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1. Introduction

Since people found that Hopfield neural network has potential applications in some engineering
fields such as classification, associative memory and optimization, dynamic behaviors of the network
have received considerable attention. Some interesting and useful results for bifurcations, chaos,
periodic solutions, synchronization and stability of the network have come into our view, for example,
see [1–35] and the references therein. It is noted that for the neural network, the attractor as a classical
dynamical behavior has not been given much attention. It is obvious that the system for which the
existence of an attractor can be ensured is always an interesting subject.
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The theory of global attractors for autonomous systems has been developed to solve some problems
arising in the study of delayed functional differential equations [36]. The classical semigroup property
of autonomous systems can not be acquired because the initial time is just as important as the final
time in non-autonomous differential equations. The theory of pullback attractors has been developed
for stochastic and non-autonomous systems in which the trajectories can be unbounded when time
increases to infinity [37–43]. In this case, the global attractor is defined as a parameterized family of
sets {A(t)}t∈R depending on the final time, such that attracts solutions of the system ‘from −∞’, i.e.
initial time goes to −∞ while the final time remains fixed.

In this paper, we consider the following Hopfield neural networks with multiple time-varying
delays:

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t))) + ui, t ≥ 0, (1.1)

where ci, ai j, bi j and ui are some constants and ci > 0, ai j and bi j present the connection weight
coefficients, ui denotes the external bias, fi(·) and gi(·) are continuous nonlinear activation functions.

System (1.1) is a more general mathematical expression. When τi j(t) = τ j(t), the equation of system
(1.1) is the following vector-matrix form studied in [44]:

ẋ(t) = −Cx(t) + A f (x(t)) + Bg(x(t − τ(t))) + u, t ≥ 0, (1.2)

where x(t) = (x1(t), · · · , xn(t))T , A = (ai j)n×n, B = (bi j)n×n,C = diag(c1, · · · , cn),
u = (u1, · · · , un)T , f (x(t)) = ( f1(x1(t)), · · · , fn(xn(t)))T , g(x(t − τ(t))) = (g1(x1(t − τ1(t))), · · · , gn(xn(t −
τn(t))))T .

It is clear that system (1.1) cannot be described in the vector form because it contains multiple
delays τi j(t), which leads to the existence condition of the attractor of system (1.1) can not be easily
established by linear matrix inequality approach. In this case, we need to develop new mathematical
techniques and employ suitable Lyapunov functionals for the attractor analysis of system (1.1). In
addition to this, based on our careful review of recently published almost all the pullback attractor
results for system (1.1), we have realized that for system (1.1), the research on pullback attractor has
not received enough attention. These facts have been the main motivations of the current paper to focus
on the pullback attractor of system (1.1). We try to derive the existence condition of the linear matrix
inequality form for pullback attractor by employing Lyapunov-Krasovskii functional and inequality
techniques. At the same time, we also give the existence condition of algebraic form for pullback
attractor.

2. Preliminaries

Let τ > 0 be a given positive number and denote by L the Banach space C([−τ, 0]; Rn) endowed with
the norm ‖ξ‖ = sups∈[−τ,0] |ξ(s)|, |·| is the Euclidean norm and C([−τ, 0]; Rn) is the space of all continuous
Rn-valued functions defined on [−τ, 0]. Denote by xt the element in L given by xt(s) = x(t + s) for all
s ∈ [−τ, 0]. A > 0 means that matrix A is symmetric positive definite. AT denotes the transpose of
the matrix A and I denotes identity matrix. Let X be a complete metric space and denote by dist(A, B)
the Hausdorff semidistance between A and B given by dist(A, B) = supa∈A infb∈B d(a, b), A, B ⊆ X. ∗
means the symmetric terms of a symmetric matrix.
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Functions τi j(t), fi(·) and gi(·) are required to satisfy that there exist some constants µ, l−i , l
+
i ,m

−
i and

m+
i such that for every z, y ∈ R(z , y) and i, j = 1, · · · , n,

0 ≤ τi j(t) ≤ τ, τ̇i j(t) ≤ µ < 1, t ≥ 0, (2.1)

l−i ≤
fi(z) − fi(y)

z − y
≤ l+i ,m

−
i ≤

gi(z) − gi(y)
z − y

≤ m+
i . (2.2)

It is obvious that (2.2) is less conservative than that in [30] because the constants in (2.2) may be
positive, negative numbers or zeros. Meanwhile, (2.2) implies that

| fi(z) − fi(y)| ≤ li|z − y|, |gi(z) − gi(y)| ≤ mi|z − y|, z, y ∈ R, (2.3)

where li = max{|l−i |, |l
+
i |},mi = max{|m−i |, |m

+
i |}.

