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1. Introduction and preliminaries

The convexity of functions is a powerful tool to deal with many kinds of issues of pure and applied
science. In recent decades, many authors have devoted themselves to studying the properties and
inequalities related to convexity in different directions, see [13,21,23,34,52] and the references cited
therein. One of the most important mathematical inequalities concerning convex mapping is Hermite—
Hadamard inequality, which is also utilized widely in many other disciplines of applied mathematics.
Let’s review it as follows:

Let f : K C R — R be a convex mapping defined on the interval K of real numbers and 71,7, € K
with 7; < 7,. The subsequent inequalities are called Hermite—Hadamard inequalities:

T+ T 1 © S+ f(r)
f( > ) < F—— fT‘l f(dt < — (1.1)



http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021436

7457

Many inequalities have been established in terms of inequalities (1.1) via functions of different
classes, such as convex functions [28], s-convex functions [33], (a,m)-convex functions [47],
harmonically convex functions [16], h-convex functions [18], strongly exponentially generalized
preinvex functions [29], h-preinvex functions [37], p-quasiconvex functions [27], N-quasiconvex
functions [3], etc. For more recent results about this topic, the readers may refer
to [13,22,25,26,30,32,36] and the references cited therein.

The multiplicatively convex function is one of the most significant functions, which can be defined
as follows.

Definition 1. A mapping f: I CR — [0, 00) is said to be multiplicatively convex or log-convex, if log
f is convex or equivalently for all 71, T, € I and t € [0, 1], one has the following inequality:

flr + (1 =D1) < [FEDILfE)] .

From Definition 1, it follows that

fari+ (1 =07) < [fEDI[f@)]'™ < tf @) + 1 = Df (),

which reveals that every multiplicatively convex function is a convex mapping, but the converse is not
true.

Many properties and inequalities associated with log-convex mappings have been studied by
plenty of researchers. For example, Bai and Qi [9] gave several integral inequalities of the
Hermite—Hadamard type for log-convex mappings. Dragomir [20] provided some unweighted and
weighted inequalities of Hermite—Hadamard type related to log-convex mappings on real intervals.
Set and Ardi¢ [46] established certain Hermite—Hadamard-like type integral inequalities involving
log-convex mappings and p-functions. Zhang and Jiang [53] researched some properties for
log-convex mapping. For more results on the basis of log-convex mappings, one can see, for
example, [10,39,40,49,50] and the references cited therein.

In 2008, Bashirov [11] proposed a class of the multiplicative operators called *integral, which is
denoted by fa ’ (f(x))™ and the ordinary integral is denoted by fa ’ f(x)dx. Recall that the function f is
multiplicatively integrable on [a, b], if f is positive and Riemann integrable on [a, b] and

f b(f )™ = o In(Fdx

Definition 2. [11] Let f : R — R* be a positive function. The multiplicative derivative of function f
is given by

df o (fa+ )
i (t)_f(t)_}g%( ) ) |

If f has positive values and is differentiable at ¢, then f* exists and the relation between f* and

ordinary derivative f” is as follows:
T '@
() = B LVI0) efT(ﬂ).

The following properties of *differentiable exist:
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Theorem 1. [11] Let f and g be *differentiable functions. If c is an arbitrary constant, then functions
cf, fe, f+g f/gand f& are *“differentiable and
@O @ =1,
(i) (f&)" (1) = f7(ng" (),
(iid) (f + 8)" (1) = f*()yT 0 g (1) T,

N AN 0!
") (5) = ew
OIRNOEFNORIIOES

Moreover, Bashirov et al. show that the multiplicative integral has the following properties:

Proposition 1. [11] If f is positive and Riemann integrable on |a, b], then f is *integrable on [a, b]
and

b b
(i) f ((fENN™ = f (G

¢ b ¢ b b
(i) f (f0g)™ = f (FOn™. f (g™,
N [
(iii) f (—) =

« \8) [P(g(x))s

b C b
W) f (FEN™ = f (D™ f F)™, a<c<bh,

a b a -1
) f O™ =1 and f FO)™ = ( fb (f(x))dx) .

The interesting geometric mean type inequalities, known as the Hermite—Hadamard inequality for
the multiplicatively convex functions, are shown by the following theorem in [7].

