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1. Introduction

Unemployment is a serious problem for many nations since the problem is related to economic and
social factors such as inflation, increase/decrease in GDP, and economic depression. Moreover,
prolonged unemployment can lead to an erosion of skill, a negative effect on mental health, and
worsen the physical health of unemployed people. For these reasons, the government of each country
has been attempting to reduce the number of unemployed persons. A goal of many governments is
full employment. There are various policies used to solve the problem such as monetary policy and
fiscal policy. The government intervention helps to speed up the matching process between
unemployed persons and entrepreneurs through the support of vacancies creation. Mathematical
models for unemployment are one of the tools that are being used to introduce methods that can be
used to manage the unemployment problem.

To understand the dynamic system of unemployment, we have followed up on the following work.
In [21], Nikolopoulos and Tzanetis introduced and analyzed a mathematical model for a housing
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allocation of homeless families because of a natural disaster. Based on some concept of [21], Misra
and Singh [15, 16] introduced and analyzed mathematical models for the unemployment problem and
focused on the stability analysis of models. In [15], the authors proposed a nonlinear differential
equation of the unemployment model. For this study, three variables have been considered, namely,
the numbers of unemployed, temporarily employed, and regularly employed persons. They assumed
that the number of unemployed persons is continuously increasing due to graduation and it decreases
because unemployed persons migrate and get a job. Moreover, the total numbers of each available
vacancies are assumed to be constants. Furthermore, they assumed that employed persons become
unemployed persons because of layoff, and the number of employed person decreases due to
retirement. In [16], based on their previous work, the authors proposed a nonlinear dynamical system
with time delay. In their study, a mathematical model with three variables has been proposed, namely,
the numbers of unemployed persons, employed persons, and newly created vacancies. Besides, they
assumed that firms may reduce vacancies because of a lack of financial resources. Moreover, they
assumed that the government helps to support vacancies creation and the new vacancies are
determined by considering previously collected data of unemployment, namely, a time delay is
incorporated in creating new vacancies. Therefore, the model is presented by delay differential
equations. In [19], Munoli and Gani proposed a dynamic unemployment model based on concept
of [15, 16]. They assumed that the new vacancies are determined by considering the number of
unemployed persons. They also assumed that vacancies are incurred due to layoffs and retirement.
The model without time delay is considered by three states, namely, the number of employed persons,
unemployed persons, and vacancies. The optimal control analysis of the model was derived.
In [8, 9, 17, 20, 23, 25], the authors have constructed and analyzed the models of unemployment based
on the above-mentioned works. In [13, 18, 22, 24, 28, 31, 32], the authors have studied and analyzed
some viral infection models with intracellular delays. Some authors have focused on the local
asymptotic stability and Hopf-bifurcation by taking delay as a bifurcating parameter, such
as [22, 24, 28]. On the other hand, some authors have focused on the global asymptotic stability by
using the Lyapunov functional technique and LaSalle theorem, such as [13, 18, 31, 32].

Based on the concepts of [15, 16, 19], we have developed an unemployment model, taking into
consideration the role of government for the support of vacancies creation. In this study, we modify
the unemployment model of Munoli and Gani with new assumptions. The model is considered by
three variables, namely, the number of unemployed persons, employed persons, and vacancies. Under
some additional assumptions, we assume that workers are dismissed and they may become unemployed
persons, migrate to other countries, or change to a business owner. We also assume that vacancies are
incurred due to retirement and some job positions are maintained and job positions are not terminated.
Moreover, we assume that the new vacancies are incurred by the government policy and the government
uses previously collected data of unemployment to determine the new vacancies. In this paper, the
unemployment model is presented by delay differential equations. We have analyzed the local and
global stability of the system. Numerical results are given to illustrate the effectiveness of theoretical
results. Furthermore, we have observed behavior of solutions of the system when some parameters are
varied.
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2. The mathematical model

Let U(t), E(t), and V(t) be the number of unemployed persons, employed persons, and vacancies at
time t, respectively. In this study, we assume the following:

(i) all entrants to unemployment class are fully qualified for doing any job;
(ii) the unemployed persons are continuously increasing in number with a constant rate;

(iii) the unemployed persons migrate from their local place to other places and the migration rate of
unemployed persons is assumed to be proportional to their number;

(iv) the rate of movement from the unemployment class to the employed class is jointly proportional
to the numbers of unemployed persons and available vacancies;

(v) the employed persons may leave their jobs because of layoff and join the unemployed class;
(vi) layoff of employed persons is regarded as for vacancies. They were dismissed to become

unemployed persons but some persons do not become unemployed persons because they may
migrate to other countries or become a business owner;

(vii) the employed persons may leave their jobs because of retirement and vacancies are incurred after
they are retired but some job positions may be terminated;

(viii) firms may reduce vacancies because of lack of financial resources and the reduction rate of
vacancies is assumed to be proportional to their numbers;

(ix) the new vacancies are created at a rate proportional to the number of unemployed persons and
time delay is incorporated in creating new vacancies.

Figure 1. Schematic diagram of the unemployment model with time delay.