System (1.1) can be written as

dx(t)
dt

= F(t, ·), (2.4)

where x(t) = (x1(t), · · · , xn(t))T , continuous map F(t, ·) is defined as

F(t, ξ) =

(
− c1ξ1(0) +

n∑
j=1

a1 j f j(ξ j(0)) +

n∑
j=1

b1 jg j(ξ j(−τ1 j(0))) + u1, · · · ,

−cnξn(0) +

n∑
j=1

an j f j(ξ j(0)) +

n∑
j=1

bn jg j(ξ j(−τn j(0))) + un

)T

, ξ ∈ L.

It follows from [41,43] that for every (s, ξ) ∈ R×L, system (2.4) has a solution x(t; s, ξ). We define
a solution operator φ(t, s) which gives the solution (in L) at time t when xs = ξ, via φ(t, s)ξ = xt(·; s, ξ).
Definition 1. [41] Let φ be a process on X. A family of compact sets {A(t)}t∈R is said to be a (global)
pullback attractor for φ if, for all s ∈ R, it satisfies

φ(t, s)A(s) = A(t), f or all t ≥ s,

lims→∞dist(φ(t, t − s)D,A(t)) = 0, f or all bounded subsets D o f X.

Definition 2. [41] {B(t)}t∈R is said to be absorbing with respect to the process φ if, for all t ∈ R and all
D ⊂ X bounded, there exists TD(t) > 0 such that for all h > TD(t), φ(t, t − h)D ⊂ B(t).
Lemma 1. F maps bounded sets into bounded sets.
Proof. From (2.2) and (2.3), it follows that for every ξ ∈ D = {ξ : ‖ξ‖ ≤ r, r > 0} ⊂ L,

|F(t, ξ)|2 ≤
n∑

i=1

(
− ciξi(0) +

n∑
j=1

ai j f j(ξ j(0)) +

n∑
j=1

bi jg j(ξ j(−τi j(0))) + ui

)2

≤

n∑
i=1

(
ci|ξi(0)| +

n∑
j=1

|ai j|(l j|ξ j(0)| + | f j(0)|) +

n∑
j=1

|bi j|(m j|ξ j(−τi j(0))| + |g j(0)|) + |ui|

)2
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≤

n∑
i=1

(
(ci +

n∑
j=1

|ai j|l j +

n∑
j=1

|bi j|m j)r +

n∑
j=1

|ai j|| f j(0)| +
n∑

j=1

|bi j||g j(0)| + |ui|

)2

.

Lemma 2. [41] Suppose that F and φ(t, s) map bounded sets into bounded sets, and that there exists
a family of bounded absorbing sets {B(t)}t∈R for φ. Then there exists a pullback attractor {A(t)}t∈R for
problem (2.4).

3. Main results

Set
P = diag{p1, · · · , pn},Ui = diag{ui1, · · · , uin}(i = 1, 2),M = diag{m1, · · · ,mn},

L1 = diag{l−1 l+1 , · · · , l
−
n l+n }, L2 = diag{l−1 + l+1 , · · · , l

−
n + l+n },

M1 = diag{m−1 m+
1 , · · · ,m

−
n m+

n },M2 = diag{m−1 + m+
1 , · · · ,m

−
n + m+

n },

B1 = diag{
n∑

j=1

|b1 j|, · · · ,

n∑
j=1

|bn j|}, B2 = diag{
n∑

j=1

p j|b j1|, · · · ,

n∑
j=1

p j|b jn|},

B3 = diag{
n∑

j=1

|b1 j|m j, · · · ,

n∑
j=1

|bn j|m j}, B4 = p × diag{
n∑

j=1

|b j1|, · · · ,

n∑
j=1

|b jn|}.