Theorem 2. Let [ be a positive and multiplicatively convex function on interval [a,b], then the
following inequalities hold

\ .
f(“;b)s( f (f(x))d") < NF@T®. (12)

Fractional calculus, as an advantageous tool, reveals its significance to implement differentiation
and integration of real or complex number orders. Furthermore, it recently emerged rapidly due to
its applications in modelling a number of problems especially in dealing with the dynamics of the
complex systems, decision making in structural engineering and probabilistic problems, etc., see, for
instance, [6,31]. The research of mathematical inequalities including many different types of fractional
integral operators, especially the Hermite-Hadamard type inequalities, is a current research focus. For
example, refer to [8, 19, 22] for Riemann—Liouville integrals, to k-Riemann-Liouville integrals [41],
to Hadamard fractional integrals [4, 48], to conformable fractional integrals [2, 14], to Katugampola
fractional integrals [17,51], and to exponential kernel integrals [5], etc.
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An imperative generalization of Riemann-Liouville fractional integrals was considered by
Abdeljawad and Grossman in [1], which is named the multiplicative Riemann-Liouville fractional
integrals.

Definition 3. [1] The multiplicative left-sided Riemann—Liouville fractional integral ,1¢ f(x) of order
a € C, Re(a) > 0 is defined by

aIgf()C) = e(Ig+(ln°f))(x)’
and the multiplicative right-sided one I, f(x) is defined by
*sz(x) = e(sz(lnof))(x),

where the symbols 17, f(x) and I)_f(x) denote respectively the left-sided and right-sided Riemann—
Liouville fractional integrals, which are defined by

l X
meﬁ@fwwvmuwm

and

1 b
I¢ f(x) = T f (t—x)"" f(rdr, x<b,

respectively.

On the other hand, Sarikaya et al. proved the following noteworthy inequalities which are the
Hermite—Hadamard inequalities for Riemann—Liouville fractional integrals.

Theorem 3. [44] Let f : [a,b] — R be a positive function with0 < a < b and f € L'([a,b)). If fisa
convex function on [a, b), then the following inequalities for fractional integrals hold:

«+b)<rm+1> f@+ £b)
f 2 ] 2b-a)® 2 ’

(Lo, f(D) + I f(a)] < (1.3)

with @ > 0.

Also, Sarikaya and Yildirim built another form relevant to Riemann—Liouville fractional Hermite—
Hadamard type inequalities as follows.

Theorem 4. [45] Under the same assumptions of Theorem 3, we have
a+b\ 2'T(a+1)
f < —|
2 (b—a)
Sabzikar et al. provided the following tempered fractional operators.

Definition 4. [35] Let [a, b] be a real interval and 1 > 0, a > 0. Then for a function f € L'([a, b)), the
left-sided and right-sided tempered fractional integrals are, respectively, defined by

s fO) + T( f@)] < = (1.4)

T8 f(x) = ﬁ f ) (x—0)*" eV fdt, x> a,

and

b
T f(x) = % f (t =) eV F(Hdr,  x < b.
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For several recent related results involving the tempered fractional integrals, see [24,38,42,43] and
the references included there.

Motivated by the results in the papers above, especially these developed in [12,38], this work aims
to investigate some inequalities of Hermite—Hadamard type, which involve the tempered fractional
integrals and the notion of the A-incomplete gamma function for the multiplicatively convex functions.
For this purpose, we establish two Hermite—Hadamard type inequalities for the multiplicative tempered
fractional integrals, then we present an integral identity for *differentiable mappings, from which we
provide certain estimates of the upper bounds for trapezoid inequalities via the multiplicative tempered
fractional integral operators.

2. Main results

As one can see, the definitions of the tempered fractional integrals and the multiplicative fractional
integrals have similar configurations. This observation leads us to present the following definition of
fractional integral operators, to be referred to as the multiplicative tempered fractional integrals.

Definition 5. The multiplicative left-sided tempered fractional integral ,J%"f(x) of order @ € C,
Re(a@) > 0, is defined by

@,d

JEf(x) = eTEWNW ) > 0,
and the multiplicative right-sided one .1 Z’Af (x) is defined by
T f(x) = T eNW g > g,

where the symbols T f(x) and T Z’_A f(x) denote the left-sided and right-sided tempered fractional
integrals, respectively.

Observe that, for A = 0, the multiplicative tempered fractional integrals become to the multiplicative
Riemann—Liouville fractional integrals.
The following facts will be required in establishing our main results.