The flow schematic diagram and parameters of the model considered in this study are given in
Figure 1 and Table 1, respectively. In view of the above consideration, the mathematical model may
be written as follows:

U̇(t) = α1 − α2U(t) − α3U(t)V(t) + β3E(t)
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7424

Ė(t) = α3U(t)V(t) − β1E(t) − β2E(t) (2.1)
V̇(t) = β1E(t) + β4E(t) + φU(t − τ) − γV(t)

where β1 > β3 and β2 > β4.
The initial conditions and history functions for system (2.1) are assumed to be of the forms:

U(ζ) = Φ1(ζ), E(ζ) = Φ2(ζ),V(ζ) = Φ3(ζ),
Φ1(ζ) ≥ 0,Φ2(ζ) ≥ 0,Φ3(ζ) ≥ 0, ζ ∈ [−τ, 0),

Φ1(0) > 0,Φ2(0) > 0,Φ3(0) > 0,

where (Φ1(ζ),Φ3(ζ),Φ3(ζ)) ∈ C([−τ, 0),R3
+).

Table 1. Parameters and explanation of the system (2.1).

Parameters Explanation

α1 The constant rate at which the number of unemployed persons
is increasing continuously

α2 The migration rate of unemployed persons
α3 The rate at which the unemployed persons are becoming employed persons
β1 The layoff rate
β2 The rate of retirement
β3 The rate at which the persons are dismissed become the unemployed persons
β4 The rate of vacancies because of retirement
φ The rate of creating new vacancies
γ The reduction rate of vacancies because of lack of financial resources
τ Time delay as point of past time

3. Analysis of the model

In this section, we analyze the system (2.1) using the stability theory of differential equations [6,
10,14] and delay differential equations [5,7,11,27]. The following Lemmas show that we can find the
region of attraction and the positive equilibrium points of the system (2.1), respectively.

Lemma 3.1. The set Ω = {(U, E,V) : 0 ≤ U +E ≤ α1
δ1
, 0 ≤ V(t) ≤ δ2α1

δ1γ
}, where δ1 = min{α2, β1 +β2−β3}

and δ2 = max{β1 +β4, φ} is a region of attraction for the system (2.1) and attracts all solution initiating
in the interior of positive octant.

Proof. From the system (2.1), we have

U̇(t) + Ė(t) = α1 − α2U(t) − (β1 + β2 − β3)E(t).

Let δ1 = min{α2, β1 + β2 − β3}, we obtain

d
dt

[U(t) + E(t)] ≤ α1 − δ1[U(t) + E(t)].
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This implies
lim

t→+∞
sup[U(t) + E(t)] ≤

α1

δ1
.

Consider the third equation of system (2.1) and let δ2 = max{β1 + β4, φ}, we get

V̇(t) ≤
δ2α1

δ1
− γV(t).

Therefore,

lim
t→+∞

sup V(t) ≤
δ2α1

δ1γ
.

�

Lemma 3.2. Suppose A = α2α3(β1 + β4) − α3(β1 + β2 − β3)φ, B = α1α3(β1 + β4) + α2γ(β1 + β2),
C = α1γ(β1 + β2), D̄ = (β1 + β2)γ − (β1 + β4)α3Ū and Ď = (β1 + β2)γ − (β1 + β4)α3Ǔ. Then we have
the following:

(i) If A = 0 holds, then positive equilibrium point E1(Û, Ê, V̂) exists, where

Û =
C
B
,

Ê =
α3ÛV̂
β1 + β2

,

V̂ =
φα1

γα2
.

(ii) If A > 0 and D̄ > 0 hold, then positive equilibrium point E2(Ū, Ē, V̄) exists, where

Ū =
B −
√

B2 − 4AC
2A

,

Ē =
α3ŪV̄
β1 + β2

,

V̄ =
(β1 + β2)φŪ

D̄
.

(iii) If A < 0 and Ď > 0 hold, then positive equilibrium point E3(Ǔ, Ě, V̌) exists, where

Ǔ =
B −
√

B2 − 4AC
2A

,

Ě =
α3ǓV̌
β1 + β2

,

V̌ =
(β1 + β2)φǓ

Ď
.

Proof. To obtain all positive equilibrium points of the system (2.1), we set the right-hand side of (2.1)
equal to zero. The equations for the equilibrium points are as follows:

α1 − α2U − α3UV + β3E = 0, (3.1)

AIMS Mathematics Volume 6, Issue 7, 7421–7440.



7426

α3UV − (β1 + β2)E = 0, (3.2)

(β1 + β4)E + φU − γV = 0. (3.3)

From (3.2), we get

E =
α3UV
β1 + β2

. (3.4)

Substituting (3.4) into (3.3), we obtain

(β1 + β4)
α3UV
β1 + β2

+ φU − γV = 0.

This gives,

V =
(β1 + β2)φU

(β1 + β2)γ − (β1 + β4)α3U
. (3.5)

Substituting (3.4) and (3.5) into (3.1), we get the following equations in U:

α1 − α2U −
α3(β1 + β2)φU2

(β1 + β2)γ − (β1 + β4)α3U
+

α3β3φU2

(β1 + β2)γ − (β1 + β4)α3U
= 0,

(α1 − α2U)[(β1 + β2)γ − (β1 + β4)α3U] − α3(β1 + β2)φU2 + α3β3φU2 = 0,

[α2α3(β1 + β4) − α3(β1 + β2 − β3)φ]U2 − [α1α3(β1 + β4) + α2γ(β1 + β2)]U + α1γ(β1 + β2) = 0.

