θ) = −

∫ θ

0

(
ln

∣∣∣∣∣2 sin
x
2

∣∣∣∣∣) j−1

d x

and generalized logsine function

Ls(`)
j (θ) = −

∫ θ

0
x`

(
ln

∣∣∣∣∣2 sin
x
2

∣∣∣∣∣) j−`−1

d x

were introduced originally in [34, pp. 191–192], where `, j are integers, j ≥ ` + 1 ≥ 1, and θ is an
arbitrary real number. There have been many papers such as [3, 9, 10, 14–17, 19, 20, 28–31, 37, 38,
57] devoted to investigation and applications of the (generalized) logsine functions in mathematics,
physics, engineering, and other mathematical sciences.

Theorem 4.1. Let 〈z〉n for z ∈ C and n ∈ {0} ∪ N denote the falling factorial defined by (2.4) and let
T (r; q, j; ρ) be defined by (1.6). In the region 0 < θ ≤ π and for j, ` ∈ N, generalized logsine functions
Ls(`)

j (θ) have the following series representations:

1. for j ≥ 2` + 1 ≥ 3,

Ls(2`−1)
j (θ) = −

θ2`

2`

[
ln

(
2 sin

θ

2

)] j−2`

− (−1)`( j − 2`)(2` − 1)!(ln 2) j−1
(2 sin θ

2

ln 2

)2`

×

∞∑
n=0

(
2 sin θ

2

)2n

(2n + 2`)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

[ j−2`−1∑
α=0

( ln sin θ
2

ln 2

)α( j − 2` − 1
α

) α∑
k=0

(−1)k〈α〉k

(2n + 2`)k+1(ln sin θ
2

)k

]
;

(4.1)

2. for j ≥ 2` + 2 ≥ 4,

Ls(2`)
j (θ) = −

θ2`+1

2` + 1

[
ln

(
2 sin

θ

2

)] j−2`−1

+ (−1)`
( j − 2` − 1)(2`)!(ln 2) j−1

2

(4 sin θ
2

ln 2

)2`+1

×

∞∑
n=0

[ (
2 sin θ

2

)2n

(2n + 2` + 1)!

2∑̀
q=0

T
(
n + `; q, 2`;

1
2

)]

×

[ j−2`−2∑
α=0

(
j − 2` − 2

α

)( ln sin θ
2

ln 2

)α α∑
k=0

(−1)k〈α〉k

(2n + 2` + 1)k+1(ln sin θ
2

)k

]
;

(4.2)

3. for j ≥ 2` − 1 ≥ 1,

Ls(2`−2)
j (θ) = (−1)`24`−3(2` − 2)!(ln 2) j

(sin θ
2

ln 2

)2`−1

×

∞∑
n=0

[ (
2 sin θ

2

)2n

(2n + 2` − 2)!

2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)]

×

j−2`+1∑
α=0

(
j − 2` + 1

α

)( ln sin θ
2

ln 2

)α α∑
k=0

(−1)k〈α〉k

(2n + 2` − 1)k+1(ln sin θ
2

)k ;

(4.3)
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4. for j ≥ 2` − 1 ≥ 1,

Ls(2`−1)
j (θ) = (−1)`(2` − 1)!(ln 2) j

(2 sin θ
2

ln 2

)2`

×

∞∑
n=0

[ (
2 sin θ

2

)2n

(2n + 2` − 1)!

2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

j−2∑̀
α=0

(
j − 2`
α

)( ln sin θ
2

ln 2

)α α∑
k=0

(−1)k〈α〉k

(2n + 2`)k+1(ln sin θ
2

)k .

(4.4)

Proof. In [28, p. 49, Section 2.4], it was obtained that

Ls(k)
j (θ) = −

θk+1

k + 1

[
ln

(
2 sin

θ

2

)] j−k−1

+
2k+1( j − k − 1)

k + 1

∫ sin(θ/2)

0

(arcsin x)k+1 ln j−k−2(2x)
x

d x (4.5)

for 0 < θ ≤ π and j − k − 2 ≥ 0. Making use of Theorem 2.1 and the formula∫
xn lnm x d x = xn+1

m∑
k=0

(−1)k〈m〉k
lnm−k x

(n + 1)k+1 , m, n ≥ 0 (4.6)

in [22, p. 238, 2.722], we acquire∫ sin(θ/2)

0

(arcsin x)2` ln j−2`−1(2x)
x

d x

= (−1)`−1(2`)!
∞∑

n=0

4n

(2n + 2`)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
] ∫ sin(θ/2)

0
x2n+2`−1 ln j−2`−1(2x) d x

= (−1)`−1(2`)!
∞∑

n=0

4n

(2n + 2`)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

[∫ sin(θ/2)

0
x2n+2`−1(ln 2 + ln x) j−2`−1 d x

]
= (−1)`−1(2`)!

∞∑
n=0

4n

(2n + 2`)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

[ j−2`−1∑
α=0

(
j − 2` − 1

α

)
(ln 2) j−2`−α−1

∫ sin(θ/2)

0
x2n+2`−1(ln x)α d x

]

= (−1)`−1(2`)!
∞∑

n=0

4n

(2n + 2`)!

[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

[ j−2`−1∑
α=0

(
j − 2` − 1

α

)
(ln 2) j−2`−α−1

(
sin

θ

2

)2n+2` α∑
k=0

(−1)k〈α〉k
(2n + 2`)k+1

(
ln sin

θ

2

)α−k]

= (−1)`−1(2`)!(ln 2) j−2`−1
(
sin

θ

2

)2` ∞∑
n=0

4n

(2n + 2`)!