We first give two sets of sufficient conditions of the linear matrix inequality form.
Theorem 1. Suppose that there exist three symmetric positive definite matrices P,U1 and U2 such that

Σ =


Σ11 PA + U1L2 U2M2

∗ −2U1 0
∗ ∗ −2U2 + 1

1−µB2

 < 0,

where
Σ11 = PB1 − 2PC − 2U1L1 − 2U2M1.

Then there exists a pullback attractor {A(t)}t∈R for system (2.4).
Proof. Σ < 0 implies there must exist a sufficient small positive constant λ such that

Σ̃ =


Σ11 + 2λP + 2λI PA + U1L2 U2M2

∗ 2λI − 2U1 0
∗ ∗ 2λI − 2U2 + eλτ

1−µB2

 < 0. (3.1)

For every solution x(t) satisfying ‖xt0‖ ≤ r, we construct the following Lyapunov-Krasovskii
functional

V(t) = eλt
n∑

i=1

pix2
i (t) +

n∑
i=1

n∑
j=1

pi|bi j|

1 − µ

∫ t

t−τi j(t)
eλ(s+τ)g2

j(x j(s))ds (3.2)

and obtain
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V(t0) = eλt0
n∑

i=1

pix2
i (t0) +

n∑
i=1

n∑
j=1

pi|bi j|

1 − µ

∫ t0

t0−τi j(t0)
eλ(s+τ)g2

j(x j(s))ds

≤ max
1≤i≤n
{pi}eλt0 |x(t0)|2 +

n∑
i=1

n∑
j=1

pi|bi j|

1 − µ

∫ t0

t0−τ
eλ(s+τ)(m j|x j(s)| + |g j(0)|)2ds

≤ max
1≤i≤n
{pi}eλt0r2 +

n∑
i=1

n∑
j=1

pi|bi j|

1 − µ

∫ t0

t0−τ
eλ(s+τ)(m jr + |g j(0)|)2ds

≤ max
1≤i≤n
{pi}eλt0r2 + eλ(t0+τ)τ

n∑
i=1

n∑
j=1

pi|bi j|

1 − µ
(m jr + |g j(0)|)2 ≤ α, (3.3)

where α is a positive constant.
Computing V̇(t) along the trajectories of system (1.1) and using (2.1), we derive

V̇(t) = λeλt
n∑

i=1

pix2
i (t) + 2eλt

n∑
i=1

pixi(t)
(
− cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t))) + ui

)
+

n∑
i=1

n∑
j=1

pi|bi j|

1 − µ

(
eλ(t+τ)g2

j(x j(t)) − (1 − τ̇i j(t))eλ(t−τi j(t)+τ)g2
j(x j(t − τi j(t)))

)
≤ eλt

n∑
i=1

pi

(
(λ − 2ci)x2

i (t) + 2
n∑

j=1

ai j f j(x j(t))xi(t) + 2
n∑

j=1

|bi j||g j(x j(t − τi j(t)))||xi(t)|

+2|ui||xi(t)|
)

+

n∑
i=1

n∑
j=1

pi|bi j|

(eλ(t+τ)g2
j(x j(t))

1 − µ
− eλtg2

j(x j(t − τi j(t)))
)

≤ eλt
n∑

i=1

pi

(
(λ − 2ci)x2

i (t) + 2
n∑

j=1

ai j f j(x j(t))xi(t) +

n∑
j=1

|bi j|(g2
j(x j(t − τi j(t))) + x2

i (t))

+λ−1u2
i + λx2

i (t)
)

+

n∑
i=1

n∑
j=1

pi|bi j|

(eλ(t+τ)g2
j(x j(t))

1 − µ
− eλtg2

j(x j(t − τi j(t)))
)

= eλt
n∑

i=1

pi

(
(2λ − 2ci +

n∑
j=1

|bi j|)x2
i (t) + 2

n∑
j=1

ai j f j(x j(t))xi(t) + λ−1u2
i

)
+

n∑
i=1

n∑
j=1

p j|b ji|
eλ(t+τ)g2

i (xi(t))
1 − µ

= eλt
(
xT (t)(2λP − 2PC + PB1)x(t) + 2xT (t)PA f (x(t)) +

eλτ

1 − µ
gT (x(t))B2g(x(t))