As a result, we have the quadratic equation

AU2 − BU + C = 0. (3.6)

For A = 0, the equilibrium point E1(Û, Ê, V̂) exists.
For A , 0, we solve the quadratic equation and obtain

U =
B ±
√

B2 − 4AC
2A

. (3.7)

Since B2 − 4AC > 0, the values of U are real numbers. If A < 0, then one root of U is positive
and the other is negative. If A > 0, then both roots of U are positive. However, we require positive
equilibrium points. Therefore, two feasible equilibrium points exist, namely, E2(Ū, Ē, V̄) for A > 0
and D̄ > 0 or E3(Ǔ, Ě, V̌) for A < 0 and Ď > 0. �

We now examine the local asymptotic stability of the positive equilibrium points we have found
in Lemma (3.2) and determine the conditions for the nonexistence of delay induced instability by
analyzing characteristic equations. For this purpose, we assume that an equilibrium point E(Ũ, Ẽ, Ṽ)
exists and then linearize the system (2.1) by using the following transformation

x(t) = [u(t) e(t) v(t)]T = [Ũ Ẽ Ṽ]T + [U(t) E(t) V(t)]T

where u, e and v are small perturbations around the equilibrium point E(Ũ, Ẽ, Ṽ).
The linearized system of (2.1) may be written in the matrix form as

ẋ(t) = L1x(t) + L2x(t − τ) (3.8)
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where

L1 =


−(α3Ṽ + α2) β3 −α3Ũ

α3Ṽ −(β1 + β2) α3Ũ
0 (β1 + β4) −γ

 ,
L2 =


0 0 0
0 0 0
φ 0 0

 .
Let us take the solution of model (3.8) as u(t) = k1eλt, e(t) = k2eλt, and v(t) = k3eλt, where k1, k2 and

k3 are arbitrary constants. Thus, we have

λIx(t) = L1x(t) + L2x(t)e−λτ,

[λI − L1 − L2e−λτ]x(t) = 0.

By setting det(λI − L1 − L2e−λτ) = 0, this leads to the following characteristic equation:

λ3 + p1λ
2 + p2λ + p3 + (q1λ + q2)e−λτ = 0, (3.9)

where

p1 = α3Ṽ + α2 + β1 + β2 + γ,

p2 = α3(β1 + β2 − β3 + γ)Ṽ + α2(β1 + β2) + (β1 + β2)γ − (β1 + β4)α3Ũ,

p3 = α3γ(β1 + β2 − β3)Ṽ + α2[(β1 + β2)γ − (β1 + β4)α3Ũ],
q1 = α3φŨ,

q2 = α3φ(β1 + β2 − β3)Ũ.

Next, we analyze (3.9) by substituting λ = iω in (3.9) and then rearranging it as follows,

(iω)3 + p1(iω)2 + p2iω + p3 + [q1(iω) + q2]e−(iω)τ = 0,

−iω3 − p1ω
2 + p2iω + p3 + [q1iω + q2][cos(−ωτ) + isin(−ωτ)] = 0,

i[ω3 − p2ω − q1ωcos(ωτ) + q2sin(ωτ)] + p1ω
2 − p3 − q1ωsin(ωτ) − q2cos(ωτ) = 0. (3.10)

Then, by separating real and imaginary parts, we obtain

p1ω
2 − p3 = q1ωsin(ωτ) + q2cos(ωτ), (3.11)

ω3 − p2ω = q1ωcos(ωτ) − q2sin(ωτ). (3.12)

Squaring both sides of (3.11) and (3.12), we get

(p1ω
2 − p3)2 = (q1ω)2sin2(ωτ) + 2q1q2ωsin(ωτ)cos(ωτ) + q2

2cos2(ωτ), (3.13)

(ω3 − p2ω)2 = (q1ω)2cos2(ωτ) − 2q1q2ωsin(ωτ)cos(ωτ) + q2
2sin2(ωτ). (3.14)

Next, after adding (3.13) and (3.14) and rearranging, we have

(p1ω
2 − p3)2 + (ω3 − p2ω)2 = (q1ω)2 + q2

2,
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ω6 + (p2
1 − 2p2)ω4 + (p2

2 − 2p1 p3 − q2
1)ω2 + p2

3 − q2
2 = 0.

Therefore, we get
ω6 + c1ω

4 + c2ω
2 + c3 = 0, (3.15)

where c1 = p2
1 − 2p2, c2 = p2

2 − 2p1 p3 − q2
1 and c3 = p2

3 − q2
2.

By letting σ = ω2, (3.15) becomes a cubic equation given by

σ3 + c1σ
2 + c2σ + c3 = 0. (3.16)

We now define
F(σ) = σ3 + c1σ

2 + c2σ + c3. (3.17)

Thus, we have shown that the Eq (3.9) has no purely imaginary roots if and only if (3.16) has
no positive real roots. Next, we analyze Eq (3.16) using the methods for third-degree exponential
polynomials given by Ruan and Wei [26]. According to the work in [26], for a polynomial in the form
of (3.16), the following lemma is obtained.