(
sin

θ

2

)2n[2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]
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×

[ j−2`−1∑
α=0

( ln sin θ
2

ln 2

)α( j − 2` − 1
α

) α∑
k=0

(−1)k〈α〉k

(2n + 2`)k+1(ln sin θ
2

)k

]
for j ≥ 2` + 1 ≥ 3. Substituting this result into (4.5) for k = 2` − 1 yields (4.1).

Similarly, by virtue of Theorem 2.1 and the formula (4.6), we also have∫ sin(θ/2)

0

(arcsin x)2`+1 ln j−2`−2(2x)
x

d x

= (−1)`4`(2` + 1)!
∞∑

n=0

[
4n

(2n + 2` + 1)!

2∑̀
q=0

T
(
n + `; q, 2`;

1
2

)] ∫ sin(θ/2)

0
x2n+2` ln j−2`−2(2x) d x

= (−1)`4`(2` + 1)!
∞∑

n=0

[
4n

(2n + 2` + 1)!

2∑̀
q=0

T
(
n + `; q, 2`;

1
2

)]

×

j−2`−2∑
α=0

(
j − 2` − 2

α

)
(ln 2) j−2`−α−2

∫ sin(θ/2)

0
x2n+2`(ln x)α d x

= (−1)`4`(2` + 1)!
∞∑

n=0

[
4n

(2n + 2` + 1)!

2∑̀
q=0

T
(
n + `; q, 2`;

1
2

)]

×

j−2`−2∑
α=0

(
j − 2` − 2

α

)
(ln 2) j−2`−α−2

(
sin

θ

2

)2n+2`+1 α∑
k=0

(−1)k〈α〉k

(
ln sin θ

2

)α−k

(2n + 2` + 1)k+1

= (−1)`4`(2` + 1)!
(
sin

θ

2

)2`+1

(ln 2) j−2`−2
∞∑

n=0

[
4n

(2n + 2` + 1)!

(
sin

θ

2

)2n 2∑̀
q=0

T
(
n + `; q, 2`;

1
2

)]

×

[ j−2`−2∑
α=0

(
j − 2` − 2

α

)( ln sin θ
2

ln 2

)α α∑
k=0

(−1)k〈α〉k

(2n + 2` + 1)k+1(ln sin θ
2

)k

]
for ` ∈ N and j ≥ 2(` + 1) ≥ 4. Substituting this result into (4.5) for k = 2` yields (4.2).

In [20, p. 308], it was derived that

Ls(k)
j (θ) = −2k+1

∫ sin(θ/2)

0

(arcsin x)k

√
1 − x2

ln j−k−1(2x) d x (4.7)

for 0 < θ ≤ π and j ≥ k + 1 ≥ 1. Differentiating with respect to x on both sides of the formulas (2.1)
and (2.2) in Theorem 2.1 results in

(arcsin x)2`−2

√
1 − x2

= (−1)`−14`−1(2` − 2)!
∞∑

n=0

[
4n

2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)] x2n+2`−2

(2n + 2` − 2)!
(4.8)

and
(arcsin x)2`−1

√
1 − x2

= (−1)`−1(2` − 1)!
∞∑

n=0

[
4n

2`−2∑
q=0

T (n + `; q, 2`; 1)
]

x2n+2`−1

(2n + 2` − 1)!
(4.9)
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for ` ∈ N. Substituting the power series expansions (4.8) and (4.9) into (4.7) and employing the
indefinite integral (4.6) respectively reveal

Ls(2`−2)
j (θ) = −22`−1

∫ sin(θ/2)

0

(arcsin x)2`−2

√
1 − x2

ln j−2`+1(2x) d x

= (−1)`24`−3(2` − 2)!
∞∑

n=0

[
4n

(2n + 2` − 2)!

2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)]

×

∫ sin(θ/2)

0
x2n+2`−2(ln 2 + ln x) j−2`+1 d x

= (−1)`24`−3(2` − 2)!
∞∑

n=0

[
4n

(2n + 2` − 2)!

2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)]

×

j−2`+1∑
α=0

(
j − 2` + 1

α

)
(ln 2) j−2`−α+1

∫ sin(θ/2)

0
x2n+2`−2(ln x)α d x

= (−1)`24`−3(2` − 2)!(ln 2) j
(sin θ

2

ln 2

)2`−1 ∞∑
n=0

[
4n

(2n + 2` − 2)!

(
sin

θ

2

)2n

×

2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)]

×

j−2`+1∑
α=0

(
j − 2` + 1

α

)( ln sin θ
2

ln 2

)α α∑
k=0

(−1)k〈α〉k

(2n + 2` − 1)k+1(ln sin θ
2

)k

for j ≥ 2` − 1 ≥ 1 and

Ls(2`−1)
j (θ) = −22`

∫ sin(θ/2)

0

(arcsin x)2`−1

√
1 − x2

ln j−2`(2x) d x

= (−1)`22`(2` − 1)!
∞∑

n=0

[
4n

(2n + 2` − 1)!

2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

∫ sin(θ/2)

0
x2n+2`−1(ln 2 + ln x) j−2` d x

= (−1)`22`(2` − 1)!
∞∑

n=0

[
4n

(2n + 2` − 1)!

2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

j−2∑̀
α=0

(
j − 2`
α

)
(ln 2) j−2`−α

∫ sin(θ/2)

0
x2n+2`−1(ln x)α d x

= (−1)`(2` − 1)!(ln 2) j
(2 sin θ

2

ln 2

)2` ∞∑
n=0

[ (
2 sin θ

2

)2n

(2n + 2` − 1)!