)
+eλtλ−1uT Pu, (3.4)

where g(x(t)) = (g1(x1(t)), · · · , gn(xn(t)))T .
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Assumption (2.2) implies the following inequalities hold:

0 ≤ −2
n∑

i=1

u1i[ fi(xi(t)) − fi(0) − l+i xi(t)][ fi(xi(t)) − fi(0) − l−i xi(t)]

= −2
n∑

i=1

u1i{ f 2
i (xi(t)) − (l+i + l−i )xi(t) fi(xi(t)) + l+i l−i x2

i (t)}

+

n∑
i=1

u1i[−2 f 2
i (0) + 4 fi(0) fi(xi(t)) − 2(l+i + l−i )xi(t) fi(0)]

≤ −2
n∑

i=1

u1i{ f 2
i (xi(t)) − (l+i + l−i )xi(t) fi(xi(t)) + l+i l−i x2

i (t)}

+

n∑
i=1

{2[λ f 2
i (xi(t)) + λ−1u2

1i f 2
i (0)] + [λx2

i (t) + λ−1(l+i + l−i )2u2
1i f 2

i (0)]}

= f T (x(t))(2λI − 2U1) f (x(t)) + 2 f T (x(t))U1L2x(t) + xT (t)(λI − 2U1L1)x(t)
+λ−1 f T (0)[2U2

1 + L2
2U2

1] f (0) (3.5)

and

0 ≤ −2
n∑

i=1

u2i[gi(xi(t)) − gi(0) − m+
i xi(t)][gi(xi(t)) − gi(0) − m−i xi(t)]

≤ gT (x(t))(2λI − 2U2)g(x(t)) + 2gT (x(t))U2M2x(t) + xT (t)(λI − 2U2M1)x(t)
+λ−1gT (0)[2U2

2 + M2
2U2

2]g(0). (3.6)

From (3.1), (3.3)-(3.6), we derive

V̇(t) ≤ eλtyT (t)Σ̃y(t) + eλtλ−1β ≤ eλtλ−1β

and

V(t) ≤ V(t0) +

∫ t

t0
eλsλ−1βds ≤ α + eλtλ−2β, (3.7)

where y(t) = (xT (t), f T (x(t)), gT (x(t)))T ,

β = uT Pu + f T (0)[2U2
1 + L2

2U2
1] f (0) + gT (0)[2U2

2 + M2
2U2

2]g(0).

From (3.2) and (3.7), we have

|x(t)|2 ≤
e−λtα + λ−2β

min1≤i≤n{pi}
(3.8)

and

|x(t + θ)|2 ≤
e−λ(t+θ)α + λ−2β

min1≤i≤n{pi}
≤

e−λ(t−τ)α + λ−2β

min1≤i≤n{pi}
, θ ∈ [−τ, 0]. (3.9)
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Inequality (3.9) derives

‖xt‖
2 ≤

e−λ(t−τ)α + λ−2β

min1≤i≤n{pi}
. (3.10)

Inequality (3.10) and Corollary 6 in [43] show that all solutions exist globally in time and φ(t, t0) is
bounded. Then,

B(t) =

{
z ∈ L : ‖z‖2 ≤

e−λ(t−τ)α + λ−2β

min1≤i≤n{pi}

}
is a family of bounded absorbing sets. From Lemma 1 and Lemma 2, we know that there exists a
pullback attractor {A(t)}t∈R for system (2.4).
Theorem 2. Suppose that there exist three symmetric positive definite matrices P,U1 and U2 such that

Γ =


Γ11 + MB2

1−µ PA + U1L2 U2M2

∗ −2U1 0
∗ ∗ −2U2

 < 0,

where
Γ11 = PB3 − 2PC − 2U1L1 − 2U2M1.

Then there exists a pullback attractor {A(t)}t∈R for system (2.4).
Proof. Γ < 0 implies there must exist a sufficient small positive constant λ such that

Γ̃ =


Γ11 + 2λP + 2λI + eλτ

1−µMB2 PA + U1L2 U2M2

∗ 2λI − 2U1 0
∗ ∗ 2λI − 2U2

 < 0.