Lemma 3.3. Suppose σ0 = 1
3 (−c1 +

√
c2

1 − 3c2) and equilibrium point E(Ũ, Ẽ, Ṽ) exists. If one of the
following holds:

(i) c3 ≥ 0 and c2
1 < 3c2,

(ii) c3 ≥ 0 and σ0 ≤ 0,
(iii) c3 ≥ 0, σ0 > 0 and F(σ0) > 0,

then Eq (3.16) has no positive roots.

From the lemma above, if the conditions of Lemma 3.3 are satisfied, then the system cannot have
purely imaginary eigenvalues and therefore a Hopf-bifurcation cannot exist. Then, we apply Lemma
3.3 to the following propositions.

Proposition 3.4. Suppose A = 0 and σ̂ = 1
3 (−ĉ1 +

√
ĉ1

2 − 3ĉ2) where

ĉ1 = p̂1
2 − 2p̂2,

ĉ2 = p̂2
2 − 2p̂1 p̂3 − q̂1

2,

ĉ3 = p̂3
2 − q̂2

2,

p̂1 = α3V̂ + α2 + β1 + β2 + γ,

p̂2 = α3(β1 + β2 − β3 + γ)V̂ + α2(β1 + β2) +
α2γ

2(β1 + β2)2

B
,

p̂3 = α3γ(β1 + β2 − β3)V̂ +
α2

2γ
2(β1 + β2)2

B
,

q̂1 = α3φÛ,

q̂2 = α3φ(β1 + β2 − β3)Û.

If one of the following holds:

(i) ĉ1
2 < 3ĉ2,

(ii) ĉ2 ≥ 0,
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(iii) ĉ2 < 0 and F(σ̂) > 0,

then the equation
σ̂3 + ĉ1σ̂

2 + ĉ2σ̄ + ĉ3 = 0 (3.18)

has no positive roots.

Proposition 3.5. Suppose A > 0, D̄ > 0 and σ̄ = 1
3 (−c̄1 +

√
c̄1

2 − 3c̄2) where

c̄1 = p̄1
2 − 2p̄2,

c̄2 = p̄2
2 − 2p̄1 p̄3 − q̄1

2,

c̄3 = p̄3
2 − q̄2

2,

p̄1 = α3V̄ + α2 + β1 + β2 + γ,

p̄2 = α3(β1 + β2 − β3 + γ)V̄ + α2(β1 + β2) + D̄,

p̄3 = α3γ(β1 + β2 − β3)V̄ + α2D̄,

q̄1 = α3φŪ,

q̄2 = α3φ(β1 + β2 − β3)Ū.

If one of the following holds:

(i) c̄1
2 < 3c̄2,

(ii) c̄2 ≥ 0,
(iii) c̄2 < 0 and F(σ̄) > 0,

then the equation
σ̄3 + c̄1σ̄

2 + c̄2σ̄ + c̄3 = 0 (3.19)

has no positive roots.

Proposition 3.6. Suppose A < 0, Ď > 0 and σ̌ = 1
3 (−č1 +

√
č1

2 − 3č2) where

č1 = p̌1
2 − 2p̌2,

č2 = p̌2
2 − 2p̌1 p̌3 − q̌1

2,

č3 = p̌3
2 − q̌2

2,

p̌1 = α3V̌ + α2 + β1 + β2 + γ,

p̌2 = α3(β1 + β2 − β3 + γ)V̌ + α2(β1 + β2) + Ď,

p̌3 = α3γ(β1 + β2 − β3)V̌ + α2Ď,

q̌1 = α3φǓ,

q̌2 = α3φ(β1 + β2 − β3)Ǔ.

If one of the following holds:

(i) č1
2 < 3č2,

(ii) č2 ≥ 0,
(iii) č2 < 0 and F(σ̌) > 0,
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then the equation
σ̌3 + č1σ̌

2 + č2σ̌ + č3 = 0 (3.20)

has no positive roots.

Note that, it is easy to show that ĉ3 > 0, c̄3 > 0 and č3 > 0. Next, by using the above propositions
and analyzing characteristic equations, we obtain the following theorems.

Theorem 3.7. Suppose A = 0. If one of the conditions in Proposition 3.4 holds, then E1(Û, Ê, V̂) is
locally asymptotically stable for all τ ≥ 0.

Proof. Since A = 0, E1(Û, Ê, V̂) exists. The characteristic equation of the linearized the system (2.1)
is

λ3 + p̂1λ
2 + p̂2λ + p̂3 + (q̂1λ + q̂2)e−λτ = 0. (3.21)

When τ = 0, the characteristic Eq (3.21) becomes

λ3 + p̂1λ
2 + ( p̂2 + q̂1)λ + p̂3 + q̂2 = 0. (3.22)

Clearly, p̂1, p̂2, p̂3, q̂1 and q̂2 are positive and p̂1( p̂2 + q̂1) > p̂3 + q̂2. By using the Routh-Hurwitz
criterion [3], all the roots of (3.22) have negative real parts. For τ > 0, if one of the conditions in
Proposition 3.4 holds then (3.18) has no positive real roots, namely, all solutions of (3.18) should be
negative or zero. But zero roots cannot occur since ĉ3 > 0. Hence, we obtain only negative roots for
(3.18). This implies that (3.21) has negative real parts for all τ ≥ 0. Consequently, E1(Û, Ê, V̂) is
locally asymptotically stable for all τ ≥ 0. �

Theorem 3.8. Suppose A > 0 and D̄ > 0. If one of the conditions in Proposition 3.5 holds, then
E2(Ū, Ē, V̄) is locally asymptotically stable for all τ ≥ 0.