2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

j−2∑̀
α=0

(
j − 2`
α

)( ln sin θ
2

ln 2

)α α∑
k=0

(−1)k〈α〉k

(2n + 2`)k+1(ln sin θ
2

)k

AIMS Mathematics Volume 6, Issue 7, 7494–7517.



7507

for j ≥ 2` ≥ 1. The series representations (4.3) and (4.4) are thus proved. The proof of Theorem 4.1 is
complete. �

5. Remarks

Finally, we list several remarks on our main results and related stuffs.

Remark 5.1. For n ≥ k ≥ 1, the first kind Stirling numbers s(n, k) can be explicitly computed by

|s(n + 1, k + 1)| = n!
n∑

`1=k

1
`1

`1−1∑
`2=k−1

1
`2
· · ·

`k−2−1∑
`k−1=2

1
`k−1

`k−1−1∑
`k=1

1
`k
. (5.1)

The formula (5.1) was derived in [41, Corollary 2.3] and can be reformulated as

|s(n + 1, k + 1)|
n!

=

n∑
m=k

|s(m, k)|
m!

for n ≥ k ≥ 1. From the equation (1.5), by convention, we assume s(n, k) = 0 for n < k and k, n < 0.
In recent years, the first kind Stirling numbers s(n, k) have been investigated in [39–42,45] and closely
related references therein.

Remark 5.2. For |x| < 1, we have the following series expansions of arcsin x and its powers.

1. The series expansion (3.2) of arcsin x can be rewritten as

arcsin x
x

= 1!
∞∑

n=0

[(2n − 1)!!]2 x2n

(2n + 1)!
, (5.2)

where (−1)!! = 1. Various forms of (5.2) can be found in [1, 4.4.40] and [2, p. 121, 6.41.1].
2. The series expansion of (arcsin x)2 can be rearranged as(arcsin x

x

)2

= 2!
∞∑

n=0

[(2n)!!]2 x2n

(2n + 2)!
. (5.3)

The variants of (5.3) can be found in [2, p. 122, 6.42.1], [4, pp. 262–263, Proposition 15], [5,
pp. 50–51 and p. 287], [6, p. 384], [7, p. 2, (2.1)], [13, Lemma 2], [20, p. 308], [21, pp. 88–90], [22,
p. 61, 1.645], [32, p. 1011], [33, p. 453], [47, Section 6.3], [58], [60, p. 59, (2.56)], or [62, p. 676,
(2.2)]. It is clear that the series expansion (5.3) and its equivalent forms have been rediscovered
repeatedly. For more information on the history, dated back to 1899 or earlier, of the series
expansion (5.3) and its equivalent forms, see [7, p. 2] and [32, p. 1011].

3. The series expansion of (arcsin x)3 can be reformulated as(arcsin x
x

)3

= 3!
∞∑

n=0

[(2n + 1)!!]2
[ n∑

k=0

1
(2k + 1)2

]
x2n

(2n + 3)!
. (5.4)

Different variants of (5.4) can be found in [2, p. 122, 6.42.2], [4, pp. 262–263, Proposition 15],
[11, p. 188, Example 1], [20, p. 308], [21, pp. 88–90], [22, p. 61, 1.645], or [27, pp. 154–155,
(832)].
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4. The series expansion of (arcsin x)4 can be restated as(arcsin x
x

)4

= 4!
∞∑

n=0

[(2n + 2)!!]2
[ n∑

k=0

1
(2k + 2)2

]
x2n

(2n + 4)!
. (5.5)

There exist three variants of (5.5) in [4, pp. 262–263, Proposition 15], [7, p. 3, (2.2)], and [20,
p. 309].

5. Basing on the formula (2.21) in [28, p. 50], we concretely obtain

(arcsin x
x

)5

=
5!
2

∞∑
n=0

[(2n + 3)!!]2
[( n+1∑

k=0

1
(2k + 1)2

)2

−

n+1∑
k=0

1
(2k + 1)4

]
x2n

(2n + 5)!
. (5.6)

6. In [7], the special series expansions(
arcsin

x
2

)2

=
1
2

∞∑
n=1

x2n(
2n
n

)
n2
,

(
arcsin

x
2

)4

=
3
2

∞∑
n=1

( n−1∑
m=1

1
m2

)
x2n(

2n
n

)
n2
,

(
arcsin

x
2

)6

=
45
4

∞∑
n=1

( n−1∑
m=1

1
m2

m−1∑
`=1

1
`2

)
x2n(

2n
n

)
n2
,

(
arcsin

x
2

)8

=
315
2

∞∑
n=1

( n−1∑
m=1

1
m2

m−1∑
`=1

1
`2

`−1∑
p=1

1
p2

)
x2n(

2n
n

)
n2

were listed. In general, it was obtained in [7, pp. 1–2] that(
arcsin

x
2

)2`

= (2`)!
∞∑

n=1

H`(n)
x2n(

2n
n

)
n2
, ` ∈ N (5.7)

and (
arcsin

x
2

)2`+1

= (2` + 1)!
∞∑

n=1

G`(n)

(
2n
n

)
24n+1

x2n+1

2n + 1
, ` ∈ {0} ∪ N, (5.8)

where H1(n) = 1
4 , G0(n) = 1,

H`+1(n) =
1
4

n−1∑
m1=1

1
(2m1)2

m1−1∑
m2=1

1
(2m2)2 · · ·

m`−1−1∑
m`=1

1
(2m`)2 ,

and

G`(n) =

n−1∑
m1=0

1
(2m1 + 1)2

m1−1∑
m2=0

1
(2`2 + 1)2 · · ·

m`−1−1∑
m`=0

1
(2m` + 1)2 .