Remark 1. For the real numbers a > 0 and x, A > 0, the following identities hold:

s b -
() yio-afa 1) = 20 .1
.. ! 7b - + l’b -
(i) fo Yio-afan e = W2 =0 YO0 20, 2.2)

where y,(-,-) is the A-incomplete gamma function [38], which is defined as follows:

)/A(a/,x):f ey,
0
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If A =1, the A-incomplete gamma function reduces to the incomplete gamma function [15]:

y(a,x) = f 12 tedsr.
0

Proof. (i) By using the changed variable u = (b — a)t in the (2.1), we get

: b-a a-l 1 (@, b —a)
. , 1 = t(l—l —/l(b—a)tdt — f ( u ) —Au du = Yila, ’
Yao-ale 1) fo ¢ o b-a) ¢ \b=a)™T G-ar

which ends the identity (2.1) .
(if) From the definition of A-incomplete gamma function, we have

1 1 X
f Yaw-a(@, x)dx = f f Yy e b=y dydy,
0 o Jo

By changing the order of the integration, we get

1 1l
f Yap-a)(@, x)dx = f f Yy le™ = dxdy
0 0 Jy

1
— f (1 _ y)ya—le—/l(b—a)ydy
0

1 1
— f ya—le—/l(b—a)ydy _ f yae—/l(b—a)ydy'
0 0

Applying the Remark 1 (i), we get the identity (2.2).

Our first main result is presented by the following theorem.

Theorem 5. Let f be a positive and multiplicatively convex function on interval [a, b), then we have
the following Hermite—Hadamard inequalities for the multiplicative tempered fractional integrals:

) e
f (a; )S[Jﬁf"f(b) LI @TT < f @) f @),

where vy, (-, ) is the A-incomplete gamma function.

Proof. On account of the multiplicative convexity of f on interval [a, b], we have
a+b\ _f(at+(-0Db+(1-0Da+1b
AR s
< [f(at+ (L= DB [£ (1 —Da+b)]*,

i.e.

lnf(a - b) < —[Inf(at + (1 - Hb) + Inf((1 — )a + th)] .

(2.3)

(2.4)
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Multiplying both sides of (2.4) by 1*~!e~*¥=9" then integrating the resulting inequality with respect to
t over [0,1], we obtain

+b\ (!
lnf(a . )f ta/—le—/l(b—a)tdt
0

1 1 1
< 5[ f 1™y £ (at + (1 — H)b) dt + f 19 L™=y £ ((1 = f)a + tb) dt].
0 0

Utilizing the changed variable, we have

1 a+b b-a
1 a—1 —/lxd
b-ar nf( > )f(; x e X

b b
f (b — x)* e ™ In f(x)dx + f (x —a)* eI f(x)dx] .

l
D
2(b - a)®

That is,
_ ) b
Vﬂ(f’_ba)aa) Inf (a ; b ) < 20 1 a) [ ]a‘ (b — ™19 f(x)dx + j{: (x — a)* e f (x)dx] ’
a+b () o y
1nf( 2 ) < @b o (L) + T nfla).

Thus we get,

f (a + b) < oTia| e @I} nf @)

I'(@)
- [eI 50 b) , T Zflnﬂa)] Taab-a
T'(a)

= [0 ) - Iy @] 7

which completes the proof of the first inequality in (2.3).
On the other hand, as f is multiplicatively convex on interval [a, b], we have

[fat + (1 =0b) < [f@I1fB)]',

and
F((1=ta+1h) < [f@]'[fD)]"
Thus,
Inf (at + (1 — )b) + Inf (1 — t)a + tb)
<tnf(a) + (1 = Inf(b) + (1 — Hinf(a) + tinf(b) (2.5)
= Inf(a) + Inf(D).

Multiplying both sides of (2.5) by t*~!e~*®~9" then integrating the resulting inequality with respect to
t over [0, 1], we obtain
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1 l
f 1L e™ =D f (at + (1 — 1)b) dr + f 17 e™ M £ ((1 = t)a + th) dt
0 0

1
< [Inf(a) + Inf(b)] f (-1 pmAb-a)i g,

0
Hence,

F(CZ) [

,A a,l l
Tya.b—a) I3 Inf(b) + Iy ' Inf(a)| < 5 [Inf(@) + Inf()] .