Proof. Since A > 0 and D̄ > 0, E2(Ū, Ē, V̄) exists. The characteristic equation of the linearized the
system (2.1) is

λ3 + p̄1λ
2 + p̄2λ + p̄3 + (q̄1λ + q̄2)e−λτ = 0. (3.23)

Similar to the proof of Theorem 3.7, we may show that E2(Ū, Ē, V̄) is locally asymptotically stable for
all τ ≥ 0. �

Theorem 3.9. Suppose A < 0 and Ď > 0. If one of the conditions in Proposition 3.6 holds, then
E3(Ǔ, Ě, V̌) is locally asymptotically stable for all τ ≥ 0.

Proof. Since A < 0 and Ď > 0, E3(Ǔ, Ě, V̌) exists. The characteristic equation of the linearized the
system (2.1) is

λ3 + p̌1λ
2 + p̌2λ + p̌3 + (q̌1λ + q̌2)e−λτ = 0. (3.24)

Similar to the proof of Theorem 3.7, we may show that E3(Ǔ, Ě, V̌) is locally asymptotically stable for
all τ ≥ 0. �

Next, we study the global stability of the system (2.1). For convenience, we define a function
g : R+ → R+ as g(x) = x − 1 − ln x. Here, g(x) ≥ 0 for all x > 0 and g(1) = 0. We have the following
theorems.
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Theorem 3.10. Suppose A > 0 and D̄ > 0. If α2 ≥ φ, β2 − β4 ≥ β3, γ

α3
≥ Ū, and one of the conditions

in Proposition 3.5 holds, then E2(Ū, Ē, V̄) is globally asymptotically stable for all τ ≥ 0.

Proof. Since A > 0 and D̄ > 0, E2(Ū, Ē, V̄) exists. Now, we define a Lyapunov functional as follows:

W1 = Ūg
(U(t)

Ū
)

+ Ēg
(E(t)

Ē
)

+ V̄g
(V(t)

V̄
)

+ φŪ
∫ τ

0
g
(U(t − ζ)

Ū
)
dζ. (3.25)

Note that, W1 ≥ 0 for all positive U, E, V and ζ ∈ [0, τ]. Moreover, the global minimum W1 = 0
occurs at E2(Ū, Ē, V̄). Then, by differentiating W1 along the solution of system (2.1) with respect to t,
we obtain

dW1

dt
=

(
1 −

Ū
U(t)

)
U̇ +

(
1 −

Ē
E(t)

)
Ė +

(
1 −

V̄
V(t)

)
V̇ + φŪ

[
g
(U(t)

Ū
)
− g

(U(t − τ)
Ū

)]
,

=
[
1 −

Ū
U(t)

][
α1 − α2U(t) − α3U(t)V(t) + β3E(t)

]
+
[
1 −

Ē
E(t)

][
α3U(t)V(t) − (β1 + β2)E(t)

]
+
[
1 −

V̄
V(t)

][
(β1 + β4)E(t) + φU(t − τ) − γV(t)

]
+φŪ

[
g
(U(t)

Ū
)
− g

(U(t − τ)
Ū

)]
.

Using the equalities α1 = α2Ū + α3ŪV̄ − β3Ē, α3ŪV̄ = (β1 + β2)Ē, and γV̄ = φŪ + (β1 + β4)Ē into
the above equation, we get

dW1

dt
=

[
1 −

Ū
U(t)

][
α2Ū + α3ŪV̄ − β3Ē − α2U(t) − α3U(t)V(t) + β3E(t)

]
+
[
1 −

Ē
E(t)

][
α3U(t)V(t) − α3ŪV̄ + α3ŪV̄ −

α3ŪV̄
Ē

E(t)
]

+
[
1 −

V̄
V(t)

][
(β1 + β4)E(t) + φU(t − τ) − γV̄ − γV(t) + γV̄

]
+φŪ

[
g
(U(t)

Ū
)
− g

(U(t − τ)
Ū

)]
.

By rearrangement, we have

dW1

dt
= α2

[
1 −

Ū
U(t)

][
Ū − U(t)

]
− α3

[
1 −

Ū
U(t)

][
U(t)V(t) − ŪV̄

]
+β3

[
1 −

Ū
U(t)

][
E(t) − Ē

]
+α3

[
1 −

Ē
E(t)

][
U(t)V(t) − ŪV̄

]
+ α3ŪV̄

[
1 −

Ē
E(t)

][
1 −

E(t)
Ē

]
+(β1 + β4)

[
1 −

V̄
V(t)

][
E(t) − Ē

]
+ φ

[
1 −

V̄
V(t)

][
U(t − τ) − Ū

]
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+γ
[
1 −

V̄
V(t)

][
V̄ − V(t)

]
+ φŪ

[
g
(U(t)

Ū
)
− g

(U(t − τ)
Ū

)]
,

dW1

dt
= −α2Ū

[
g
(U(t)

Ū
)

+ g
( Ū
U(t)

)]
+ α3ŪV̄

[
g
(V(t)