For every solution x(t) satisfying ‖xt0‖ ≤ r, we construct the following Lyapunov-Krasovskii
functional

V(t) = eλt
n∑

i=1

pix2
i (t) +

n∑
i=1

n∑
j=1

pi|bi j|m j

1 − µ

∫ t

t−τi j(t)
eλ(s+τ)x2

j(s)ds (3.11)

and obtain

V(t0) = eλt0
n∑

i=1

pix2
i (t0) +

n∑
i=1

n∑
j=1

pi|bi j|m j

1 − µ

∫ t0

t0−τi j(t0)
eλ(s+τ)x2

j(s)ds

≤ max
1≤i≤n
{pi}eλt0r2 + eλ(t0+τ)τ

n∑
i=1

n∑
j=1

pi|bi j|m jr2

1 − µ
≤ α,

where α is a positive constant.
Computing V̇(t) along the trajectories of system (1.1) and using (2.1) and (2.3), we derive
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V̇(t) = λeλt
n∑

i=1

pix2
i (t) + 2eλt

n∑
i=1

pixi(t)
(
− cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t))) + ui

)
+

n∑
i=1

n∑
j=1

pi|bi j|m j

1 − µ

(
eλ(t+τ)x2

j(t) − (1 − τ̇i j(t))eλ(t−τi j(t)+τ)x2
j(t − τi j(t))

)
≤ eλt

n∑
i=1

pi

(
(λ − 2ci)x2

i (t) + 2
n∑

j=1

ai j f j(x j(t))xi(t) + 2
n∑

j=1

|bi j|m j|x j(t − τi j(t))||xi(t)| + 2|ui||xi(t)|
)

+

n∑
i=1

n∑
j=1

pi|bi j|m j

(eλ(t+τ)x2
j(t)

1 − µ
− eλtx2

j(t − τi j(t))
)

≤ eλt
n∑

i=1

pi

(
(λ − 2ci)x2

i (t) + 2
n∑

j=1

ai j f j(x j(t))xi(t) +

n∑
j=1

|bi j|m j(x2
j(t − τi j(t)) + x2

i (t)) + λ−1u2
i

+λx2
i (t)

)
+

n∑
i=1

n∑
j=1

pi|bi j|m j

(eλ(t+τ)x2
j(t)

1 − µ
− eλtx2

j(t − τi j(t))
)

= eλt
(
xT (t)(2λP − 2PC + PB1 +

eλτ

1 − µ
MB2)x(t) + 2xT (t)PA f (x(t))

)
+ eλtλ−1uT Pu.

The rest is similar to that of Theorem 1.
Although Theorem 1 ( or Theorem 2) gives the sufficient condition of the linear matrix inequality

form, it is difficult to find an executable Matlab program to solve the matrices P, U1 and U2 by Matlab
LMI Control Toolbox because B2 involves the elements of matrix P. That is to say, it is difficult to
verify the conditions of Theorem 1 and Theorem 2. Therefore, it is necessary to give the special cases
of Theorem 1 and Theorem 2 which are easy to verify by Matlab LMI Control Toolbox.
Corollary 1. Suppose that there exist three symmetric positive definite matrices P = p I,U1 and U2

such that

Σ =


p B1 − 2p C − 2U1L1 − 2U2M1 p A + U1L2 U2M2

∗ −2U1 0
∗ ∗ −2U2 + 1

1−µB4

 < 0.

Then there exists a pullback attractor {A(t)}t∈R for system (2.4).
Corollary 2. Suppose that there exist three symmetric positive definite matrices P = p I,U1 and U2

such that

Γ =


p B3 − 2p C − 2U1L1 − 2U2M1 + MB4

1−µ pA + U1L2 U2M2

∗ −2U1 0
∗ ∗ −2U2

 < 0.

Then there exists a pullback attractor {A(t)}t∈R for system (2.4).
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Remark 1. Since system (1.2) studied in [44] is a special case of system (1.1), the above sufficient
conditions of the linear matrix inequality form are valid for system (1.2). On the other hand, the results
in [44] are not valid for system (1.1) because system (1.1) cannot be transformed into the vector form.