Consequently, we have the following inequality

a,d a,d (@)
e[I“* Inf(b)+73 nf(@)| 5= < /—f(a) 70,

i.e.

I'(a)

[ 22 ®) . Ty f@) |77 < @) f ).

This ends the proof.

Remark 2. Considering Theorem 5, we have the following conclusions:
(i) The inequalities (2.3) are equivalent to the following inequalities:

a+ b) (@) [

<
2 2y.(a, b — a)

Inf ( I%Mnf(b) + I3 Inf(a)| < % [Inf(a) + Inf(b)].

(ii) If we choose A = 0, then we have the following inequalities:
a+b o o T+
57 ) < LZer®) - Ll < F@7 @)

which is given by Budak in [12].
(iii) If we choose A = 0 and a = 1, then we obtain Theorem 2 given by Ali et al. in [7].

Corollary 1. Suppose that f and g are two positive and multiplicatively convex functions on |a, b], then
we have

b b 2 rf(fﬁ_a)
f(anr )g(a; )S[afi’"fg(b) L@ < @@ Ve @ ®. 26

Proof. As f and g are positive and multiplicatively convex, the function fg is positive and
multiplicatively convex. If we apply Theorem 5 to the function fg, then we obtain the required
inequalities (2.6).

Remark 3. Ifwe take A = 0 in Corollary 1, then we have the following inequalities:

b b Ta+])
f(a; )8((1; )s [ 22 f8(b) - Ty fg@]™ o < \f(@ [ ®)- Vg@g®)

which is established by Budak in [12]. Especially if we take a = 1, we obtain Theorem 7 in [7].
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Hermite—Hadamard’s inequalities involving midpoint can be represented in the multiplicative
tempered fractional integral forms as follows:

Theorem 6. Under the same assumptions of Theorem 5, we have

(@)

f(a ' b) <|w T T @[5 < JF@r®), @7

2

where vy, (-,-) is the A-incomplete gamma function.

Proof. On account of the multiplicative convexity of f on interval [a, b], we have

a+b 1(¢ 2—t 12—t t
f( 2 ):f[§(§“+7b)+§(7“+§b)]’

b\ 1
lnf(a; ) <3
A(b—a)

Multiplying both sides of (2.8) by 1*~1e=*5" then integrating the resulting inequality with respect to ¢
over [0,1], we obtain

+b\ (! Ab=a
lnf(az )f =5y
0

i.e.

[mf(fa ; Z—_Ib) ; lnf(z—_ta ; —b) . 2.8)

That is,
2¢ b-a a+b 2071
,— 1 < In I(l,/l 1 b _Z-rl,/l 1 ’
G-ar” (“ 2 ) “f( 2 ) G| T )+ T of@
which yields that,

90 InfB)+I% o Inf( )] Ho)
f(a;b)se{ ()" (o) (o)

I'(a)

T - To @) 05
i

This completes the proof of the first inequality in inequalities (2.7).
On the other hand, as f is multiplicatively convex, we get

f(%a . 2T_tb) < @I Lfe)7,

and
2—t

f(Ta + éb) < [f@] 7 Lf(b)]?.
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Thus, we have
t 2 - 2—t t
In f(ia N Ttb) + lnf(Ta + 5”) <1Inf(a) + Inf(b). (2.9)

Multiplying both sides of (2.9) by =1e=*5" then integrating the resulting inequality with respect to ¢
over [0,1], we have

a

-—i%———r(a)[zaﬁ Inf(b) + 1" 1nf(aﬂ <

a

b _
¥, (a, Ta) [Inf(a) + Inf(b)],

(b-ar () (5)- b-ar
i.e.
La,) a,d a1 1
2y.(a, 55 [](“5”)+lnf O) + L InS (“)] < 5 [Inf(a) + Inf(b)].

Consequently, we get the inequality

[(a)

[a;hf R IORE f(a)] 5 < @ f ).

2

This ends the proof.

Next, we are going to establish several integral inequalities concerning the multiplicative tempered
fractional integral operators. To this end, we present the following lemma.