V̄
)
− g

( Ū
U(t)

)
− g

(U(t)V(t)
ŪV̄

)]
−β3Ē

[
g
(ŪE(t)
U(t)Ē

)
− g

( Ū
U(t)

)
− g

(E(t)
Ē

)]
−α3ŪV̄

[
g
( ĒU(t)V(t)

E(t)ŪV̄
)
− g

( Ē
E(t)

)
− g

(U(t)V(t)
ŪV̄

)]
− α3ŪV̄

[
g
(E(t)

Ē
)

+ g
( Ē
E(t)

)]
−(β1 + β4)Ē

[
g
( V̄E(t)
V(t)Ē

)
− g

( V̄
V(t)

)
− g

(E(t)
Ē

)]
−φŪ

[
g
( V̄U(t − τ)

V(t)Ū
)
− g

( V̄
V(t)

)
− g

(U(t − τ)
Ū

)]
− γV̄

[
g
(V(t)

V̄
)

+ g
( V̄
V(t)

)]
+φŪ

[
g
(U(t)

Ū
)
− g

(U(t − τ)
Ū

)]
,

= −(α2 − φ)Ūg
(U(t)

Ū
)
− (α2Ū + α3ŪV̄ − β3Ē)g

( Ū
U(t)

)
− β3Ēg

(ŪE(t)
U(t)Ē

)
−(α3ŪV̄ − β3Ē − β1Ē − β4Ē)g

(E(t)
Ē

)
− α3ŪV̄g

( ĒU(t)V(t)
E(t)ŪV̄

)
− (β1 + β4)Ēg

( V̄E(t)
V(t)Ē

)
−(γV̄ − α3ŪV̄)g

(V(t)
V̄

)
− (γV̄ − β1Ē − β4Ē − φŪ)g

( V̄
V(t)

)
− φŪg

( V̄U(t − τ)
V(t)Ū

)
,

= −(α2 − φ)Ūg
(U(t)

Ū
)
− (α2Ū + β1Ē + β2Ē − β3Ē)g

( Ū
U(t)

)
− β3Ēg

(ŪE(t)
U(t)Ē

)
−(β2 − β3 − β4)Ēg

(E(t)
Ē

)
− α3ŪV̄g

( ĒU(t)V(t)
E(t)ŪV̄

)
− (β1 + β4)Ēg

( V̄E(t)
V(t)Ē

)
−(γ − α3Ū)V̄g

(V(t)
V̄

)
− φŪg

( V̄U(t − τ)
V(t)Ū

)
.

From assumptions that α2 ≥ φ, β2 − β4 ≥ β3, and γ

α3
≥ Ū, i.e., α2 − φ ≥ 0, β2 − β3 − β4 ≥ 0 and

γ − α3Ū ≥ 0, we have dW1
dt ≤ 0. As a result, W1 is bounded and non-increasing and thus limt→+∞W1(t)

exists. Moreover, dW1
dt = 0 if and only if U(t) = U(t − τ) = Ū, E(t) = Ē and V(t) = V̄ for all

t ≥ 0. It follows that the largest invariant set in {(U, E,V)| dW1
dt = 0} is E2(Ū, Ē, V̄). Thus, by LaSalle

invariant principle [12], we conclude that the solution of the system (2.1) tends to the largest invariant
set. Consequently, E2(Ū, Ē, V̄) is globally asymptotically stable for all τ ≥ 0. �

Theorem 3.11. Suppose A < 0 and Ď > 0. If α2 ≥ φ, β2 − β4 ≥ β3, γ

α3
≥ Ǔ, and one of the conditions

in Proposition 3.6 holds, then E3(Ǔ, Ě, V̌) is globally asymptotically stable for all τ ≥ 0.

Proof. Since A < 0 and Ď > 0, E3(Ǔ, Ě, V̌) exists. Then, we define

W3 = Ǔg
(U(t)

Ǔ

)
+ Ěg

(E(t)
Ě

)
+ V̌g

(V(t)
V̌

)
+ φǓ

∫ τ

0
g
(U(t − ζ)

Ǔ

)
dζ. (3.26)

AIMS Mathematics Volume 6, Issue 7, 7421–7440.



7433

Similar to the proof of Theorem 3.10, we may show that E3(Ǔ, Ě, V̌) is globally asymptotically stable
for all τ ≥ 0. �

Theorem 3.12. Suppose A = 0. If α2 ≥ φ, β2 − β4 ≥ β3, γ

α3
≥ Û, and one of the conditions in

Proposition 3.4 holds, then E1(Û, Ê, V̂) is globally asymptotically stable for all τ ≥ 0.

Proof. Since A = 0, E1(Û, Ê, V̂) exists. Then, we define

W2 = Ûg
(U(t)

Û

)
+ Êg

(E(t)
Ê

)
+ V̂g

(V(t)
V̂

)
+ φÛ

∫ τ

0
g
(U(t − ζ)

Û

)
dζ. (3.27)

Similar to the proof of Theorem 3.10, we may show that E1(Û, Ê, V̂) is globally asymptotically stable
for all τ ≥ 0. �

Remark 3.13. In the case of the unemployment model without time-delay, namely for the case τ = 0,
it is assumed that the new vacancies are determined by using unemployment data in the current time.