The convention is that the sum is zero if the starting index exceeds the finishing index.
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7. In [7, (2.9) and (4.3)], [25, p. 480, (88.2.2)], and [56, p. 124], there exist the formulas(arcsin x
x

)`
=

∞∑
n=0

[( `−1∏
k=1

{nk−1∑
nk=0

(2nk−1 − 2nk)!
[(nk−1 − nk)!]2(2nk−1 − 2nk + 1)

1
22nk−1−2nk

})
×

(2n`−1)!
(n`−1!)2(2n`−1 + 1)

1
22n`−1

]
x2n

(5.9)

and (arcsin x
x

)`
= `!

∞∑
n=0

[ n∑
n1=0

(
2n1
n1

)
2n1 + 1

n∑
n2=n1

(
2n2−2n1
n2−n1

)
2n2 + 2

· · ·

n∑
n`=n`−1

(
2n`−2n`−1
n`−n`−1

)
2n` + `

1
4n`

]
xn. (5.10)

All the power series expansions from (5.2) to (5.6) can also be deduced from Theorem 2.1.
By the way, we notice that the quantity in the pair of bigger brackets, the coefficient of x2n, in the

formula (5.9) has no explicit relation with n. This means that there must be some misprints and typos
somewhere in the formula (5.9). On 30 January 2021, Christophe Vignat (Tulane University) pointed
out that n0 = n is the missing information in the formula (5.9).

In [28, pp. 49–50, Section 2.4], the power series expansions of (arcsin x)k for 2 ≤ k ≤ 13 were
concretely and explicitly written down in alternative forms. The main idea in the study of the power
series expansions of (arcsin x)k for 2 ≤ k ≤ 13 was related with series representations for generalized
logsine functions in [28, p. 50, (2.24) and (2.25)]. The special interest is special values of generalized
logsine functions defined by [28, p. 50, (2.26) and (2.27)].

In [54, Theorem 1.4] and [55, Theorem 2.1], the nth derivative of arcsin x was explicitly computed.
In [43, 44], three series expansions (5.2), (5.3), (5.4) and their first derivatives were used to derive

known and new combinatorial identities and others.
Because coefficients of x2n+2`−1 and x2n+2` in (2.1) and (2.2) contain three times sums, coefficients

of x2n and x2n+1 in (5.7) and (5.8) contain ` times sums, coefficients of x2n in (5.9) contain ` − 1 times
sums, and coefficients of xn in (5.10) contain ` times sums, we conclude that the series expansions (2.1)
and (2.2) are more elegant, more operable, more computable, and more applicable.
Remark 5.3. Two expressions (2.1) and (2.2) in Theorem 2.1 for series expansions of (arcsin x)2`−1 and
(arcsin x)2` are very close and similar to, but different from, each other. Is there a unified expression
for series expansions of (arcsin x)2`−1 and (arcsin x)2`? If yes, two closed-form formulas for B2n,k in
Theorem 1.1 would also be unified. We believe that the formula

exp
(
2a arcsin

x
2

)
=

∞∑
n=0

(ia)n/2

(ia + 1)−n/2

(−ix)n

n!
(5.11)

mentioned in [7, p. 3, (2.7)] and collected in [25, p. 210, (10.49.33)] would be useful for unifying two
expressions (2.1) and (2.2) in Theorem 2.1, where extended Pochhammer symbols

(ia)n/2 =
Γ
(
ia + n

2

)
Γ(ia)

and (ia + 1)−n/2 =
Γ
(
ia + 1 − n

2

)
Γ(ia + 1)

(5.12)

were defined in [25, p. 5, Section 2.2.3], and the Euler gamma function Γ(z) is defined [59, Chapter 3]
by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

What are closed forms and why do we care closed forms? Please read the paper [8].
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Remark 5.4. In [2, p. 122, 6.42], [27, pp. 154–155, (834)], [33, p. 452, Theorem], and [47, Section 6.3,
Theorem 21, Sections 8 and 9], it was proved or collected that

arcsin x
√

1 − x2
=

∞∑
n=0

22n(n!)2 x2n+1

(2n + 1)!
, |x| ≤ 1. (5.13)

In [6, p. 385], [47, Theorem 24], and [61, p. 174, (10)], it was proved that
∞∑

n=1

(2x)2n(
2n
n

) =
x2

1 − x2 +
x arcsin x(
1 − x2)3/2 , |x| < 1. (5.14)

These series expansions (5.13) and (5.14) can be derived directly from the series expansion for
(arcsin x)2 and are a special case of (4.9) for ` = 1.

Remark 5.5. The series expansion of the function
√

1 − x2 arcsin x was listed in [2, p. 122, 6.42.4]
which can be corrected and reformulated as

√
1 − x2 arcsin x = x − 1!

∞∑
n=1

[(2n − 2)!!]2(2n)
x2n+1

(2n + 1)!
, |x| ≤ 1. (5.15)

Basing on the relation (
1 − x2)[(arcsin x)`

]′
= `
√

1 − x2 (arcsin x)`−1

and utilizing series expansions of (arcsin x)3 and (arcsin x)4, after simple operations, we can readily
derive

√
1 − x2 (arcsin x)2 = x2 − 2!