Lemma 1. Let f : I° ¢ R — R be a *differentiable mapping on I°, a,b € I° with a < b. If f* is
integrable on |a, b], then we have

1
Vf(a)f(b) — _ f [f*(ta + (1 _ t)b)n(n(b_a)((l,f)—%l(h—a)((h1—’))]
0

[gff’/lf(b) *x Izﬂf(a)] 2y (@b—a)

dt
)

(2.10)

where

(b-a)

n= m~ 2.11)

Proof. Applying the multiplicative integration by parts, we have

dr

1
f [f*(ta +(1- t)b)fi()/n(b—a)(d,l)—)//l(b—a)(a,1—0)]
0

f(a)WA(b—a)((Yal) 1

= dr
f(fmﬁwl-wmwﬂwM@M”“““w”a
0

~ F(bymiv-ofeD)

AIMS Mathematics Volume 6, Issue 7, 7456-7478.
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[f(@) - f (b)]n%ub—a)(a,l)

exp| [ ninf(ta + (1 - 0b) - 1-le=10-ardr + [ yinf(ta + (1 - 1)b) - (1 — 1o~ e=Ae-a01-0dy}

_lf@- fo
B expil; + I}

Utilizing the changed variable, we obtain

1
I =7 f Inf(ta + (1 — H)b)t* e~V dy
0
n b
= Foar f Infu)(b - u)* e du

T]F(CL’) a,A
I Inf(b),
G L s b)

and

1
L=n f Inf(ta + (1 — Hb)(1 — £)* e M-1-Dq;
[
_ _ a—1_—-A(u—a)
e )“f Inf(u)(u—a)* e du

F

Then, we have

1
f [f*(at +(1 - t)b)ﬂ(%z(b-@(a,l)—)’,ub-a)(m1—t))]dl
0

_ VI @7 b
X {555t | Lo Inf B) + T3 Infla)}
VI @7 ®)
L2 f(B) - T3 (@)

This ends the proof.

Remark 4. Considering Lemma 1, we have the following conclusions
(i) If we take A = 0, then we have

fa)f(b)
[ajgf(b) - ]'Zf(a)] -0
(ii) If we take A = 0 and « = 1, then we have

_Nf@f®) f Frta + (1 — )b)se- 1))
[ (Fas)"

AIMS Mathematics

1
@ 21\ d
TtarD) =f (f*(ta+(1_t)b)%[t ~(1-1) ])f.
0

(2.12)

(2.13)

Volume 6, Issue 7, 7456-7478.
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It is worth mentioning that, to the best of our knowledge, the identities (2.12) and (2.13) obtained

here are new in the literature.

Theorem 7. Let f : I° € R — R* be a *differentiable mapping on I°, a,b € I° with a < b. If |f*| is

multiplicatively convex on [a, b], then we have

vV b
UG/ RG]
[T T @) |7

where n is defined by (2.11) in Lemma 1 and

s n@b-a nie bea) L et L, 59 e+ 1,b-a)
(b _ a)a (b _ a)a (b _ a)a+l (b _ a)a+l

Proof. Making use of Lemma 1, we deduce

Vf(@)f(b)
(o)

[a[f:s/lf(b) " Z’Z,lf(a)] Tyl

1
f [f*(at + (1 _ t)b)’l()’/l(b—a)(a»[)_%l(b—a)(aa1_t)):l
0

dr

1
< exp { f |ln f*(at + (1 _ t)b)’l[YA(b—a)(U,f)_%l(b—a)(a’l—t)]| dt}
0

1
= exp {f 7Y 10-0(@ 1) = Yagra(@, 1 = 0)]] - Inf*(at + (1 = 1)b)] dt} .
0

As t € [0, 1], we can know

1-t

=
IA
~
IA

ua—le—/l(b—a)udu,

N =

Y at-a (@ D) = Yap-a(a, 1 = 1) =

—_

u® e~ Mb-auqy > <t<l.
1t

Since |f*| is multiplicatively convex, we get
Inf*(ta + (1 — 1)b)| < fln|f*(a)| + (1 — OIn|f*(b)|.