Next, we give the sufficient condition of the algebraic form.
Theorem 3. Suppose that there exist some positive constants p1, p2, · · · , pn such that

pi[2ci −

n∑
j=1

|ai j|l j −

n∑
j=1

|bi j|m j] −
n∑

j=1

p j[|a ji|li +
|b ji|mi

1 − µ
] > 0,∀i. (3.12)

Then there exists a pullback attractor {A(t)}t∈R for system (2.4).
Proof. Inequality (3.12) implies that there must exist a sufficient small positive constant λ such that

pi

(
2ci − 2λ −

n∑
j=1

|ai j|(l j + λ) −
n∑

j=1

|bi j|(m j + λ)
)
−

n∑
j=1

p j

(
|a ji|li +

|b ji|mieλτ

1 − µ

)
> 0,∀i. (3.13)

For every solution x(t) satisfying ‖xt0‖ ≤ r, we employ the Lyapunov-Krasovskii functional (3.11)
and compute V̇(t) along the trajectories of system (1.1). From (2.1), (2.3) and (3.13), we derive

V̇(t) ≤ eλt
n∑

i=1

pi

(
(λ − 2ci)x2

i (t) + 2
n∑

j=1

|ai j|| f j(x j(t))||xi(t)| + 2
n∑

j=1

|bi j||g j(x j(t − τi j(t)))||xi(t)|

+2|ui||xi(t)|
)

+

n∑
i=1

n∑
j=1

pi|bi j|m j

(eλ(t+τ)x2
j(t)

1 − µ
− eλtx2

j(t − τi j(t))
)

≤ eλt
n∑

i=1

pi

(
(λ − 2ci)x2

i (t) + 2
n∑

j=1

|ai j|(l j|x j(t)||xi(t)| + | f j(0)||xi(t)|)

+2
n∑

j=1

|bi j|(m j|x j(t − τi j(t))||xi(t)| + |g j(0)||xi(t)|) + λ−1u2
i + λx2

i (t)
)

+

n∑
i=1

n∑
j=1

pi|bi j|m j

(eλ(t+τ)x2
j(t)

1 − µ
− eλtx2

j(t − τi j(t))
)

≤ eλt
n∑

i=1

pi

(
(λ − 2ci)x2

i (t) +

n∑
j=1

|ai j|(l jx2
j(t) + l jx2

i (t) + λx2
i (t) + λ−1 f 2

j (0))

+

n∑
j=1

|bi j|(m jx2
j(t − τi j(t)) + m jx2

i (t) + λx2
i (t) + λ−1g2

j(0)) + λ−1u2
i + λx2

i (t)
)

+

n∑
i=1

n∑
j=1

pi|bi j|m j

(eλ(t+τ)x2
j(t)

1 − µ
− eλtx2

j(t − τi j(t))
)

≤ eλt
n∑

i=1

pi

(
2λ − 2ci +

n∑
j=1

|ai j|(l j + λ) +

n∑
j=1

|bi j|(m j + λ)
)
x2

i (t)
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+eλt
n∑

i=1

pi

n∑
j=1

(
|ai j|l j +

|bi j|m jeλτ

1 − µ

)
x2

j(t) + λ−1eλt
n∑

i=1

pi

(
u2

i +

n∑
j=1

|ai j| f 2
j (0) +

n∑
j=1

|bi j|g2
j(0)

)
= −eλt

n∑
i=1

{
pi

(
2ci − 2λ −

n∑
j=1

|ai j|(l j + λ) −
n∑

j=1

|bi j|(m j + λ)
)
−

n∑
j=1

p j

(
|a ji|li +

|b ji|mieλτ

1 − µ

)}
x2

i (t)

+λ−1eλtβ ≤ λ−1eλtβ,

where

β =

n∑
i=1

pi

(
u2

i +

n∑
j=1

|ai j| f 2
j (0) +

n∑
j=1

|bi j|g2
j(0)

)
.

The rest is similar to that Theorem 1.
Remark 2. As known, it is sometimes not easy to find the values of the positive constants p1, p2, · · · , pn

satisfying Theorem 3. It is fortune that the property of nonsingular M-matrix provides us with a way
to avoid looking for these values since condition (3.12) holds is equivalent to that W = (Wi j)n×n is a
nonsingular M-matrix, where

Wii = 2ci −

n∑
j=1

|ai j|l j −

n∑
j=1

|bi j|m j − |aii|li −
|bii|mi

1 − µ
,Wi j = −|a ji|li −

|b ji|mi

1 − µ
, i , j.