∞∑
n=1

[(2n − 1)!!]2
[
(2n + 1)

n−1∑
k=0

1
(2k + 1)2 − 1

]
x2n+2

(2n + 2)!
(5.16)

and
√

1 − x2 (arcsin x)3 = x3 − 3!
∞∑

n=1

[(2n)!!]2
[
(2n + 2)

n−1∑
k=0

1
(2k + 2)2 − 1

]
x2n+3

(2n + 3)!
. (5.17)

From (4.8) and (4.9), we can generalize the series expansions (5.15), (5.16), and (5.17) as
√

1 − x2 (arcsin x)2`−2 = x2`−2 + (−1)`−14`−1(2` − 2)!

×

∞∑
n=1

[A(`, n) − (2n + 2` − 2)(2n + 2` − 3)A(`, n − 1)]
x2n+2`−2

(2n + 2` − 2)!
(5.18)

and
√

1 − x2 (arcsin x)2`−1 = x2`−1 + (−1)`−1(2` − 1)!

×

∞∑
n=1

[B(`, n) − (2n + 2` − 1)(2n + 2` − 2)B(`, n − 1)]
x2n+2`−1

(2n + 2` − 1)!
(5.19)

for ` ∈ N, where

A(`, n) = 4n
2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)
,

AIMS Mathematics Volume 6, Issue 7, 7494–7517.



7511

B(`, n) = 4n
2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1),

and T (r; q, j; ρ) is defined by (1.6). Considering both coefficients of x2`−2 and x2`−1 in the power series
expansions (5.18) and (5.19) must be 1, we acquire two combinatorial identities

2∑̀
q=0

T
(
`; q, 2`;

1
2

)
=

(−1)`

4`
and

2∑̀
q=0

T (`; q, 2`; 1) = (−1)`

for ` ∈ {0} ∪ N, where T (r; q, j; ρ) is defined by (1.6).
Remark 5.6. Making use of Theorem 1.1, we readily obtain the first several values of the sequence (1.3)
in Tables 1 and 2.

Table 1. The sequence B2n,2k−1 in (1.3) for 1 ≤ n, k ≤ 8.

B2n,2k−1 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
n = 1 1

3 0 0 0 0 0 0 0
n = 2 9

5 0 0 0 0 0 0 0
n = 3 225

7
5
9 0 0 0 0 0 0

n = 4 1225 42 0 0 0 0 0 0
n = 5 893025

11 3951 35
9 0 0 0 0 0

n = 6 108056025
13

2515524
5 1155 0 0 0 0 0

n = 7 1217431215 85621185 314314 5005
81 0 0 0 0

n = 8 4108830350625
17 18974980350 284770486

3
140140

3 0 0 0 0

Table 2. The sequence B2n,2k in (1.3) for 1 ≤ n, k ≤ 8.

B2n,2k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
n = 1 0 0 0 0 0 0 0 0
n = 2 1

3 0 0 0 0 0 0 0
n = 3 9 0 0 0 0 0 0 0
n = 4 2067

5
35
27 0 0 0 0 0 0

n = 5 30525 210 0 0 0 0 0 0
n = 6 23483925

7 35211 385
27 0 0 0 0 0

n = 7 516651345 106790684
15 7007 0 0 0 0 0

n = 8 106480673775 8891683281
5 2892890 25025

81 0 0 0 0

In the papers [46, 48–55] and closely related references therein, the authors and their coauthors
discovered and applied closed form expressions for many special values of the second kind Bell
polynomials Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0.
Remark 5.7. Taking θ = π

3 in (4.3) and (4.4) give

Ls(2`−2)
j

(
π

3

)
= (−1)`(4` − 4)!!(ln 2) j−2`+1

∞∑
n=0

[
1

(2n + 2` − 2)!

2`−2∑
q=0

T
(
n + ` − 1; q, 2` − 2;

1
2

)]
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×

j−2`+1∑
α=0

(−1)α
(

j − 2` + 1
α

) α∑
k=0

〈α〉k
(2n + 2` − 1)k+1(ln 2)k

and

Ls(2`−1)
j

(
π

3

)
= (−1)`(2` − 1)!(ln 2) j−2`

∞∑
n=0

[
1

(2n + 2` − 1)!

2`−2∑
q=0

T (n + ` − 1; q, 2` − 2; 1)
]

×

j−2∑̀
α=0

(−1)α
(

j − 2`
α

) α∑
k=0

〈α〉k
(2n + 2`)k+1(ln 2)k

for ` ∈ N, where 〈z〉n for z ∈ C and n ∈ {0} ∪ N denotes the falling factorial defined by (2.4) and
T (r; q, j; ρ) is defined by (1.6). In [28, p. 50], it was stated that the values Ls(`)

j
(π

3

)
have been related to

special interest in the calculation of the multiloop Feynman diagrams [19, 20].
Similarly, we can also deduce series representations for special values of the logsine function

Ls(`)
j (θ) at θ = π

2 , π
4 , π

6 and θ = π. These special values were originally derived in [30, 31, 34] and also
considered in [3, 9, 10, 14–17, 19, 20, 28, 29, 37, 38, 57] and closely related references therein.

Remark 5.8. This paper is a revised version of electronic arXiv preprints [23, 24].

6. Acknowledgements and declarations

6.1. Acknowledgements

The authors thank

1. Frank Oertel (Philosophy, Logic & Scientific Method Centre for Philosophy of Natural and Social
Sciences, London School of Economics and Political Science, UK; f.oertel@email.de) for his
citing the paper [53] in his electronic preprint [35]. On 10 October 2020, this citation and the
Google Scholar Alerts leaded the authors to notice the numbers (1.2) in [35]. On 26 January
2021, he sent the important paper [7] to the authors and others. We communicated and discussed
with each other many times.