If we apply (2.17) and (2.18) to the inequality (2.16), we obtain

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

AIMS Mathematics Volume 6, Issue 7, 7456-7478.
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fla)f(b)
T(e)
[aI By - I f(a)] Taeha

i 1-t
< exp {n f f u e O qyfn| £* (a)| + (1 — H)In|f*(b)|]ds
0 t

1 t
+n f f u* e Oy An| £ (@) + (1 - t)lnlf*<b>l]df}
% 1-t

i 1-1 i 1-t
= exp {nlnl () f f tu e O dydr + pln| £* ()| f f (1 = Hu e =M qyds
0 t 0 t

1 t 1 1
+nln|f*(a)] f f e 0= dydr + nln|f*(b)| f (1 —t)u“-le-ﬂ(”-“)"dudr}
1 J1 L J1-

= eXP{ﬂ(lnlf*(a)l Ay +1In|f D)l - Ax + Inlf*(@)] - Az + In|f*(b)] - A4)}-

Here, let’s evaluate an integral by changing the order of it.

L Al
2
A = f f tu e dyde
1-u
f f e DU qrdy + f f u® e VU rdy
0

1

2
= E[f atl p=Alb- “)”du+f (u* = 2u+ l)u“_le_/l(b_“)”du]

(2.19)
1 1 ! !
= _[y/l(b—a) (a +2, = ) f utlemAlb-augy _ 9 f u%e Momaugy + f u“_le_ﬂ(b_“)”du]
2 2/ } }
1 1 1
=5 (Yo |@ +2, 3 + | Yap-a) (@ + 2, 1) = Yo | @ + 2, 3
1 1
=2 (Vap-a) (@ + 1, 1) = ya0p-0) | + 1, ) + | Ya-a) (@, 1) = Vag-a) | @, &
Analogously, we can get
1 1 1 1
A, = 3 2Yap-a) | + 1, 3|~ Yie-a |@ +2, 3 + [)’A(b—a)(a, D) = Yap-a | 3 ]
1 (2.20)
—[)’A(b—a)((l +2,1) = Yap-a) (CY +2, 5) ]} ,
1 1 1 1
As = 3 2Yap-a) | + 1, 7|~ Yae-o @+ 2, 3]t [W(b—a)(@, D) = vap-a | @ 5 ]
2.21)

1
—[mh_a)(a +2,1) = Yap-o (cx +2, 5) ]} ,

AIMS Mathematics Volume 6, Issue 7, 7456-7478.
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and
1 1 1
Ay = 5 Yap-a) | Q@ + 2, E + [’}//1(b_a)(a’ +2,1) - Yav-a) (@ T 2, E ]
1 1 (2.22)
_2[74(”—“)(“ + LD =%i0-a (a +1, 5)] + [)’A(k-a)(a, D) = Yap-a) (a/, 5) ]} .
Consequently,

In|f* (@)l - Ay +In|f*(D)] - Ay + In|f*(@)] - Az + In|f*(D)] - Ay

vi(a,b —a) B yale, 5%) N 2y + 1, b;—a) B vil@+1,b—a)
(b — a)” (b —a)® (b — a)**! (b — a)!

= [inlf* @1 + Il @)1}

Thus, we deduce

Vf(@f®)
T(@)

[aI S f(b) - I f(a)] e

[ ,b— (o, =2

+2)/A(C¥ +1,59) _yala+1,b- a)]
(b _ a)a/+1 (b _ a)a+l

exp{n[inlf*(@)| + Inlf* ()]}
(i@ 17 )]".

The proof is completed.

Theorem 8. Let f : I° C R — R* be a *differentiable mapping on I°, a,b € I° with a < b. For g > 1
with p~' + ¢! = 1, if |f*|Y is multiplicatively convex on [a, b), then we have

T'(a) n-tr D) (223)

[aI S f(b) - I f(a)] oD

V@7 ®) cexn { . (m f '@V +In If*(b)lq)"f},

where 1 is defined by (2.11) in Lemma 1 and

1
T= f YVaw-a(@. 1) = Yag-af@, 1 = 0| dr.
0
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Proof. Making use of Lemma 1 and Holder’s inequality, we deduce
V(@) f(b)
I'(a)
[ T2 ®) + T 0|77

1
f [ f*(at +(1- t)b)']()’ﬂ(b—a)(aat)_')’/l(b—a)(a'al_t))]
0

dr

1
< exp { f ‘ln F*(at + (1 - t)b)n[mb-a)(a,t)—w(b-m(a,1—t)]
0

dt} (2.24)