Remark 3.14. The conditions α2 ≥ φ, β2 − β4 ≥ β3, and γ

α3
≥ Ul for l = 1, 2, 3 mean that the rate

of creating new vacancies should not exceed the migration rate of unemployed persons, the layoff rate
should not exceed the rate of vacancies lost because of retirement, and an equilibrium point value of
unemployed persons should not exceed the ratio of the reduction rate of vacancies and employment
rate. These conditions are assumed to analyze the global asymptotic stability of the system. If we
could find a more suitable Lyapunov functional, then this may lead to improved sufficient conditions
for global asymptotic stability.

4. Numerical results

In this section, we provide a practical application and a numerical example to illustrate the
effectiveness of theoretical results.
Example 4.1 We first consider a practical example of an unemployment situation in Thailand.
According to the latest education statistics of Thailand from the academic year of 2016-2017 [4]
provided by the Ministry of Education of Thailand, we may estimate the average number of new
graduates as α1 = 288081. According to the labor statistics yearbook, 2019 of Thailand [29] and
social security statistics 2019 of Thailand [30] provided by the Ministry of Labour of Thailand, we
may estimate the rate of overseas labor migration as α2 = 0.071, the rate at which the unemployed
persons become employed persons as α3 = 0.0000055, the layoff rate as β1 = 0.0081, and the
retirement rate as β2 = 0.028, respectively. Moreover, from the labor statistics yearbook, 2019 of
Thailand [29], the numbers of unemployed persons (U), employed persons (E), and newly created
vacancies (V) are 145000, 8196600, and 168396, respectively. As a result, we may obtain the initial
values as U(0) = 145000, E(0) = 8196600, and V(0) = 168396, respectively. However, due to the
lack of some population statistical information, we are unable to estimate the unemployment rate due
to layoff (β3), the rate of vacancies due to retirement (β4), the reduction rate of vacancies because of
lack of financial resources (γ), and the rate of creating new vacancies from the government policy (φ).
As a result, to study the unemployment model in Thailand, we need to estimate β3, β4, γ, and φ as
follows. First, we assume that the unemployment rate due to layoff is 90 percent of the layoff rate,
namely, β3 = 0.9β1 = 0.00729. Next, we assume that the rate of vacancies because of retirement is 5

AIMS Mathematics Volume 6, Issue 7, 7421–7440.



7434

percent of retirement, namely, β4 = 0.05β2 = 0.0014. Then, we assume that the reduction rate of
vacancies because of lack of financial resources is γ = 0.05. Finally, we assume that the rate of
creating new vacancies from the government policy is φ = 0.01.

Now, we provide numerical simulations of the unemployment model in Thailand for the system
(2.1) without time delay by using the parameters and initial values from statistical data of Thailand as
mentioned above. It is straight forward to verify that these parameter values satisfy the condition (ii)
of Lemma 3.2, Proposition 3.5, and Theorem 3.8. Therefore, the equilibrium point of the system exists
which can be found from the condition (ii) of Lemma 3.2 as (34400, 9914500, 1890600). Furthermore,
it follows from Theorem 3.8 that the equilibrium point is locally asymptotically stable. In Figure 2,
we illustrate the change of numbers of unemployed persons, employed persons, and vacancies as time
evolves. The simulation indicates that, as time evolved, the number of vacancies increases due to layoff,
retirement, and the creation of new vacancies from the government policy. Moreover, the number
of unemployed persons is increasing at the beginning and eventually it is decreasing as unemployed
persons are getting jobs, as time evolves. On the other hand, the number of employed persons is
decreasing for early-stage but eventually, it is increasing because unemployed persons have become
employed persons. Furthermore, the number of vacancies is greater than the number of unemployed
persons, namely, there are enough vacancies for unemployed persons. In general, in crises such as
COVID-19 pandemic, economic recession, government as well as private sectors are not creating job
vacancies, but rather providing other policies such as emergency funds for unemployment, food bank,
tax-exempts, respectively.
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Figure 2. The change in numbers of unemployed persons, employed persons, and vacancies
as time evolved.

Next, we illustrate the change in the number of unemployed persons as the rate of creating new
vacancies from the government policy is being varied, as time evolves. To this end, we provide
numerical simulations of the unemployment model in Thailand for the system (2.1) without time
delay when the parameters and initial values are the same as those used in Figure 2 but the values of φ
is being varied, namely, φ = 0.01, 0.11, and 0.21, respectively. From Figure 3, the numbers of
unemployed persons are given, as time evolved, when the rate of creating new vacancies is being
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varied as φ = 0.01, 0.11, and 0.21, respectively. The simulation indicates that the number of
unemployed persons is increasing at the beginning and eventually it is decreasing as time evolves.
Moreover, it can be seen that the number of unemployed persons decreases as the rate of creating new
vacancies increases. Note that all three sets of parameters used in Figure 3 satisfy theoretical results
for locally asymptotically stable.
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Figure 3. The numbers of unemployed persons as time evolved when the rate of creating
new vacancies is varied as φ = 0.01, 0.11, and 0.21.