2. Chao-Ping Chen (Henan Polytechnic University, China; chenchaoping@sohu.com) for his asking
the combinatorial identity in [43, Theorem 2.2], or the one in [44, Theorem 2.1], via Tencent QQ
on 18 December 2020. Since then, we communicated and discussed with each other many times.

3. Mikhail Yu. Kalmykov (Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear
Research, Russia; kalmykov.mikhail@googlemail.com) for his noticing [43, Remark 4.2] and
providing the references [19,20,28,30,31,34] on 9 and 27 January 2021. We communicated and
discussed with each other many times.

4. Li Yin (Binzhou University, China; yinli7979@163.com) for his frequent communications and
helpful discussions with the authors via Tencent QQ online.

5. Christophe Vignat (Department of Physics, Universite d’Orsay, France; Department of
Mathematics, Tulane University, USA; cvignat@tulane.edu) for his sending electronic version of
those pages containing the formulas (5.9), (5.11), and (5.12) in [25, 56] on 30 January 2021 and
for his sending electronic version of the monograph [27] on 8 February 2021.

AIMS Mathematics Volume 6, Issue 7, 7494–7517.



7513

6. Frédéric Ouimet (California Institute of Technology, USA; ouimetfr@caltech.edu) for his
photocopying by Caltech Library Services and transferring via ResearchGate those two pages
containing the formulas (5.9) and (5.11) on 2 February 2021.

7. anonymous referees for their careful corrections to and valuable comments on the original version
of this paper.

6.2. Funding

The author Dongkyu Lim was partially supported by the National Research Foundation of Korea
under Grant NRF-2021R1C1C1010902, Republic of Korea.

6.3. Authors’ contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, In: National Bureau of Standards, Applied Mathematics
Series, 55, 10th printing, Dover Publications, 1972.

2. E. P. Adams, R. L. Hippisley, Smithsonian Mathematical Formulae and Tables of Elliptic
Functions, Smithsonian Institute, Washington, D.C., 1922.

3. E. Alkan, Approximation by special values of harmonic zeta function and log-sine integrals,
Commun. Number Theory Phys., 7 (2013), 515–550. Available from:
https://doi.org/10.4310/CNTP.2013.v7.n3.a5.

4. B. C. Berndt, Ramanujan’s Notebooks, Part I, With a foreword by S. Chandrasekhar, Springer-
Verlag, New York, 1985. Available from: https://doi.org/10.1007/978-1-4612-1088-7.

5. J. M. Borwein, D. H. Bailey, R. Girgensohn, Experimentation in Mathematics: Computational
Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004.

6. J. M. Borwein, P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and
Computational Complexity, Canadian Mathematical Society Series of Monographs and Advanced
Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1987.

7. J. M. Borwein, M. Chamberland, Integer powers of arcsin, Int. J. Math. Math. Sci., 19381 (2007),
10. Available from: https://doi.org/10.1155/2007/19381.

8. J. M. Borwein, R. E. Crandall, Closed forms: What they are and why we care, Notices Amer.
Math. Soc., 60 (2013), 50–65. Available from: https://doi.org/10.1090/noti936.

9. J. M. Borwein, A. Straub, Mahler measures, short walks and log-sine integrals, Theoret. Comput.
Sci., 479 (2013), 4–21; Available from: https://doi.org/10.1016/j.tcs.2012.10.025.

AIMS Mathematics Volume 6, Issue 7, 7494–7517.

https://doi.org/10.4310/CNTP.2013.v7.n3.a5
https://doi.org/10.1007/978-1-4612-1088-7
https://doi.org/10.1155/2007/19381
https://doi.org/10.1090/noti936
https://doi.org/10.1016/j.tcs.2012.10.025


7514

10. J. M. Borwein, A. Straub, Special values of generalized log-sine integrals, ISSAC 2011–
Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 43–
50, ACM, New York, 2011. Available from: https://doi.org/10.1145/1993886.1993899.

11. T. J. I. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan Co., Limited,
London, 1908.

12. C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics
and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.

13. C. P. Chen, Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse
hyperbolic functions, Integral Transforms Spec. Funct., 23 (2012), 865–873. Available from:
https://doi.org/10.1080/10652469.2011.644851.

14. J. Choi, Log-sine and log-cosine integrals, Honam Math. J., 35 (2013), 137–146. Available from:
https://doi.org/10.5831/HMJ.2013.35.2.137.

15. J. Choi, Y. J. Cho, H. M. Srivastava, Log-sine integrals involving series associated with the zeta
function and polylogarithms, Math. Scand., 105 (2009), 199–217. Available from:
https://doi.org/10.7146/math.scand.a-15115.

16. J. Choi, H. M. Srivastava, Explicit evaluations of some families of log-sine and log-cosine
integrals, Integral Trans. Spec. Funct., 22 (2011), 767–783. Available from:
https://doi.org/10.1080/10652469.2011.564375.

17. J. Choi, H. M. Srivastava, Some applications of the Gamma and polygamma functions involving
convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals, Math. Nachr.,
282 (2009), 1709–1723. Available from: https://doi.org/10.1002/mana.200710032.

18. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and
Enlarged Edition, D. Reidel Publishing Co., 1974. Available from:
https://doi.org/10.1007/978-94-010-2196-8.