1
= exp {fo 7 (V-0 (@ D) = Yap-a(@, 1 = D] - Inf*(at + (1 - 1)b)| dl}

1
= exp {fo |77 [Yap-a) (@ D) = Vap-a)(@, 1 = f)]| |Inf*(at + (1 = 1)b)| dl}~

Due to the Holder’s inequality, we have

1

b : ;
fl@f®d) < exp {77 (fo Yav-a(@: 1) = yag-ay(@, 1 = )" dt)

[(a)

0 1 ]

1 (2.25)
1 a
X (f [Inf*(ta + (1 — H)b)|? dt) } .
0
By virtue of the multiplicative convexity of |f*|?, we obtain
1 1
f lInf*(at + (1 = 0)b)|" dt < f [fIn|f*(@)]” + (1 = On|f*(b)|?] dt
0 0 (2.26)

_ In|f"@I? + In|f* )"
5 :

Combining (2.26) with (2.25), we know that Theorem 8 is true. Thus the proof is completed.

Remark 5. Considering Theorem 8, we have the following conclusions:
(i) If we choose A = 0, then we have

1 % % * é
T@ie | {% ( f P d,) (lnlf @r iy <b>|4)}
0

[a-z gf(b) - ZZf(a)] b-a)@
1 1 1 v In|f* (@) + In|f*®) .
Sexp{z(““l(z_zwv—l)) ( 2 ) }

To prove the second inequality above, we use the fact

[(1 -0 =] <A - )™ — 1P,
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fort €0, %] and
[t = (1= <t = (1 =)™,

forte [%, 1], which follows from (A — B)? < A? — BY forany A > B> 0and g > 1.
(ii) If we choose A = 0 and a = 1, then we have

Vf@f®) Sexp{l( i )11’(lnlf*(a)l"+ln|f*(b)|‘1)clz}.

b( (u)ba) 2\p+1 2

a

Theorem 9. Ler f : I° € R — R* be a *differentiable mapping on I°, a,b € I° with a < b. If |f*|,
q > 1, is multiplicatively convex on [a, b], then we have

Vf(@)f(b)

[T ) - I3 |75 (227)

<exp{21 .- 8(In|f* (@)l + In|f* (b)|q)‘l’}

where 1 is defined by (2.11) in Lemma 1 and ¢ is defined by (2.15) in Theorem 7, respectively.

Proof. Continuing from the inequality (2.24) in the proof of Theorem 8, using the power-mean
inequality, we have

fl@)fb)
T
[“I EZ’Af b)) I Z’A f (a)] Hh-a

1 -4
< exp {n( f Yai-o(@ 1) = Ya-a (@ 1 = 1) dt)
0

! i
X (fo [y at-a(@. ©) = Yap-ala, 1 = )| - Inf*(at + (1 - HH)| dt) }

For the convenience of expression, let us define the quantities

1
Ji = f |7ﬂ<b—a)(0" D= Yap-a(a@, 1 - t)| de,
0

and
1
Jp = f Yav-0(@.t) = Yap-a (@, 1 = D| - Inf*(at + (1 — Hb)|" dt.
0
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According to the equalities (2.17), we have

1 1-t 1t
2
Ji = f f u® e~ qydy +j: f u e M=y dr
0 Jr I Jl1

1 1
=2 {271(1;—@ (CV +1, 5) + [ Yap-o (@, 1) = Yap-a) (a, 5)] — Yap-a(@ + 1, 1)} .

Utilizing the multiplicative convexity of |f*|?, we obtain

(2.28)

1
I < fo av-0(@ 1) = Yap-ale, 1 = 1) - [An] £ @I + (1 = DIn|£*(B)|" |dt
L pl-t
= f f w0 dn | £ (@)l + (1 = )ln | (D) |dudt
0 t

1 t
+ f f w0 dn | £ (@)l + (1 = )ln | (D) |duds
3 Jl-t

1l 1l
=1In|f*(a)|? - f f e udyds + In|f* ()| - f (1 — Hu e~ b-Dudydr
0 t 0

t
1 t 1 t
+In|f* (@)’ - f f tu® e O dudt + In | ()| - f (1 = ™" duds
1J1-t ; Ji
= In|f*(@|? - Ay + In|f*(B)|? - Ay + In|f*(@)|? - Az + In|f*(B)|? - A,
where A;(i = 1,2, 3,4) are given by (2.19)—(2.22) in the proof of Theorem 7, respectively.
Consequently,
In|f* (@) - Ay + In|f* (D)7 - Ay + In|f* (@) - Az + In|f* (D) - Ay

yale,b-a) yala, 52 N 2y + 1,59 e+ 1,b-a)
(b—a) (b—a) (b — a)**! (b — a)~*!
(2.29)