Then, we compare the numbers of unemployed persons as time evolved when the rate at which the
unemployed persons become employed persons is being varied. We provide numerical simulations of
the unemployment model in Thailand for the system (2.1) without time delay when the parameters
and initial values are the same as those used to obtain the Figure 2 but the value of α3 is being varied,
namely, α3 = 0.0000055, 0.000055, and 0.00055, respectively. From figure 4, it is shown that the
numbers of unemployed persons as time evolved when the rate at which the unemployed persons
become employed persons is being varied as α3 = 0.0000055, 0.000055, and 0.00055, respectively. It
can be seen that the number of unemployed persons decreases as the rate at which the unemployed
persons become employed person increases. Moreover, the number of unemployed persons is quite
small when the rate at which the unemployed persons become employed persons is set as
α3 = 0.00055. A plausible reason is that at this rate of the unemployed persons become employed
persons, the matching between vacancies to unemployed persons takes place quickly. Finally, we note
that all three sets of parameters used in Figure 4 satisfy theoretical results for equilibrium states to be
locally asymptotically stable.
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Figure 4. The numbers of unemployed persons as time evolved when the rate at which the
unemployed persons become employed persons is varied as α3 = 0.0000055, 0.000055, and
0.00055.

Example 4.2 In this example, we give numerical results to support the theoretical results for system
(2.1). The numerical results based on the Runge-Kutta methods for differential equations [2] and delay
differential equations [1]. The sets of parameters used in this numerical example are shown in Table 2.

Table 2. Parameter values of the system (2.1).

Parameters Set 1 Set 2 Set 3 Set 4

α1 400000 400000 400000 400000
α2 0.02 0.02 0.02 0.02
α3 0.00000001 0.00000001 0.0000000075 0.0000001
β1 0.01 0.01 0.01 0.01
β2 0.01 0.01 0.015 0.01
β3 0.005 0.005 0.005 0.005
β4 0.005 0.005 0.005 0.005
φ 0.02 0.016 0.02 0.02
γ 0.05 0.06 0.05 0.05

The parameter value set 1 satisfies condition (i) of Lemma 3.2, Proposition 3.4, Theorem 3.7, and
Theorem 3.12. Therefore, E1(5000000, 20000000, 8000000) exists and it is locally and globally
asymptotically stable. Next, if we use the parameter value set 2 which satisfies (ii) of Lemma 3.2,
Proposition 3.5, Theorem 3.8, and Theorem 3.10. Therefore, E2(5969000, 18708000, 6269000) exists
and it is locally and globally asymptotically stable. Then, we consider the parameter value set 3. The
parameter value set 3 corresponds to conditions (iii) of Lemma 3.2, Proposition 3.6, Theorem 3.9, and
Theorem 3.11. Therefore, E3(6667000, 13333000, 6667000) exists and it is locally and globally
asymptotically stable. Figure 5, Figure 6, and Figure 7 show numerical simulations of the system
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(2.1) by using the parameter value sets 1, 2, and 3, respectively, with the initial values
(1000000, 15000000, 1000000) for τ = 0 and the initial functions
(1000000e−0.063ζ , 15000000, 1000000) for τ = 10, ζ ∈ [−τ, 0). From Figure 5, Figure 6, and Figure 7,
we see that trajectories of solutions converge to E1, E3, and E3, respectively which are in agreement
with theoretical results.
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(b) τ = 10

Figure 5. Numerical solutions of the system (2.1) by using the parameter value set 1.
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(b) τ = 10

Figure 6. Numerical solutions of the system (2.1) by using the parameter value set 2.
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Figure 7. Numerical solutions of the system (2.1) by using the parameter value set 3.

Next, we consider the parameter value set 4 given in Table 2. This set satisfies condition (i) of
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Lemma 3.2, Proposition 3.4, and Theorem 3.7, but not Theorem 3.12. It follows that
Ē1(645000, 25806000, 8000000) exists and this point is locally asymptotically stable. However, the
conditions in Theorem 3.12 is sufficient conditions for global asymptotic stability. Now, we give the
initial conditions far from the equilibrium point Ē1 and simulate the numerical results of the system
(2.1) by using the parameter value set 4 with the initial values (5000000, 10000000, 400000) for τ = 0
and the initial functions (5000000e−0.063ζ , 10000000, 400000) for τ = 10, ζ ∈ [−τ, 0). These two
situations are shown in Figures 8. In this case, although we give initial conditions far from the
equilibrium point, the solutions converge to Ē1.
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Figure 8. Numerical solutions of the system (2.1) by using the parameter value set 4.

5. Conclusions

In this paper, the unemployment model with time delay is proposed. It has been shown that the
model has three feasible positive equilibrium points in Lemma 3.2. Next, we have analyzed the local
and global stability of all positive equilibrium points. The conditions for the nonexistence of delay
induced instability are determined in Proposition 3.4 to Proposition 3.6. The analysis has indicated
that the phenomena of a Hopf-bifurcation cannot exist under conditions given in these propositions.
Moreover, the conditions for locally and globally asymptotically stable are obtained in Theorem 3.7
to Theorem 3.11. Numerical results confirmed the theoretical analysis as well. Furthermore, we
observe that if the rate of creating new vacancies or the employment rate increase, then the number of
unemployed persons decreases. This observation has indicated that the strategy of a government to
create new vacancies and speed up the matching process between unemployed persons and
entrepreneurs has an effect to reduce the number of unemployed persons.
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