19. A. I. Davydychev, M. Yu. Kalmykov, Massive Feynman diagrams and inverse binomial sums,
Nuclear Phys. B, 699 (2004), 3–64. Available from:
https://doi.org/10.1016/j.nuclphysb.2004.08.020.

20. A. I. Davydychev, M. Yu. Kalmykov, New results for the ε-expansion of certain one-, two- and
three-loop Feynman diagrams, Nuclear Phys. B, 605 (2001), 266–318. Available from:
https://doi.org/10.1016/S0550-3213(01)00095-5.

21. J. Edwards, Differential Calculus, 2Eds., Macmillan, London, 1982.

22. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the
Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth
edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015. Available
from: https://doi.org/10.1016/B978-0-12-384933-5.00013-8.

23. B. N. Guo, D. Lim, F. Qi, Series expansions of powers of the arcsine function, closed forms for
special Bell polynomials of the second kind, and series representations of generalized logsine
functions, arXiv (2021). Available from: https://arxiv.org/abs/2101.10686v1.

AIMS Mathematics Volume 6, Issue 7, 7494–7517.

https://doi.org/10.1145/1993886.1993899
https://doi.org/10.1080/10652469.2011.644851
https://doi.org/10.5831/HMJ.2013.35.2.137
https://doi.org/10.7146/math.scand.a-15115
https://doi.org/10.1080/10652469.2011.564375
https://doi.org/10.1002/mana.200710032
https://doi.org/10.1007/978-94-010-2196-8
https://doi.org/10.1016/j.nuclphysb.2004.08.020
https://doi.org/10.1016/S0550-3213(01)00095-5
https://doi.org/10.1016/B978-0-12-384933-5.00013-8
https://arxiv.org/abs/2101.10686v1


7515

24. B. N. Guo, D. Lim, F. Qi, Series expansions of powers of the arcsine function, closed forms
for special values of the second kind Bell polynomials, and series representations of generalized
logsine functions, arXiv (2021). Available from: https://arxiv.org/abs/2101.10686v2.

25. E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.

26. A. Hoorfar, F. Qi, Sums of series of Rogers dilogarithm functions, Ramanujan J., 18 (2009),
231–238. Available from: http://dx.doi.org/10.1007/s11139-007-9043-7.

27. L. B. W. Jolley, Summation of Series, 2Eds., Dover Books on Advanced Mathematics Dover
Publications, Inc., New York, 1961.

28. M. Yu. Kalmykov, A. Sheplyakov, lsjk—a C++ library for arbitrary-precision numeric evaluation
of the generalized log-sine functions, Computer Phys. Commun., 172 (2005), 45–59. Available
from: https://doi.org/10.1016/j.cpc.2005.04.013.

29. S. Kanemitsu, H. Kumagai, M. Yoshimoto, On rapidly convergent series expressions for zeta- and
L-values, and log sine integrals, Ramanujan J., 5 (2001), 91–104. Available from:
https://doi.org/10.1023/A:1011449413387.

30. K. S. Kölbig, Explicit evaluation of certain definite integrals involving powers of logarithms,
J. Symbolic Comput., 1 (1985), 109–114. Available from: https://doi.org/10.1016/
S0747-7171(85)80032-8.

31. K. S. Kölbig, On the integral
∫ π/2

0
logn cos x logp sin x d x, Math. Comp., 40 (1983), 565–570.

Available from: https://doi.org/10.2307/2007532.

32. A. G. Konheim, J. W. Wrench Jr., M. S. Klamkin, A well-known series, Amer. Math. Monthly, 69
(1962), 1011–1011.

33. D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly,
92 (1985), 449–457. Available from: http://dx.doi.org/10.2307/2322496.

34. L. Lewin, Polylogarithms and associated functions, With a foreword by A. J. Van der Poorten,
North-Holland Publishing Co., New York-Amsterdam, 1981. Available from:
https://doi.org/10.1090/S0273-0979-1982-14998-9.

35. F. Oertel, Grothendieck’s inequality and completely correlation preserving functions—a summary
of recent results and an indication of related research problems, arXiv (2020). Available from:
https://arxiv.org/abs/2010.00746v1.

36. F. Oertel, Grothendieck’s inequality and completely correlation preserving functions—a summary
of recent results and an indication of related research problems, arXiv (2020). Available from:
https://arxiv.org/abs/2010.00746v2.

37. K. Onodera, Generalized log sine integrals and the Mordell-Tornheim zeta values, Trans. Am.
Math. Soc., 363 (2011), 1463–1485. Available from:
https://doi.org/10.1090/S0002-9947-2010-05176-1.

38. D. Orr, Generalized Log-sine integrals and Bell polynomials, J. Comput. Appl. Math., 347 (2019),
330–342. Available from: https://doi.org/10.1016/j.cam.2018.08.026.

39. F. Qi, A new formula for the Bernoulli numbers of the second kind in terms of the Stirling numbers
of the first kind, Publ. Inst. Math. (Beograd) (N.S.), 100 (2016), 243–249. Available from:
https://doi.org/10.2298/PIM150501028Q.

AIMS Mathematics Volume 6, Issue 7, 7494–7517.

https://arxiv.org/abs/2101.10686v2
http://dx.doi.org/10.1007/s11139-007-9043-7
https://doi.org/10.1016/j.cpc.2005.04.013
https://doi.org/10.1023/A:1011449413387
https://doi.org/10.1016/S0747-7171(85)80032-8
https://doi.org/10.1016/S0747-7171(85)80032-8
https://doi.org/10.2307/2007532
http://dx.doi.org/10.2307/2322496
https://doi.org/10.1090/S0273-0979-1982-14998-9
https://arxiv.org/abs/2010.00746v1
https://arxiv.org/abs/2010.00746v2
https://doi.org/10.1090/S0002-9947-2010-05176-1
https://doi.org/10.1016/j.cam.2018.08.026
https://doi.org/10.2298/PIM150501028Q


7516

40. F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete
Math., 11 (2016), 22–30. Available from: https://doi.org/10.11575/cdm.v11i1.62389.