= [/ @F + s )17

Combining (2.28) with (2.29), we have

Vf(a)f(b)
(@)

T8 F @) T3 @ |7

< exp {n (28)' - (§ (nlf* @ + Inl £ (D)) )"}

= exp {2‘-3; - 8(In|f* (@I + In|f () )1} .
The proof is completed.
3. Examples
The main point of the results established in this paper is that the calculation of the right-hand side is
much easier than that of the left-hand side. To show this, three interesting examples are demonstrated

below.
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Example 1. Let the log-convex function f: (0,c0) — (0, o) be defined by f(x) = 273 If we take
a=1,b=2,a= % and A = i, then all assumptions in Theorem 5 are satisfied.

The left-hand side term of (2.3) is

f(a : b) = f(ﬁ) = 27 ~ 0.5946.

2 2

The middle term of (2.3) is
I'(a)
(L2 @) - I f@)] 7
(%)

ST 2 a1y 12 (3
[eIH Inf@2) , I3 lnf(l)] 1(2:

1
1 1 1 1 - 1 1
_ [ o (@=3)n2:2=wy 23 i [ (12-3)n2-(u=1) 2 e*ﬂ“*”du] 2l

~ 0.6461.

The right-hand side term of (2.3) is

VF@Ff®) = f()f@2) =277 ~0.7071.
It is clear that 0.5946 < 0.6461 < 0.7071, which demonstrates the result described in Theorem 5.

Example 2. Let the log-convex function f: (0,00) — (0, c0) be defined by f(x) = e*. If we take
a=1,b=2,a=3and A = 3, then all assumptions in Theorem 6 are satisfied.

The left-hand side term of (2.7) is

f(a * b) = f(iz) = ¢ ~ 9.4877.

2

The middle term of (2.7) is

(@)
b

[T ) . 2 [

2

1 T

11 11
[ I3 2Inf(2) 175’_21nf(1)]27 aD
e 2 2
3

I~~~
Bl—
N—"

1
2

= + . e
2.2 P 1Ca) 2.2 B ) ﬁ
_ [ef% u (2—u) 2e 2 du+ﬁ u (u—1)"2e 2 du Zfoz Shotug

~ 10.9088.

The right-hand side term of (2.7) is

5

Vi@ fb)= f () fQ2)=e? ~12.1825.

It is clear that 9.4877 < 10.9088 < 12.1825, which demonstrates the result described in Theorem 6.
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f( ) : (0, oo) (0, oo) be defined by J}((x)) = 1. We can get

ff(x) = ex, f(x) =x.Ifwetakea=1,b=2,a = E and A = 5, then all assumptions in Theorem 7 are
satisfied.
The left-hand side term of (2.14) is

Vi@ @)
[T B) - T fe) |7

V/D)fQ2)
(

11
[e 22InfQ) | eJ“lnf(l)] %

)

=

D

I\)\'—‘

V2

11 11 1
[eflz lnu-(2—u)77677(27“)du+f12 Inu-(u—1)"2 62(“l>du] 27% (7‘1)

&

0.9702.
The right-hand side term of (2.14) is

271<2 1>[y1(2 - 7‘( )+27%(%’%)—7%(%,1)]

(@117 = () ~ 1.1480.

It is clear that 0.9702 < 1.1480, which demonstrates the result described in Theorem 7.

4. Conclusions

To the best of our knowledge, this is a first pervasive work on the multiplicative tempered
fractional Hermite—Hadamard type inequalities via the multiplicatively convex functions. Two
Hermite—Hadamard type inequalities for the multiplicative tempered fractional integrals are hereby
established. An integral identity for *differentiable mappings is presented. By using it, some estimates
of the upper bounds pertaining to trapezoid type inequalities via the multiplicative tempered fractional
integral operators are obtained. Inequalities obtained in this paper generalize some results given by
Budak and Tung (2020) and Ali et al. (2019). Also, three examples show that the calculation of the
right-hand side is much easier than that of the left-hand side. The ideas and techniques of this article
may inspire further research in this field. This promising field about the multiplicative tempered
fractional inequalities is worth further exploration.
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