Therefore, we only need to verify that all eigenvalues of the matrix W are positive [45].
Although we can obtain the eigenvalues of a matrix by calculating tool, we may prefer to see

the following result without involving the constants pi, which is a special case of Theorems 3 for
p1 = · · · = pn.

Corollary 3. Suppose that

2ci −

n∑
j=1

|ai j|l j −

n∑
j=1

|bi j|m j −

n∑
j=1

[|a ji|li +
|b ji|mi

1 − µ
] > 0,∀i.

Then there exists a pullback attractor {A(t)}t∈R for system (2.4).
Remark 3. Example 1 shows that our theoretical results are valid for system (1.1). Example 2 shows
that the condition of the linear matrix inequality form seems better than that of the nonsingular M-
matrix form. Meanwhile, the conditions of Corollary 2 seem better than those of Corollary 1.
Example 1. Consider system (1.1) involving the following matrices and functions:

A =


1 −1 1 −1
−1 1 1 −1
1 1 1 1
1 −1 −1 −1

 , B =


1 1 −1 1
−1 −1 1 −1
1 1 1 1
−1 −1 −1 1

 ,
c1 = 7.1, c2 = c3 = c4 = 7, fi(x) = tanh(x), gi(x) = 0.5 tanh(x), τi j(t) = 0.5cost + 0.5, i = j; τi j(t) =

0.5sint + 0.5, i , j; i, j = 1, 2, 3, 4.
Then, we calculate li = 1,mi = 0.5, i = 1, 2, 3, 4, L1 = M1 = 0, L2 = I,M2 = 0.5I,M = 0.5I, B1 =

4I, B3 = 2I, B4 = 4pI, µ = 0.5,
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W =


6.2 −2 −2 −2
−2 6 −2 −2
−2 −2 6 −2
−2 −2 −2 6

 ,
and the eigenvalues of the matrix W are 8.1509, 8, 8 and 0.0491.

From [45], we know that W is a nonsingular M-matrix, which shows that Theorem 3 holds. By
using Matlab LMI Control Toolbox, we obtain

P = 1.315I,U1 = diag{6.3319, 6.3319, 6.3319, 7.0834},U2 = 12.3625I

satisfying the condition of Corollary 1 and

P = 1.6739I,U1 = diag{6.1283, 6.1283, 6.1283, 7.0849},U2 = 8.4084I

satisfying the condition of Corollary 2.

Figure 1. The solution trajectory of system (1) with initial value (0.75, 0.25, 0.5, 1)T .

Figure 2. The solution trajectory of system (1) with initial value (−1, 1, 0.5,−0.5)T .

Figures 1 and 2 show that the attractor of system (1) is an equilibrium point (0.0923, 0.0827, 0.1457,
0.0274)T and all solutions of system (1) tend to the equilibrium point.
Example 2. For the system (1.1) in Example 1, the value of c1 is changed by 7 and the other parameters
remain unchanged. We calculate

W =


6 −2 −2 −2
−2 6 −2 −2
−2 −2 6 −2
−2 −2 −2 6

 .
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It is clear that W is no longer a nonsingular M-matrix and Theorem 3 is invalid. By using Matlab LMI
Control Toolbox, we obtain

P = 1.6812I,U1 = diag{6.1227, 6.1227, 6.1227, 7.0834},U2 = 8.4039I

satisfying the condition of Corollary 2 and do not find the suitable matrices P,U1,U2 satisfying the
condition of Corollary 1.

4. Conclusions

This paper has investigated the existence of pullback attractor of Hopfield neural networks involving
multiple time-varying delays. Such neural system cannot be expressed in the vector-matrix form due to
the existence of the multiple delays. So it is not easy to derive the existence conditions of the attractor
by linear matrix inequality approach. By employing Lyapunov-Krasovskii functional and inequality
techniques, two sets of existence conditions in linear matrix inequality form and one set of existence
conditions in algebraic form are established. Two examples are given to demonstrate the effectiveness
of our theoretical results and illustrate the existence conditions in linear matrix inequality form are
better than those of the algebraic form.
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