41. F. Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers
of the first kind, Filomat, 28 (2014), 319–327. Available from:
https://doi.org/10.2298/FIL1402319O.

42. F. Qi, Integral representations and properties of Stirling numbers of the first kind, J. Number
Theory, 133 (2013), 2307–2319. Available from:
http://dx.doi.org/10.1016/j.jnt.2012.12.015.

43. F. Qi, C. P. Chen, D. Lim, Five identities involving the product or ratio of two central binomial
coefficients, arXiv (2021). Available from: https://arxiv.org/abs/2101.02027v1.

44. F. Qi, C. P. Chen, D. Lim, Several identities containing central binomial coefficients and derived
from series expansions of powers of the arcsine function, Results Nonlinear Anal., 4 (2021), 57–
64.

45. F. Qi, B. N. Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Appl.
Anal. Discrete Math., 12 (2018), 153–165. Available from:
https://doi.org/10.2298/AADM170405004Q.

46. F. Qi, B. N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind
and for the Euler numbers and polynomials, Mediterr. J. Math., 14 (2017), 14. Available from:
https://doi.org/10.1007/s00009-017-0939-1.

47. F. Qi, B. N. Guo, Integral representations of the Catalan numbers and their applications,
Mathematics, 5 (2017), 31. Available from: https://doi.org/10.3390/math5030040.

48. F. Qi, D. Lim, Closed formulas for special Bell polynomials by Stirling numbers and associate
Stirling numbers, Publ. Inst. Math. (Beograd) (N.S.), 108 (2020), 131–136. Available from:
https://doi.org/10.2298/PIM2022131Q.

49. F. Qi, D. Lim, B. N. Guo, Explicit formulas and identities for the Bell polynomials and a sequence
of polynomials applied to differential equations, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat.
RACSAM, 113 (2019), 1–9. Available from:
https://doi.org/10.1007/s13398-017-0427-2.

50. F. Qi, D. Lim, Y. H. Yao, Notes on two kinds of special values for the Bell polynomials of the
second kind, Miskolc Math. Notes, 20 (2019), 465–474. Available from:
https://doi.org/10.18514/MMN.2019.2635.

51. F. Qi, P. Natalini, P. E. Ricci, Recurrences of Stirling and Lah numbers via second kind Bell
polynomials, Discrete Math. Lett., 3 (2020), 31–36.

52. F. Qi, D. W. Niu, D. Lim, B. N. Guo, Closed formulas and identities for the Bell polynomials and
falling factorials, Contrib. Discrete Math., 15 (2020), 163–174. Available from:
https://doi.org/10.11575/cdm.v15i1.68111.

53. F. Qi, D. W. Niu, D. Lim, Y. H. Yao, Special values of the Bell polynomials of the second kind for
some sequences and functions, J. Math. Anal. Appl., 491 (2020), Article 124382, 31. Available
from: https://doi.org/10.1016/j.jmaa.2020.124382.

AIMS Mathematics Volume 6, Issue 7, 7494–7517.

https://doi.org/10.11575/cdm.v11i1.62389
https://doi.org/10.2298/FIL1402319O
http://dx.doi.org/10.1016/j.jnt.2012.12.015
https://arxiv.org/abs/2101.02027v1
https://doi.org/10.2298/AADM170405004Q
https://doi.org/10.1007/s00009-017-0939-1
https://doi.org/10.3390/math5030040
https://doi.org/10.2298/PIM2022131Q
https://doi.org/10.1007/s13398-017-0427-2
https://doi.org/10.18514/MMN.2019.2635
https://doi.org/10.11575/cdm.v15i1.68111
https://doi.org/10.1016/j.jmaa.2020.124382


7517

54. F. Qi, X. T. Shi, F. F. Liu, D. V. Kruchinin, Several formulas for special values of the Bell
polynomials of the second kind and applications, J. Appl. Anal. Comput., 7 (2017), 857–871.
Available from: https://doi.org/10.11948/2017054.

55. F. Qi, M. M. Zheng, Explicit expressions for a family of the Bell polynomials and applications,
Appl. Math. Comput., 258 (2015), 597–607. Available from:
https://doi.org/10.1016/j.amc.2015.02.027.

56. I. J. Schwatt, An Introduction to the Operations with Series, Chelsea Publishing Co., New York,
1924. Available from: http://hdl.handle.net/2027/wu.89043168475.

57. N. N. Shang, H. Z. Qin, The closed form of a class of integrals involving log-cosine and log-sine,
Math. Pract. Theory, 42 (2012), 234–246. (Chinese)

58. M. R. Spiegel, Some interesting series resulting from a certain Maclaurin expansion, Amer. Math.
Monthly, 60 (1953), 243–247. Available from: https://doi.org/10.2307/2307433.

59. N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical
Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996. Available
from: http://dx.doi.org/10.1002/9781118032572.

60. H. S. Wilf, generatingfunctionology, Third edition. A K Peters, Ltd., Wellesley, MA, 2006.

61. R. Witula, E. Hetmaniok, D. Słota, N. Gawrońska, Convolution identities for central binomial
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